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Abstract

This paper presents a human–guided automated ap-
proach to refactoring object oriented programs to the as-
pect oriented paradigm. The approach is based upon the
iterative application of four steps: discovery, enabling, se-
lection, and refactoring. After discovering potentially ap-
plicable refactorings, the enabling step transforms the code
to improve refactorability. During the selection phase the
particular refactorings to apply are chosen. Finally, the
refactoring phase transforms the code by moving the se-
lected code to a new aspect. This paper presents the results
of an evaluation in which one of the crosscutting concerns
of a 40,000 LoC program (JHotDraw) is refactored.

1. Introduction

Aspect Oriented Programming (AOP) provides explicit
constructs for the modularization of the crosscutting con-
cerns of programs: functionalities that traverse the prin-
cipal decomposition of an application and thus cannot be
assigned to a single modular unit in traditional program-
ming paradigms. Existing software often contains several
instances of such crosscutting concerns, such as persistence,
logging, caching, etc. The AOP paradigm is expected to be
beneficial for software maintenance because it separates the
principal decomposition from other crosscutting functional-
ities.

However, in order to take advantage of the potential ben-
efits of the AOP style of programming, there is a need for
migration of existing applications and systems. This paper
presents a semi-automated approach to the process of mi-
gration from the Object Oriented Programming paradigm
(in Java) to the Aspect Oriented Paradigm (in AspectJ).
The approach builds on existing work on aspect mining,
combining this with novel work on refactoring to produce

an end-to-end, human-guided OOP to AOP migration ap-
proach. The paper reports the results of a medium sized
(40,000 LoC) migration effort using the proposed approach.

Software refactoring consists of the modification of in-
ternal program structure without altering the semantics (i.e.,
external behavior). It aims at improving internal quality
factors (e.g., modularity), in order to make the code eas-
ier to understand and evolve. As with other migrations and
conversions [4, 17, 27], the maintenance–migration effort
involved in OOP to AOP must be automated to avoid un-
sustainable cost.

However, in common with other re-factoring and code
migration work [27], human guidance is both necessary
and desirable; the process requires value-judgments regard-
ing trade-offs best made by a maintenance engineer. The
process of migrating existing software to AOP is highly
knowledge-intensive and any refactoring toolkit therefore
should include the user in the change-refine loop. However,
notwithstanding this inherent human involvement, there is
considerable room for automation. Previous work has been
concerned with two potential avenues for automation:

� aspect mining – identification of candidate aspects in
the given code [2, 19, 23, 25], and

� refactoring – semantic-preserving transformations that
migrate the code to AOP [11, 20, 26].

This paper focuses on the second of these two. It consid-
ers the challenging, and hitherto unsolved, problem of de-
termining sensible pointcuts to intercept the execution and
redirect it to the aspect code. Such a process must be guar-
anteed to preserve the original behavior, while modularizing
the code of the crosscutting functionality.

Our approach to this problem derives from the field of
program transformations and amorphous slicing [13, 14].
Its outcome entails one or more aspects containing the
crosscutting code, with pointcuts able to redirect the exe-
cution whenever necessary. Manual refinement of such an



outcome, for example to generalize the pointcut definitions,
remains an advisable step. Overall, the cost associated with
the refactoring activity to migrate OOP to AOP is expected
to be greatly reduced through automation.

The primary contributions of the paper are as follows:

1. Novel refactorings are introduced for the migration
from OOP to AOP.

2. These refactorings are combined with existing trans-
formations in a prototype tool for automating the refac-
toring process.

3. The feasibility of automating the migration from OOP
(in Java) to AOP (in AspectJ) is demonstrated us-
ing one, selected, crosscutting concern of the JHot-
Draw case study (a 40,000 LoC Java program to which
the approach and prototype tool is applied). The re-
sults demonstrate that the end-to-end migration of a
medium size system can be achieved with only 5 rela-
tively simple refactoring rules and two enabling trans-
formations.

The paper is organized as follows: Section 2 briefly
presents background material on AspectJ to make the pa-
per self-contained. Sections 3 and 4 introduce the overall
refactoring process and the detail of the refactorings respec-
tively. Section 5 presents the results of the case study, while
Section 6 sets the approach presented here in the context of
related work. Finally, Section 7 concludes with directions
for future work.

2. Background on AspectJ

Among the programming languages and tools that have
been developed to support AOP, AspectJ [16], an extension
of Java, is one of the most popular and best supported. The
main new programming constructs provided by AspectJ are
pointcuts, advices, and introductions.

The behavior of an aspect is specified inside advice,
which takes a form similar to a method. The advice is
woven into the program by a weaver at join points. These
well-defined points in the program flow, are identified using
pointcuts. Pointcuts define where execution is to be inter-
cepted and redirected to the advice. Finally, introductions
may be used to add members (attributes or methods) or gen-
eralization/implementation relationships to a class. Unlike
advices, which alter the dynamic behavior, introductions
operate statically on the class members and structure. It is
these changed classes that are instantiated by the rest of the
program.

For pointcut �, advice can be woven in “before” the
join points identified by �, “after”, or “in place of” them.
The advice associated with these pointcuts are referred to

as before-advice, after-advice and around-advice, respec-
tively. For example, if a persistence aspect is defined to
serialize all objects of class Person as soon as they are cre-
ated, an appropriate pointcut can be used to intercept calls
to any constructor of this class. In AspectJ, it looks like

aspect PersistentPerson �
pointcut personCreation(String data):

call(Person.new(String)) && args(data);
after (String data): personCreation(data)

� /* save Person data to database */ �
�

The advice executed after the pointcut personCreation saves
information about the Person object being created into a
database. The AspectJ keyword args is used to expose the
String parameter of the constructor, making it available
inside the after-advice.

3. Refactoring Process Overview

This section introduces the iterative process for the mi-
gration of existing OOP code to AOP code. It assumes that
prior aspect mining has been conducted and that the output
of aspect mining consists of a marked program, in which
the code fragments to be aspectized are surrounded by the
markers ��� and ���.

...
void f() {

  x++;
  ...
}

  g();α(1,3) ω()

...
void f() {

  x++;
  ...
}

  g();α(1) ω()

...
void f() {

  x++;
  ...
}

  g();α() ω()
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Figure 1. Steps of the refactoring process.



Figure 1 overviews the refactoring approach in which
four steps are iterated until no marked code remains (i.e.,
all the identified concerns have been aspectized).

The first activity aims at determining which refactorings
for the aspectization of OOP code are applicable to each
marked code fragment. The output of this activity is a (pos-
sibly empty) list of applicable refactorings (e.g., ���� �� in-
dicates that the Refactorings 1 and 3 are applicable). This
activity can be fully automated.

The second activity is used when no refactoring applies
to a block of marked code and it is believed that this situa-
tion will not change in later iterations. In other words, fu-
ture aspectization of other (usually, neighboring) code frag-
ments will not make any refactoring applicable. In such
cases, OO transformations are executed in order to make
the refactorings applicable in the future.

OO transformation consists of applying well-known
transformations [7] (for example, extract-method) in the
hope of enabling refactoring. Identification of the places
where it is appropriate to apply transformation is driven
by the markers – empty refactoring lists suggest that OO
transformation might be useful. However, the final deci-
sion about which transformation to choose and where and
how to apply it, must necessarily rest with the user, since
only the user is in a position to evaluate the trade-offs and
value–judgments involved. Once such a decision is made,
the application of the OO transformation is fully automated.

The third activity is refactoring selection: whenever
more than one refactoring labels a marked block of code,
a selection must be made to reduce the number of refac-
torings to one or zero. Here, zero means processing of the
fragment is to be deferred to a later iteration, in the hope
that a better refactoring will become applicable. A single
element is left within a marker if the associated refactoring
is the most appropriate for the given code fragment.

Selection is aided by a prioritization scheme among the
refactorings; some are considered better choices than oth-
ers. Priority is based on the quality of the resulting aspect
code. Section 4 provides example priority rules used to se-
lect among the refactorings considered in this paper.

In some instances, the priority rules alone can be suffi-
cient to select one of the possible refactorings. However,
in other cases a human decision is more appropriate. Thus,
the overall activity is automated, but allows for human guid-
ance.

The final step refactors the code through transformation.
It consists of the removal of the code marked with one refac-
toring and the generation of the associated aspect code. This
step is fully automated. The paper adopts the convention
that the word Transformation (Step 2) is used to refer code
manipulation which takes and returns OOP code. This is to
be contrasted with Refactoring (Step 4), which takes OOP
code but which returns AOP code.

4. Refactoring Process

The refactorings described in this section create the
pointcuts and advices necessary to aspectize the code. Each
refactoring provides definitions for pointcuts and advices
that replace marked code. The regions of code, marked by
��� and ���, to which the refactorings apply fall into three
cases:

1. whole methods,

2. calls to methods, or

3. statement sequences (blocks of code).

The paper focuses on call extraction and statement se-
quences (Cases 2, 3). Method extraction (Case 1) is
straightforward and requires simply moving the whole
method from a class to an aspect, where it is turned into
an AspectJ introduction. Case 3 is conceptually similar to
Case 2, (provided that the local variables referenced in the
marked block of statements are not referenced outside it).
With Case 2, the marked call is moved into the body of the
aspect advice being generated. With Case 3, the marked
block of code is moved into the body of the aspect advice
being generated.

The four steps that make up each iteration of the algo-
rithm are now detailed. The first step identifies potential
refactorings. A refactoring can be applied when the fol-
lowing applicability conditions associated with the marked
block of code apply.

Extract Beginning and Extract End. The block of code
is at the beginning or end of the body of the enclos-
ing method. (As these two are virtually identical, in
the sequel, Extract Beginning is used to represent both
these refactoring.)

Extract Before Call and Extract After Call. The block
of code is always before or after another call. (Here-
after Extract Before Call is used to represent these
refactorings.)

Extract Conditional. A conditional statement controls the
execution of the block of code.

Pre Return. The block of code is just before the return
statement.

Extract Wrapper. The block of code is part of a wrapper
pattern, in which the wrapper code is to be aspectized.



4.1. Discovery and Transformation

The TXL language [6] was used to implement the dis-
covery and refactoring phases of the process. TXL supports
the definition of grammar–based rules to perform a source-
to-source code transformation. Each rule (e.g., see Figure 2)
is divided into two parts, a replace part, containing the
pattern to be matched, and a by part, containing the replace-
ment. A pattern is composed out of pattern variables (con-
ventionally uppercase), followed by their type (a grammar
non-terminal, in this case from the Java Grammar, which
appears within square brackets), and terminals, optionally
preceded by the quote character. When the pattern of a rule
is matched, all the pattern variables are bound to the roots
of the related sub-trees in the program’s syntax tree. The
replacement consists of a syntax tree that is constructed by
composing terminals, pattern variables (bound to some syn-
tax sub-tree) and possibly invoking library or user defined
functions or rules (mixed case, within square brackets, fol-
lowed by an argument list), which are applied to a syntax
sub-tree and return a new sub-tree of the same type.

rule ExtractBeginning
replace $ [ method declaration ]

M [ repeat modifier ]
TS [ type specifier ]
MD [ method declarator ]
T [ opt throws declaration ]
’�

��MARKUP [ markup ]�
STM [ declaration or statement ]���
REST [ repeat declaration or statement ]

’�
by

M TS MD T
’�

��MARKUP [ AddRef EB ]�
STM���
REST

’�
end rule

Figure 2. TXL rule to check the applicability
of the Extract Beginning refactoring.

The TXL code for two of the five discovery rules is
given in Figures 2 and Figures 3. Others are similar, but
are omitted due to space considerations. The code in Fig-
ure 2 discovers marked code to which the Extract Begin-
ning refactoring applies. This rule applies to all syntax

tree nodes of type method declaration (the first line
within the rule body). The pattern variables M, TS, MD,
T are matched by the Java code that defines a new method
(e.g., modifiers, including public or private, the re-
turn type, then the method name and parameters, and finally
optional raised exceptions). After the header, the method
body (within braces) is matched. Its first statement, STM, of
type declaration or statement, has been marked.
STM is followed by a sequence of zero or more statements
(REST).

The output of the rule is identical to its input, except for
the AST matched by MARKUP, which is modified by an in-
vocation of the user defined function AddRef. This func-
tion adds EB (Extract Beginning) to the list of applicable
refactorings.

rule BeforeCall
replace $ [ method declaration ]

M [ repeat modifier ]
TS [ type specifier ]
MD [ method declarator ]
T [ opt throws declaration ]
’�

DECLSTATLIST [ repeat declaration or statement ]
’�

by
M TS MD T
’�

DECLSTATLIST [ AddBeforeMark ]
’�

end rule

rule AddBeforeMark
replace $ [ repeat declaration or statement ]
��MARKUP [ markup ]�
STM [ declaration or statement ] ���
C [ id ] ’. H [ id ] MA [ method argument ] ’;
REST [ repeat declaration or statement ]

deconstruct not * [ declaration or statement ] REST
CC [ id ] ’. H MMA [ method argument ] ’;

by
��MARKUP [ AddRef BC ]�
STM ���
C ’. H MA ’;
REST

end rule

Figure 3. TXL rule to check the applicability
of Call Before refactoring.

The TXL code to check the applicability of the



OO Transformation 1 (Statement Reordering)

�������� � �������� � ��

�������� � �������� � ��

�������� � �������� � �

������ ����� � ������ �����

DEF(s) : Defined variables of �.
REF(s) : Referenced variables of �.

Figure 4. Statement Re-ordering Transforma-
tion.

second Refactoring, Call Before, is shown in Fig-
ure 3. The first rule, BeforeCall, simply binds
the pattern variable DECLSTATLIST to the body of
the method declaration. In the replacement,
the user defined rule AddBeforeMark is applied to
DECLSTATLIST. In this way, all sub-trees of type
[repeat declaration or statement] are evalu-
ated against the pattern of AddBeforeMark.

The rule AddBeforeMark, shown at the bottom of
Figure 3, checks if the first statement (STM) in the input
statement list is marked. In the rule pattern, the marked
statement is followed by a method call, captured as an
identifier (C), a dot, another identifier (H), the arguments
of the method call (MA), and finally a semicolon. The
remainder of the input statement sequence (REST) must
not contain the same call. In fact, the pointcut that inter-
cepts the execution point preceding the call is not unique
if multiple identical calls are present. The TXL instruction
"deconstruct not *" is used to verify that the sub-
tree "CC. H MMA’;" is not matched inside REST. Sim-
ilar to Extract Beginning, the TXL code adds BC (Before
Call) to the list of applicable refactorings.

After discovery, the second step applies OO transforma-
tions where no refactoring applies to a marked block of
code. The tool currently employs two OO transformations:
Statement Reordering and Extract Method.

Statement Reordering, shown in Figure 4, allows the or-
der of two statements (��� and ���) to be exchanged. Above
the line in the rule is the pre-condition. It requires that the
defined and referenced variables of the two statements do
not overlap. When some overlap does occur between de-
fined and referenced variables, it may be possible to make
this transformation applicable by introducing fresh local
variables that store a value that must be preserved.

The second OO Transformation, Extract Method, al-
lows a sequence of statements to be turned into a sepa-
rate method [7]. Method arguments might be required if
local variables or parameters of the original method are ref-

erenced in the marked statement block. This transforma-
tion makes it possible to aspectize any marked block of
code. However, it impacts the structure of the base code
very deeply, so it is used as sparingly as possible and as a
‘last resort’.

4.2. Selection and Refactoring

The algorithm’s third step chooses which refactoring to
apply in cases where multiple refactorings label a marked
block of code. It is easier to explain the motivation for the
selection process after the refactorings have been described.
Therefore steps three and four are described out of order.

The final step applies the refactorings. Each refactoring
is described and illustrated by an example of the transfor-
mation from Java to AspectJ. The first refactoring, Extract
Beginning (and Extract End), deals with the following case

The call/block to be moved to the aspect is at the
beginning/end of the body of the calling method.

x++;
}

}

void f() {
int x = 0;

class A {

aspect B {

}

pointcut p(A a):
(void A.f()) && this(a);execution 

before(A a): p(a) { a.g(); }

this.g();
x++;

}
}

void f() {

class A {
int x = 0;

ω()α(ΕΒ)

Figure 5. Extract Beginning.

Figure 5 shows the result of applying Extract Beginning
to a small code fragment that matches the applicability con-
dition shown in Figure 2. The call to method g is removed
from the body of f. A new aspect, named B, is introduced to
intercept the execution of f and insert a call to g at the be-
ginning. The target of the call (this) is accessible within
the aspect advice thanks to the advice parameter a, which
is bound to this by pointcut p.

If the target of the call had been a method parameter,
it can be made accessible within the advice thanks to the
args construct supported by AspectJ. If the target of the
call is a class attribute, it is accessible within the advice
through the variable bound to this (e.g., a.x for the at-
tribute x). Unfortunately, it is not possible to easily access x
if it is a local variable. In such a case, it is possible to create
a copy of the local variable or move it to the advice, assum-
ing it is not used outside the extracted code. Alternatively,
an OO transformation can be first applied.



In general, the marked block of code will be more than
a single parameterless method call. For such cases the vari-
ables used in the code to be aspectized, including variables
used as actual parameters, must be exposed to the aspect
(e.g., using the this and args AspectJ constructs). Of
course, when the marked call/block is at the end of the
enclosing method, an after-advice is used instead of the
before-advice.

The second refactoring deals with the following case

The call/block to be moved is always before/after
another call.

before(A a): p(a) { a.g(); }

aspect B {

pointcut p(A a):

this(a) && call(void C.h());

}

void f(C c) {

}
}

c.h();
if (x > 0)
  x = 0;

x++;

int x = 0;
class A {

execution (void A.f(C)) &&

}
}

A {

.g();

void f(C c) {

this
x++;

c.h();
if (x > 0)

int x = 0;
class 

  x = 0;

ω()α (CB)

Figure 6. Call Before.

Figure 6 shows the code transformation produced by Call
Before. In the aspect B, the pointcut p intercepts the call to
h that occurs within the execution of method f. A before-
advice reintroduces the call to g at the proper execution
point. If the target of the call to be aspectized is a method
parameter or a class attribute, the associated pointcut must
be modified as described for Extract Beginning refactoring.
Finally, for After Call, when the marked block follows the
intercepted call, an after-advice is used.

The third refactoring deals with the following case

A conditional statement controls the execution of
the call/block to be moved to the aspect.

Figure 7 shows the mechanics of this refactoring. The
conditional statement if (b) is considered to be part of
the aspect, in that it determines the execution of the call
being aspectized (g()). Thus, it becomes a dynamically
checked condition incorporated into the aspect’s pointcut
(using the AspectJ syntax if(a.b)). For the execution
to be intercepted by pointcut p, the condition a.b must be
true. In which case, the new body of method f is replaced
by the call to g, as specified in the around-advice. Two vari-
ants of Conditional Execution are worth mentioning. First,
if the "x++;" were not under the control of condition b

aspect B {
pointcut p(A a):

this(a)) && if

}

(a.b);
void around(A a): p(a) { a.g(); }

(void A.f()) &&execution 

x++;
void f() {

}
}

int x = 0;

class A {
boolean b;

void f() {
   (b) {

}      {
x++;

}
}

}

if

else

boolean b;
int x = 0;

ω()α (CE) .g();this

class A {

Figure 7. Conditional Execution.

(placing it at the top-level in f) it would be sufficient to add
proceed() at the end of the around-advice to ensure that
it is always executed (both when the advice is triggered and
when the execution flows normally). Second, if g() is in
the else-part of the conditional statement, it is sufficient to
use if(!a.b) instead of if(a.b) in the pointcut.

If the block to be aspectized includes references to class
attributes, method parameters or local variables, the consid-
erations described above for Extract Beginning apply. This
includes variables referenced in the condition b.

The fourth refactoring deals with the following case

The call/block to be moved is just before the re-
turn statement.

aspect B {
pointcut p(A a):

(int A.f()) &&execution 

this.g();
return x;

}
}

x++;
int f() {
int x = 0;

class A {

x++;
int f() {
int x = 0;

class A {

return x;
}

}

this(a);

int result = proceed(a);
a.g();
return result;

}
}

aroundint (A a): p(a) { 

ω()α (BR)

Figure 8. Before Return.

Figure 8 shows the mechanics of Before Return. The
call to g() is moved from the method body to the around-
advice. The advice code contains a proceed invoca-
tion that triggers the execution of the intercepted method
f(). Its return value is stored into a temporary variable
(result) and returned after the invocation to the aspec-
tized statement (i.e., g()). The underlying applicability



condition is that there is no dependency between the marked
code and the returned value, which can thus be computed
before the call/block is executed.

This refactoring is a variant of Extract End that occurs
whenever the code to be aspectized is at the end of a method
that returns a value. Since the applicability condition and
the generated aspect are quite different from those associ-
ated with Extract End, this case is considered a separate
refactoring.

The fifth refactoring deals with the following case

Objects from a given hierarchy are wrapped be-
fore being used and the wrapper class is to be
aspectized.

aspect B {
pointcut p(Z z):

(void A.f()) &&execution 

}
}

X x = new X();
void f() {

A {

X x = new X();
void f() {
void g(Z z) {}

class A {

}
}

args(z);

Y y = new Y((X)z);
proceed(y);

void

class 
void g(Z z) {}

Y y = new Y(x);
this.g(y);

interface Z {}
class X implements Z {}
class Y implements Z {}

this.g(x);

call(void A.g(Z)) &&

}
}

(Z z): p(z) { around

ω()(EW)α

Figure 9. Extract Wrapper.

Figure 9 shows an example of Extract Wrapper. The ob-
ject x is wrapped into y before being used as the actual
parameter of a call to g. In order to move the creation of the
wrapper object (second statement inside f) to the aspect,
the un-wrapped object x is used in the refactored code for
the method f as the actual parameter of the call to g. Such
a call is intercepted by the pointcut p, which exposes its ar-
gument. The associated around-advice uses this argument,
which is known to belong to class X, to create the wrapper
object y. This object is passed to g by restoring the orig-
inal method invocation (proceed construct), with a new
argument.

Similar to Call Before, Extract Wrapper is applicable
only if the body of f contains just one call to g. If this
is not the case, application of this refactoring in an alter-
native form can be considered. The pointcut p may inter-
cept the creation of the object x, instead of the call to g, by
means of the pointcut designator"call(X.new())". By
exposing the target of the call to the constructor (target
construct in AspectJ), the un-wrapped object x can be made
available within the around-advice, which will contain ex-
actly the same code as the around-advice shown in Figure 9.

4.3. Priorities

The third step makes use of priorities to help guide an en-
gineer when multiple refactorings apply to the same marked
code. The outcome is the selection of a single refactoring or
the decision to defer the marked code to a later iteration. A
relative scale of priorities among the refactorings, is moti-
vated below. It is based on the impact that each refactoring
has on the original code and the complexity and quality of
the aspect code that is generated.

First off, Extract Condition and Extract Wrapper are not
included in the priority scale, because they are associated
with very specific patterns that are not compatible with the
other refactorings. When they match, they are always ap-
plied, unless refactoring of the given code is deferred to a
later iteration by the engineer.

At the top of the scale, Extract Beginning and Extract
End, is the preferred refactoring. Here, the base code is
not altered except for the removal of the call/block to be
aspectized. The aspect code relies only on the fact that the
execution of the original method can be intercepted. Thus,
this is a very simple and non-invasive refactoring.

Next highest priority is given to Before Return. The mo-
tivation here is similar to that of Extract End and is based
on the impact on the base code and complexity of the as-
pect code. It is only in the case of a call/block before a
return that a more complex advice is necessary and that the
returned value must not depend on the aspectized code.

The final choice is Before Call and After Call. These
refactorings are applicable only if the call used to intercept
the original execution is unique. Therefore, this assump-
tion must be verified to see if this refactoring is actually
applicable, but it must also remain true during the evolution
of the source code. In fact, if a second call, similar to the
intercepted one, is added later, the aspect ends up intercept-
ing more execution points than necessary and introducing a
bug. Thus, the aspect code generated at this priority level
is more fragile than at the previous levels, so that its usage
should be limited as much as possible.

Two priority modifiers are used. First, although in prin-
ciple there is no difference between the before-call and the
after-call refactorings, in practice, the user might prefer the
former or the latter according to the semantics of the aspect
and of the intercepted call. This is one of the reasons why
the automation of refactoring selection allows human guid-
ance. The second modifier places a refactoring at the low-
est priority if one of the two OO transformations is neces-
sary to enable it. OO transformations introduce minor code
changes in order to enable some refactoring. It is prefer-
able to avoid such changes wherever possible in order to
preserve the original code structure.



5. Case study

To evaluate the approach, it was applied to the prob-
lem of extracting the ubiquitous and important UnDo cross-
cutting functionality from the program JHotDraw. JHot-
Draw version 5.4b1 is a Java program consisting of ap-
proximately 40,000 lines of code and 249 classes. It is an
Object-Oriented framework for the development of applica-
tions supporting the interactive creation and manipulation
of graphical objects. It was originally conceived as rep-
resentative of the best practices in the usage of the design
patterns [8].

It was selected for the case study because it has been
subjected to several different aspect mining techniques, be-
coming the “de-facto” reference benchmark for the works
on aspect identification and refactoring (e.g., it was used in
a comparative study based on the results obtained on JHot-
Draw using three different aspect mining techniques [5]).

The implementation is based on two TXL modules: the
Refactoring detector and the Refactoring executor. The first
module takes as input the marked source code and adds the
(possibly empty) list of applicable refactorings to the code
markers used to markup the code.

The output of the Refactoring detector is processed man-
ually by the user, who selects the refactorings to apply (by
leaving at most one refactoring in a list). Moreover, in this
phase the user can choose to apply OO transformations in
order to enable other refactorings.

Then, the TXL module Refactoring executor executes
the selected refactorings, by removing the aspect code from
the original source files. The generation of the related point-
cut and advice code, poses no conceptual difficulty. It is not
currently implemented, but it is simply a matter of some
further TXL development.

5.1. Results

Refactoring of all the JHotDraw code pertaining to the
UnDo functionality was achieved in four iterations. Table 1
describes the effects of the OO transformations (Step 2) ap-
plied. The last row gives the percentage of refactorings that
were enabled by the OO transformations, which provides
an indication of the proportion of refactorings that require
some transformation in order to become applicable. Taken
together 19.8% of the refactorings required an OO transfor-
mation; thus, a large majority of the refactorings (80.2%)
are applicable without any need for OO transformation.

Table 2 shows the number of each refactoring applied
during each iteration. One reason for deferring a refactoring
to a later iteration is the hope that another refactoring will
enable it without the need for OO transformation. Another
reason is that it might be possible to apply a higher prior-
ity refactoring (e.g., a before-call might become a method-

OO Transformations Instances
Statement Method

Iteration Reordering Extraction
1 5 23
2 0 2
3 0 0
4 0 0

Total 5 25
Refactorings Enabled 3.3% 16.5%

Table 1. OO transformations applied to JHot-
Draw at each iteration.

beginning if the preceding code fragment is first moved to
an aspect).

Refactoring Instances
Extract Call

Begin Before Extract Before Extract
Iteration (End) (After) Cond Return Wrapper
1 32 26 4 3 40
2 14 16 0 1 0
3 5 8 0 0 0
4 1 1 0 0 0
Total 52 51 4 4 40

34.4% 33.7% 2.7% 2.7% 26.5%

Table 2. Refactorings applied to JHotDraw at
each iteration.

Finally, it should be noted that the actual number of it-
erations executed (4) may vary, depending on the way the
source code is marked. For example, it is possible either to
mark individual statements or to mark compounds. In the
first case, refactoring of a statement might enable the refac-
toring of another statement during the next iteration, so that
more iterations are required to achieve the final result. In
contrast, when a whole block is marked, the refactoring can
be achieved in a single step. In both cases, the refactorings
used and the resulting code are the same.

5.2. Lessons Learnt

The case study was conducted to understand three things:
whether the five refactorings are sufficient to migrate an
existing application to AOP; how often the OO refactor-
ings are required and what is the quality of the resulting
code. The results collected using JHotDraw indicate that
the refactorings are sufficient, but are not equally important.
The refactorings Extract Beginning, Extract End, Call Be-
fore, Call After, and Extract Wrapper made up 94.6% of the
refactoring instances applied. The Extract Condition and



Before Return refactorings are less important; they make
up only 5.4% of the refactoring instances applied. This
is expected to hold for other software systems, except for
the identification of Extract Wrapper, which was somewhat
application-specific.

It is encouraging that over 80% of the refactorings re-
quired no OO transformation. However, OO transforma-
tions are required to achieve 100% extraction of the UnDo
cross cutting concern. The most heavily used OO trans-
formation is Extract Method. Such a refactoring is very
powerful because of its general applicability. However, it
must be considered the final ‘extreme recourse that solves
all refactability problems’. This refactoring might reduce
the code recognizability and quality in general; it is applied
only when absolutely necessary. The proportion of code
fragments that required it was fortunately, reassuringly low
(around 17%). This percentage forms one possible indica-
tor of the good quality expected from the refactored code.
In fact, all the other refactorings produce aspect code that is
very close to the one a programmer would write manually.
At the same time, the base code remains the same, except
for the removal of the aspect code.

6. Related work

In the migration of existing OOP code to AOP, the prob-
lem that has received most attention is the detection of can-
didate aspects (aspect mining) [2, 3, 9, 12, 15, 19, 21, 22,
23, 25], while the problem of refactoring [1, 11, 20, 26]
was considered only more recently. The present paper takes
the results of aspect mining as its starting point and focuses
on the problems associated with automating the refactoring
process. Human guidance is important to ensure that inher-
ent value judgments are taken into account.

Some of the various aspect mining approaches rely upon
the user definition of likely aspects, usually at the lexical
level, through regular expressions, and support the user in
the code browsing and navigation activities conducted to lo-
cate them [9, 12, 15, 21]. Other approaches try to improve
the identification step by adding more automation. They ex-
ploit either execution traces [2, 23] or identifiers [25], often
in conjunction with formal concept analysis [23, 25]. Clone
detection [3, 22] and fan-in analysis [19] represent other al-
ternatives in this category.

The most closely related works are by Marin [18], Ha-
nenberg et al. [11], Monteiro and Fernandes [20], Gybels
and Kellens [10] and Tourwe et al. [24]. Marin, manually
refactored the UnDo concern from JHotDraw to AOP (As-
pectJ). The primary difference between this work and that
reported in the present paper lies in the degree of automation
available. Marin’s goal was to understand the degree of tan-
gling between the UnDo concern and the base code. Simi-
larly to the work reported here in, Marin applies preliminary

OOP refactorings to reduce tangling; thus, producing easier
to migrate code.

Hanenberg’s work deals with the re-definition of pop-
ular OOP refactorings taken from Fowler [7] in order to
make them aspect-aware. This work and the work by Mon-
teiro and Fernandes [20] consider refactorings to migrate
from OOP to AOP and refactorings that apply to AOP code.
Among them, the Extract advice refactoring [11] (or Extract
Fragment into Advice [20]) is the one we aim to automate
in this paper.

Gybels and Kellens, and Tourwe’s work uses inductive
logic programming to transform an extensional definition of
pointcuts (that just enumerate all the join points), into an in-
tensional one, which generalizes the former by introducing
variables where facts differ (anti-unification). The under-
lying assumption is that the pointcut definition language is
rule-based (this is not the case, for example, with AspectJ,
the target language of the present paper). This work is com-
plementary to that reported in the present paper, because
the problem of generalizing and abstracting the automati-
cally produced pointcuts is not our focus, but is definitely a
desirable supplementary step in the overall process.

7. Conclusions and future work

This paper introduces a semi-automated approach to sup-
port the migration from OOP code to AOP code. In partic-
ular, the applicability of semantic-preserving code refactor-
ing transformations to automate the migration task is con-
sidered. Given a source program with the aspectual frag-
ments marked, the tool produces a semantically equivalent
program with the marked fragments migrated to aspects.

The approach was evaluated using a medium size
(40,000 LoC) case study program, JHotDraw. One of its
crosscutting concerns, the UnDo functionality, was success-
fully migrated to AOP using our refactorings.

When combined with existing (and automated) ap-
proaches to aspect identification, tool-supported migration
from OOP to AOP is achieved. Overall, the tool applied
151 refactorings in order to extract the UnDo crosscutting
concern. A large fraction of the code to be aspectized is
extracted automatically and in most cases the separation of
concerns was achieved with only minor impact on the struc-
ture of the base code.
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