
Efficiency and Early Fault Detection with Lower and Higher
Strength Combinatorial Interaction Testing

Justyna Petke
University College London

Gower Street, London
WC1E 6BT, UK

j.petke@ucl.ac.uk

Myra Cohen
University of Nebraska-Lincoln

Lincoln
NE 68588-0115, USA
myra@cse.unl.edu

Mark Harman
University College London

Gower Street, London
WC1E 6BT, UK

mark.harman@ucl.ac.uk
Shin Yoo

University College London
Gower Street, London

WC1E 6BT, UK
shin.yoo@ucl.ac.uk

ABSTRACT
Combinatorial Interaction Testing (CIT) is important be-
cause it tests the interactions between the many features
and parameters that make up the configuration space of
software systems. However, in order to be practically appli-
cable, it must be able to cater for soft and hard real-world
constraints and should, ideally, report a test priority order
that maximises earliest fault detection. We show that we
can achieve higher strength CIT (previously thought infea-
sible). Furthermore, we show that higher strength suites find
more faults, while prioritisation using lower strengths are no
worse at achieving early fault revelation. Our constrained
5-way interaction suites can be automatically constructed in
6 minutes on average (reduced from p hours for their uncon-
strained counterparts). These test suites find 4.22% more
faults than traditional pairwise suites.

1. INTRODUCTION
Combinatorial interaction testing is increasingly impor-

tant because of the increasing importance configurations as
a basis for the deployment of systems [21]. For example,
software product lines, operating systems and development
environments are all governed by large, rich configuration
parameter and feature spaces for which Combinatorial In-
teraction Testing (CIT) has proved a useful technique un-
covering faults.

However, in all CIT applications, the problem domain is
constrained: some interactions are simply infeasible due to
these constraints [2, 9, 10, 15]. The nature and description
such constraints is highly domain specific, yet taking account
of them is essential in order for CIT to be usable in practice.
Any CIT approach that fails to take account of constraints

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
ESEC/FSE ’13 St. Petersburg, Russia
Copyright 20XX ACM X-XXXXX-XX-X/XX/XX ...$15.00.

will produce many test cases which are either unachievable
and practice or which yield expensively misleading results
(such as false positives).

The order in which the test cases are applied to the system
under test is also increasingly important for effective and
practical testing, both in general [30] and for CIT [1, 4, 24].
In many testing scenarios, the number of test cases makes
a naive ‘test all’ approach impractical. It is important that
CIT should not merely find a set of test cases, but that it
should prioritise them so that faults are revealed earlier in
the testing process.

For CIT approaches to testing, it has been known that
higher-strength interactions can reveal faults left uncovered
by lower strengths [18]. However, it is widely believed that
only the lowest strength (pairwise interactions) can be cov-
ered in reasonable time; higher strengths, such as those up
to 5- and 6-way feature interactions, have been considered
infeasibly expensive, even though they may lead to improved
fault revelation [18,21].

In this paper we consider practical higher strength CIT
that takes account of both real-world constraints and the
necessary ordering required to prioritise test cases. We present
results from empirical studies that report on the relation-
ship between the achievement of lower and higher interaction
strengths, and their ability to find faults for the constrained
prioritised interaction problem. There has been little previ-
ous work on the relationship between constrained interaction
problems and fault revelation and none on the problem of
ordering test cases the early fault revelation with respect to
constrained higher strength interactions.

This paper addresses this important gap in the literature.
We report on a series of empirical evaluations of constrained
prioritised higher strength interaction testing on multiple
versions of five programs from the Software-artefact Infras-
tructure Repository (SIR) [11]. Our results provide several
findings that are important to the scientific development of
interaction testing and also practising testers:

1. We show that higher-strength CIT is feasible, con-
founding ‘conventional wisdom’. This surprising result
arises because of the role played by constraints. We
report that, though they constrain the choice of test
cases, these same constraints can make higher-strength

CIT achievable in reasonable time.

2. We show that separate consideration of single- and
multi-value parameters leads to significant runtime im-
provements for prioritisation and interaction coverage.

3. We show the higher strength CIT is necessary to achieve
better fault revelation in prioritised CIT; our empiri-
cal study reveals that higher strength CIT reveals more
faults than lower strengths. This means that for com-
prehensive testing, higher strength interaction suites
are both feasible and desirable.

4. We find that lower strength CIT naturally achieves
some degree of ‘collateral’ higher strength coverage,
and that it also performs no worse in terms of early
fault revelation. This means that we can use lower
strength prioritisation as a cheap way to ‘find the first
fault’.

Overall, taken together, our results are very promising
the future of CIT research and practice. Our results indi-
cate that taking account of realistic testing scenarios (that
are typically constrained and necessitate test case ordering)
creates a problem that is amenable to high-strength CIT
techniques. This will be a welcome message to the research
community, which has, hitherto, eschewed higher strength
testing, believing it to be too expensive. For the practis-
ing tester, concerned with the problem of testing systems
with large configuration spaces, our results are equally en-
couraging. They show that high-strength CIT is practical
for comprehensive testing, yet lower strengths can be relied
upon to quickly find the first faults.

2. BACKGROUNDS

2.1 Related Work
Combinatorial interaction testing (CIT) has been used

successfully as a system level test method [7,8,17,18,23,24,
26, 27, 29]. CIT combines all t-combinations of parameter
inputs or configuration options in a systematic way so that
we know we have tested a measured subset input (or con-
figuration) space. Research has shown that we can achieve
high fault detection rates given a small set of test cases [7,
18,24,29]. Many of the current research directions into this
technique examine specialised problems such as the addition
of constraints between parameter values [2, 9, 14, 20, 23], or
re-ordering (prioritising) test suites to improve early cover-
age [4, 5, 23, 24, 26]. Other work has studied the impact of
testing at increasing higher strengths (t > 2) [16, 22], In a
recent survey by Nie et al. [21] CIT research is shown by a
taxonomy to show the areas of study. We have extracted
data from this table for 3 columns, fault detection, constri-
ants and prioritisation. We show this in Table 1 and add
a reference to one of the papers from that survey (the sur-
vey may include more than one paper per name). While it
appears there is quite broad coverage of these topics, this
is deceptive since most are studied in isolation. We do not
have studies that cross the boundaries of prioritisation, con-
straints and fault detection.

2.2 Preliminaries
In this section we will give a quick overview of the notation

used throughout the paper. In particular, a covering array

Table 1: Overview of Literature on Fault Detection,
Prioritisation and Constraints: Extracted From [21]

Authors Fault detect. Prioritisation Constraints

Bryce et al. [3] X X X

Cohen DM et al. [7] X

Cohen MB et al. [10] X X X

Grindal et al. [14] X

Kuhn et al. [18] X

Nie et el. [28] X

Schroeder et al. [27] X

is usually represented as follows:

CA(N ; t, vk1
1 vk2

2 ...vkm
m)

where N is the size of the array, t is its strength, sum of
k1, ..., km is the number of parameters and each vi stands
for the number of values for each of the ki parameters in
turn. Suppose we want to generate a pairwise interaction
test suite for an instance with 3 parameters, where the first
and third parameter can take 4 values and the second one
can only take 3 values. Then the problem can be formu-
lated as: CA(N ; 2, 413141). Furthermore, in order to test
all combinations one would need 4 ∗ 3 ∗ 4 = 48 test cases,
pairwise covergae reduces this number to 12. Additionally,
suppose that we have the following constraints: first, only
the first value for the first parameter can be ever combined
with values for the other parameters, and second, the last
value for the second parameter can never be combined with
values for all the other parameters. Introducing such con-
straints reduces the size of the test suite even further to 8
test cases. The importance of constraints is evident even in
this small example.

We differentiate between two types of constraints in this
work: hard and soft, terms first proposed by Bryce and Col-
bourn [2]. Hard constraints are exclude dependencies that
happen between parameter values. For instance, if turn-
ing on 8-bit arithmetic means that we can’t use a division
function, then these can’t be tested together. Much of the
work on constraints has focused on this type of constraint
since the challenge is to construct test suites that are guar-
anteed to avoid thee combinations; we cannot have them in
our test suites. Soft constraints on the other hand have not
received as much attention. These are constraints combina-
tions of parameters that we don’t need to test together (a
tester has decided that combining these parameter values is
not needed, but the test will still run if this combination
exists). An example of such a parameter might be combin-
ing the string match function in an empty file. While this
is probably unlikely to find a fault, the test case containing
this should still run.

3. RESEARCH QUESTIONS
In real-world situations, it is often not feasible to test com-

binations of the input parameters exhaustively. In these sit-
uations, Combinatorial Interaction Testing can help reduce
the size of the test suite. Constraints may rule out certain
combinations of value-parameters, thereby reducing the size
of the test suite even further. The extent of this reduction
by constraints motivates our first research question:

RQ1: What is the impact of constraints on the sizes of the
models of covering arrays used for CIT?

Most of the literature and practical applications focuses on
pairwise, and sometimes 3-way, interaction coverage. Par-
tially it is due to time inefficiency of the tools available.
Kuhn et al. stated in 2008 that “only a handful of tools can
generate more complex combinations, such as 3-way, 4-way,
or more (..). The few tools that do generate tests with in-
teraction strengths higher than 2-way may require several
days to generate tests (..) because the generation process is
mathematically complex” [16]. However, recent work in this
area shows a promising progress towards higher strength in-
teraction coverage [13]. We want to know how difficult it is
to generate test suites which achieves higher-strength inter-
action coverage when using a state-of-the-art CA generation
tool, and what the role of constraints is. Thus we ask:

RQ2: How efficient is the generation of higher-strength con-
strained covering arrays using state-of-the-art tools?

Greedy [6, 19] and meta-heuristic search [13] are the two
most frequently used approaches for covering array genera-
tion [13]. Both involve a certain degree of randomness. For
instance, simulated annealing, a meta-heuristic search tech-
nique, randomly selects a transformation, applies it, and
compares the new solution to the previous one to determine
which should be retained. This motivates our next research
question:

RQ3: What is the variance of the sizes of CAs across multiple
runs of a CA generation algorithm?

Prioritising according to pairwise coverage has been found
to be successful at finding faults quickly [5]. A question
arises: “what happens when we prioritise according to a
higher-strength coverage criterion?”. Note that any t-way
interaction also covers some (t − k)-way interactions. Thus
we want to investigate the relationships between the differ-
ent types of interaction coverage:

RQ4: What is the coverage rate of k interactions when pri-
oritising by t-way coverage?

– What is the coverage rate of pairwise interactions
when prioritising by higher-strength coverage?

– What is the coverage rate of t-way interactions
when prioritising by lower-strength coverage?

Testers often do not have enough time or resources to
execute all test cases from the given test suite, which is
why Test Case Prioritisation (TCP) techniques are impor-
tant [30]. The objective of TCP is to order tests in such
a way that maximises the early detection of faults. This
motivates our final research question:

RQ5: How effective are the prioritised test suites at detecting
faults?

– Which strength finds all known faults first?

– Which strength provides the fastest rate of fault
detection?

– Does prioritising by pairwise interactions lead to
faster fault detection rate than when prioritising
by higher-strength interactions?

– Is there a ‘best’ combination when time constraints
are considered, for example, creating 4-way con-
strained covering arrays and prioritising by pair-
wise coverage?

By answering these research questions, we aim to help the
developers and users of CIT tools in their decisions about
whether to adopt higher strength CIT.

4. EXPERIMENTAL SETUP
In order to answers the questions posed above, we con-

ducted the experiments presented in this section.

Subjects Ver. 1 Ver. 2 Ver. 3 Ver. 4 Ver. 5 Ver. 6 Ver. 7

flex 9,581 10,297 10,319 11,470 10,366 - -
make 14,459 29,011 30,335 35,583 - - -
grep 9,493 10,017 10,154 10,173 10,102 - -
sed 5,503 9,884 7,161 7,101 13,419 13,434 14,477
gzip 4,604 5,092 5,102 5,240 5,754 - -

Table 2: Uncommented Lines of Code of Sub-
jects/Versions

4.1 CA Generation
We have used five C subject programs: flex, make, grep,

sed and gzip. Their sizes in Uncommented Lines of Code,
measured with cloc1 are presented in Table 2. These are
obtained from the Software-artefact Infrastructure Reposi-
tory (SIR) [11]. We chose these in order to compare our
results against the ones obtained by Qu et al. and Qu and
Cohen [22,24], where the unconstrained versions of the sub-
jects were used. Moreover, these five C subjects come with
test plans described in the Test Suite Specification Language
(TSL). We use TSL description to extract the relevant pa-
rameters and values. For the generation of Covering Arrays,
we have only considered parameters having at least two pos-
sible values2. This was to decrease the computation effort of
the CA generation tool we used. In the resultant test suite,
all single-value parameters were simply added to each of the
test cases for completion.

We use Covering Arrays by Simulated Annealing (CASA)
tool3 for the generation of Covering Arrays. CASA is one of
the few freely available CA generation tools that can han-
dle logical constraints explicitly specified by the user. It
is based on simulated annealing and is known to generate
smaller covering arrays than the greedy algorithms [13].
Another reason to use CASA is to avoid experimental bi-
ases. Most of the tools that are based on the greedy algo-
rithm also perform prioritisation during CA generation, as
the greedy algorithm always chooses the test case that con-
tains the largest number of uncovered t-tuples. Since our
research questions include investigation of the impact of re-
duced test suites on the fault detection rate as well as the
impact of various prioritisation criteria, we prefer an algo-
rithm that does not implicitly perform prioritisation.

1
http://cloc.sourceforge.net

2
We note here that some values were immediately prohibited by the

constraints. For example, if an ‘error’ constraint is found, there is no
need for checking it’s interaction with values for all the other param-
eters.
3
CASA is available at: http://cse.unl.edu/\simcitportal/tools/

casa/.

4.2 CA Prioritisation
After generating t-way covering arrays, we prioritise each

of these according to multiple t-way prioritisation criteria
(for 2 ≤ t ≤ 5). There are standard prioritisation algorithms
in the literature: Bryce and Memon [3], and Manchester et
al. [25], for example4.

For our experiment, we use a variation of the algorithm
by Bryce and Memon [3]. The original algorithm iterates
through test cases and keeps in more the one test case that
covers the largest number of currently uncovered t-tuples.
Note that, in the original algorithm, despite ties being bro-
ken at random, the test cases later in the suite have a higher
chance of getting picked. Consider the case when all n tests
cover the same amount of uncovered t-tuples. The first test
will be picked for the current maximum first. However, the
probability of it being actually picked is 0.5n, since at each
tie breaking point it has to win over the next test case.
Hence, we gather all test cases whose count of currently un-
covered t-tuples is maximal, and then pick one at random,
thus each will be picked with probability 1/n. In order to
implement these modifications we only add an array, holding
all the test suites which cover the same amount of uncov-
ered t-way interactions. Furthermore, we keep a Boolean
mapping from test cases to t-tuples to mark those currently
uncovered t-tuples a given test case contained. We also keep
the total number of currently uncovered t-tuples contained
in a given test case. These mappings were updated when-
ever a new test case was marked as used in order to avoid
constantly re-calculating the number of uncovered t-tuples
for each test case. The pseudocode for the algorithm used
is presented in Algorithm 1.

Algorithm 1 Pseudocode for test suite prioritisation.

CA = test suite to prioritize
gather all valid t-tuples based on CA
mapping=[]
sums=[]
for all tests in CA do

mapping[test]=[True if t-tuplei in test, else False]
sums[test]=sum(mapping[test])

end for
bestTest = a test that covers the most unique t-tuples
bestTests = [bestTest]
add bestTest to TestSuite
selectedTestCount = 1
while selectedTestCount < size(CA) do

update sums, mapping
remove sums[bestTest], mapping[bestTest]
tCountMax = max(sums)
bestTests = []
for all tests in sums do

if sums[test] == tCountMax then
add test to bestTests

end if
end for
bestTest = random test from bestTests
add bestTest to TestSuite
selectedTestCount++

end while

4
Note that the two algorithms differ only at the pre-processing stage.

4.3 Interaction Coverage Metric

Algorithm 2 Pseudocode for the rate of t-way interaction
coverage.

CA= a given test suite
coverage=number of t-way interactions covered
coverage[0]=0
tuples=uncovered t-tuples
for j=1 to size(CA) do

coverage[testj]=coverage[testj−1]
for all t-tuples in testj do

if t-tuple in tuples then
coverage[testj] += 1
remove t-tuple from tuples

end if
end for

end for
rate = coverage / number of all valid t-tuples * 100%

To calculate the t-way interaction coverage of a given test
suite we use Algorithm 2. We noticed that all of our subjects
contain single-value parameters, which constitute even 69%
of all the parameters in case of flex. Note that these single-
value parameters occur in all test cases, thus, for all, a lot of
the same combinations of t-tuples are checked using Algo-
rithm 2, even though many are already covered by the first
test case selected. Thus we used the following combinatorial
identity in order to speed up the calculations by dividing our
efforts between single-value and multi-value parameters:(

m + n

i

)
=

t∑
i=0

(
m

i

)(
n

t− i

)
where m stands for the number of single-value parameters, n
stands for the number of multi-value parameters and t is the
strength of interactions tested. Note that

(
m
i

)
for each i can

be calculated beforehand, since the number of single-value
parameters is fixed.

To compare how quickly each prioritised test suite achieves
the interaction coverage of a specific strength, we define Av-
erage Percentage of Covering-array Coverage (APCC) fol-
lowing the Average Percentage of Fault Detection (APFD)
metric [12]. Given m covering arrays to cover and n test
cases, let CAi be the index of the first test case that covers
the covering array CA. APCC is defined as follows:

APCC = (1 −
∑m

i CAi

nm
+

1

2n
) ∗ 100

Intuitively, APCC measures the area under curve for the
plot of increasing interaction coverage for a prioritised test
suite. Figure 1 illustrates the metric with the case of the test
suite generated for make. It takes 14 test cases to achieve
100% coverage for 3-way interaction coverage. The test suite
achieves 100% coverage for both 3-way and pairwise inter-
action coverage.

4.4 Fault Detection
We measure the fault detection capability of each of the

generated prioritised test suites. We use all available soft-
ware versions of the five subjects from SIR with seeded
faults. In order to avoid experimenter bias and ensure re-
peatability we only used the faults provided with each of the

●●

0 20 40 60 80 100

0
20

40
60

80
10

0

Percentage of Test Suite (14 Test Cases)

In
te

ra
ct

io
n

C
ov

er
ag

e

make generated:3 ordered:2

cov. for str. 2 (APCC=89.26)

cov. for str. 3 (APCC=82.50)

cov. for str. 4 (APCC=73.47)

cov. for str. 5 (APCC=63.15)

Figure 1: Interaction coverage of 3-way covering ar-
ray for make prioritised by pairwise coverage.

subject tested in SIR. For each of the test suites we gathered
the number of faults detected by every i tests.

5. RESULTS
This section presents the results of all the experiments

conducted and answers research questions.

5.1 CA Generation Under Constraints

• RQ1: What is the impact of constraints on the sizes
of the models of covering arrays used for CIT?

• RQ2: How efficient is the generation of higher-strength
constrained covering arrays, using state-of-the-art tools?

• RQ3: What is the variance of the sizes of CAs across
multiple runs of a CA generation algorithm?

For flex, make and grep, we use modified TSL descrip-
tions following Qu et al. and Qu and Cohen [22,24] in order
to create unconstrained models: ugzip We note here that
some parameter-values were omitted, while some others were
combined. The reason for these modifications was to “ob-
tain exhaustive suites that retain close to the original fault
detection ability” [24]. Qu et al. also note that “in a real
test environment an unconstrained TSL would most likely
be prohibitive in size and would not be used” [24]. The sizes
of the covering arrays generated for these modified files are
presented in Table 3. For flex and grep, the numbers for
t = 4 and t = 5 were not provided, most probably due to
time restrictions of the CA generator used.

The sizes of the smallest constrained CA generated are
presented in Table 4. In the case of grep and make for t = 4
and t = 5, only the numbers of unique rows are reported.
The table also includes the number of tests in the original
exhaustive TSL test suite from SIR. Table 3 and 4 provide
an answer to RQ1: constraints can reduce the size of CIT
models significantly.

The constrained CIT models we use are generated directly
from TSL descriptions from SIR and exclude the single-value

CIT Specification Size Size Size Size
t = 2 t = 3 t = 4 t = 5

flex
CA(N ; t, 243116161) 96 288 NA NA
grep
CA(N ; t, 413121312112141) 48 192 NA NA
make
CA(N ; t, 312251322141) 20 60 180 540

Table 3: Unconstrained covering array sizes [22,24]

parameters. We ran the CASA tool twenty times on each
model on a Lenovo 3000 N200 laptop with an Intel Core
2 Duo processor, running at 1.66GHz with 2GB of RAM.
Figure 2 presents the runtime information and the sizes of
generated Covering Arrays. Certain runs of CASA produced
CAs with repeated rows, which are marked with ** in Fig-
ure 2. Most runs took less than 20min. However, in the case
of grep and sed and 3-way criterion, CASA was terminated
after an hour: subsequently, we ran CASA again, with the
‘known size’ parameter set to the best result obtained within
an hour in these two cases. These runs are marked with *
in Figure 2(a) and 2(b).

CIT specification Size Size Size Size TSL
t = 2 t = 3 t = 4 t = 5 full

flex
CA(N ; t, 22322451) 26 55 111 180 525
make
CA(N ; t, 210) 7 14 30 68 793
grep
CA(N ; t, 3241618142312151) 43 148 356 436 470
sed
CA(N ; t, 246110121412231) 58 170 324 324 360
gzip
CA(N ; t, 21331) 18 45 72 144 214

Table 4: Constrained CA sizes

For comparison, we present the CIT models for the origi-
nal TSL files from SIR with all the constraints and param-
eter order ignored in Table 5.

Constrained Unconstrained

flex
CA(N ; t, 263251) CA(N ; t, 2233452)
make
CA(N ; t, 210) CA(N ; t, 21434425161)
grep
CA(N ; t, 213343516181) CA(N ; t, 142133415171101131211)
sed
CA(N ; t, 27314161101) CA(N ; t, 11273143536182101)
gzip
CA(N ; t, 21331) CA(N ; t, 143828425161341)

Table 5: Constrained and unconstrained CIT Mod-
els for Subjects

Results presented in this subsection provide strong evi-
dence that constraints play an important part in the effi-

●

●
● ●●

●

●

●

●

●

●● ●●●

●

● ●●

●

fle
x_

pa
irw

is
e

fle
x_

th
re

ew
ay

fle
x_

fo
ur

w
ay

fle
x_

fiv
ew

ay

m
ak

e_
pa

irw
is

e

m
ak

e_
th

re
ew

ay

m
ak

e_
fo

ur
w

ay

m
ak

e_
fiv

ew
ay

gr
ep

_p
ai

rw
is

e

gr
ep

_t
hr

ee
w

ay
*

gr
ep

_f
ou

rw
ay

gr
ep

_f
iv

ew
ay

se
d_

pa
irw

is
e

se
d_

th
re

ew
ay

*

se
d_

fo
ur

w
ay

se
d_

fiv
ew

ay

gz
ip

_p
ai

rw
is

e

gz
ip

_t
hr

ee
w

ay

gz
ip

_f
ou

rw
ay

gz
ip

_f
iv

ew
ay

0

200

400

600

800

1000

CA generation runtimes

se
co

nd
s

(a) CA Generation Runtime

●●● ● ●●●
●

●●● ●●●●●●●

●●

fle
x_

pa
irw

is
e

fle
x_

th
re

ew
ay

fle
x_

fo
ur

w
ay

fle
x_

fiv
ew

ay

m
ak

e_
th

re
ew

ay

m
ak

e_
fiv

ew
ay

m
ak

e_
pa

irw
is

e

m
ak

e_
fo

ur
w

ay

gr
ep

_p
ai

rw
is

e

gr
ep

_t
hr

ee
w

ay
*

gr
ep

_f
ou

rw
ay

**

gr
ep

_f
iv

ew
ay

**

se
d_

pa
irw

is
e

se
d_

th
re

ew
ay

*

se
d_

fo
ur

w
ay

**

se
d_

fiv
ew

ay
**

gz
ip

_p
ai

rw
is

e

gz
ip

_t
hr

ee
w

ay

gz
ip

_f
ou

rw
ay

gz
ip

_f
iv

ew
ay

0

1000

2000

3000

CA sizes

(b) CA Sizes

Figure 2: Boxplot of CA generation runtimes and CA sizes

Table 6: Interaction coverage for the five subjects tested.

Subjects
Gen. Size Cov. for Strength

Subjects
Gen. Size Cov. for Strength

Crit. 2 3 4 5 Crit. 2 3 4 5

flex

2 26 - 98.52 95.38 90.84
grep

4 356 - - - 99.71
3 55 - - 99.58 98.41 5 436 - - - -
4 111 - - - 99.93

sed

2 58 - 92.03 81.68 71.37
5 180 - - - - 3 170 - - 98.85 96.48

make

2 7 - 94.60 84.47 71.88 4 324 - - - 100.00
3 14 - - 97.25 90.76 5 324 - - - -
4 30 - - - 98.94

gzip

2 18 - 97.56 93.00 87.08
5 64 - - - - 3 45 - - 99.62 98.61

grep
2 43 - 88.71 74.07 59.92 4 72 - - - 99.95
3 148 - - 97.41 92.28 5 144 - - - -

ciency of covering array generation. At the modelling stage,
constraints allow for certain values to be excluded from CIT
because, for instance, these correspond to error states or
cases that do not require further interaction (printing the
‘help’ message, for example). Excluding single-parameter
values allows further model reduction without compromis-
ing the test suite, since these can be added to each row of
the CA generated in the post-processing stage, relieving the
CA generation tool from the need to consider tuples involv-
ing these single-parameter values. The significance of these
reductions can be seen in Table 3 and 5. The number of
test cases generated decreases significantly when compared
to the full TSL suite as shown in Table 4. In the case of
make, 5-way coverage is achieved with only 68 tests, while
the exhaustive test suite contains 793 test cases.

With regards to the generation effort of CASA, in some
cases the variation between runtimes has been significant.
This may stem from the different seeds used for the stochas-
tic simulated annealing. At each run, the algorithm starts
with a randomly generated solution, which might be either
very close to or every far from the actual solution. CASA
determines the size of CAs in a stochastic way: it is possi-

ble that it gets stuck and works harder on some problems
because of a bad starting point. However, all runs includ-
ing ones for higher strength CAs finished under 20 min-
utes, showing that state-of-the-art CA generation tools can
cope high higher strength CA generation under constraints
(RQ2). Unlike execution time, we observe little variance in
CA sizes between the different runs of CASA (Figure 2(b)),
providing an answer to RQ3. These two observations pro-
vide supporting evidence for the best practice, which is to
perform a few runs of the tool with predetermined time-out
and then to select the smallest CA generated.

5.2 Prioritisation and Interaction Coverage
• RQ4: How much k-way interaction coverage is achieved

by a t-way CA?

– What does the k-way interaction coverage change
when a CA is prioritised for strengths higher than
k?

– What does the k-way interaction coverage change
when a CA is prioritised for strengths lower than
k?

Following the best practice outlined in Section 5.1,we chose
20 smallest Covering Arrays, out of the CAs we generated,
for the combination of the subjects (flex, make, grep, sed
and gzip) and t-way interaction coverage criteria (2 ≤ t ≤
5). Note that these only contain the multi-value parame-
ters. Subsequently, we ordered each of these according to
pairwise, 3-way, 4-way and 5-way coverage using the greedy
algorithm depicted in Algorithm 1. This produces 80 CAs.

Excluding single-value parameters also allows significant
speed-up for prioritisation as well. For example, 20 out of 29
parameters for flex are single-valued. We report in Table 7
the runtimes of Algorithm 1 for CIT models of flex with
and without the single-value parameters.

Pairwise CA for flex Prior. Prior.
(26 Test Cases) Strength Time (sec.)

Without single-value params. t = 2 0.051
With single-value params. t = 2 0.238

Without single-value params. t = 3 0.097
With single-value params. t = 3 18.249

Without single-value params. t = 4 0.197
With single-value params. t = 4 1079.809

Without single-value params. t = 5 0.251
With single-value params. t = 5 >20min

Table 7: Runtimes of the prioritisation algorithm on
two CIT models of flex.

Prioritising the same CA according to interaction cover-
age for different strengths produces significantly different
permutations of test cases. Table 8 shows the permutations
of the pairwise CA of make according to different strength
criteria.

make 2-way CA

t-way Prioritisation Permutation

t = 2 T6, T2, T5, T1, T0, T3, T4

t = 3 T3, T4, T0, T1, T2, T5, T6

t = 4 T1, T5, T2, T0, T3, T4, T6

t = 5 T4, T0, T3, T1, T2, T5, T6

Table 8: Permutations of the test suite for make
which achieves pairwise interaction coverage

Table 6 reports the interaction coverage achieved by each
of the 80 CAs. For each CA generated for t-way strength,
we measure the interaction coverage for t′-way strength (2 ≤
t′ ≤ 5). A t-way strength CA, by definition, achieves 100%
interaction coverage for strengths lower than t (therefore we
omit these from Table 6). For all subject programs, pairwise
CAs achieve at least about 60% collateral 5-way interaction
coverage. This provides a response to the main RQ4: the
presence of constraints increases the collateral coverage for
higher-strength interaction coverage. case, splitting it be-
tween single-value and multi-value parameters, as described
in Section refsubset:spcc, introduces speed-up. Each t-way

To answer the subquestions of RQ4 on prioritisation, we
prioritised each of the 80 CAs according to four different
prioritisation criteria (2-, 3-, 4-, and 5-way interaction cov-
erage), resulting in 320 prioritised CAs. The results from

●●

0 20 40 60 80 100

0
20

40
60

80
10

0

Percentage of Test Suite (7 Test Cases)

In
te

ra
ct

io
n

C
ov

er
ag

e

make generated:2 ordered:2

cov. for str. 2 (APCC=78.31)

cov. for str. 3 (APCC=66.67)

cov. for str. 4 (APCC=54.56)

cov. for str. 5 (APCC=43.34)

●●

0 20 40 60 80 100

0
20

40
60

80
10

0

Percentage of Test Suite (64 Test Cases)

In
te

ra
ct

io
n

C
ov

er
ag

e

make generated:5 ordered:5

cov. for str. 2 (APCC=97.53)

cov. for str. 3 (APCC=95.99)

cov. for str. 4 (APCC=93.70)

cov. for str. 5 (APCC=90.40)

Figure 3: Comparing APCC for Pairwise and 5-way
CAs for make

the prioritisation are aggregated using APCC (defined in
Section refsubset:spcc) in Table 95.

The variation in APCC values between the different priori-
tisation criteria has been found to be less than 2%, and the
variation decreases as the strength of the test suite increases,
as can be seen in Figure 3. This provides answers to the sub-
questions in RQ4: it seems that there is no clear advantage
in prioritising by interactions of higher/lower strength. Note
that whenever the next test case adds a new 3-way interac-
tion to the test suite, it does not necessarily mean that a new
pair has been added. However, whenever a new 2-way inter-
action is added, then automatically new 3-way, 4-way and
5-way interactions are covered. Therefore, in terms of inter-
action coverage, prioritising by pairwise criterion is enough.
However, a question arises whether the same holds for fault
detection rates, which we investigated next.

5The complete data and all APCC plots are available at the
companion webpage: http://www0.cs.ucl.ac.uk/staff/
s.yoo/cit/cit.html.

Table 9: APCC values for the five subjects tested.

Subjects
Gen. Prio. APCC for Strength

Subjects
Gen. Prio. APCC for Strength

Crit. Crit. 2 3 4 5 Crit. Crit. 2 3 4 5

flex

2 2 91.17 85.37 78.63 71.46

grep

4 2 97.69 93.67 88.34 82.43
2 3 90.87 85.16 78.65 71.74 4 3 97.62 94.76 90.47 85.13
2 4 90.32 84.55 78.05 71.19 4 4 97.36 94.55 90.75 86.10
2 5 89.93 84.31 77.95 71.19 4 5 97.18 94.35 90.57 85.97

flex

3 2 95.95 92.83 88.76 83.94

grep

5 2 98.11 94.46 89.77 84.73
3 3 95.71 92.75 89.08 84.77 5 3 97.99 95.70 92.18 87.74
3 4 95.37 92.26 88.55 84.29 5 4 97.93 95.66 92.57 88.77
3 5 94.73 91.57 87.88 83.70 5 5 97.67 95.43 92.41 88.71

flex

4 2 97.99 96.39 94.21 91.49

sed

2 2 85.86 72.17 59.34 48.58
4 3 97.86 96.38 94.42 91.96 2 3 85.83 72.35 59.70 49.04
4 4 97.72 96.17 94.20 91.81 2 4 85.40 71.94 59.40 48.85
4 5 97.45 95.77 93.71 91.29 2 5 84.96 71.68 59.30 48.85

flex

5 2 98.70 97.68 96.22 94.35

sed

3 2 95.22 88.74 81.24 73.72
5 3 98.66 97.77 96.57 95.00 3 3 95.18 89.51 82.74 75.65
5 4 98.53 97.55 96.33 94.82 3 4 95.06 89.38 82.66 75.66
5 5 98.38 97.36 96.10 94.58 3 5 94.92 89.34 82.72 75.78

make

2 2 78.31 66.67 54.56 43.34

sed

4 2 97.49 93.10 87.98 82.95
2 3 78.51 67.42 55.51 44.25 4 3 97.50 94.59 90.85 86.63
2 4 78.51 67.42 55.51 44.25 4 4 97.43 94.55 90.95 86.96
2 5 78.51 67.42 55.51 44.25 4 5 97.35 94.48 90.90 86.95

make

3 2 89.26 82.50 73.47 63.15

sed

5 2 97.48 93.28 88.36 83.44
3 3 89.20 82.72 74.01 63.87 5 3 97.47 94.58 90.83 86.59
3 4 89.17 82.67 73.96 63.85 5 4 97.48 94.60 91.00 87.01
3 5 88.65 82.24 73.67 63.66 5 5 97.40 94.52 90.95 87.02

make

4 2 95.04 91.59 86.56 79.87

gzip

2 2 83.44 75.32 67.33 59.79
4 3 94.95 91.62 86.76 80.17 2 3 83.45 75.38 67.46 59.99
4 4 94.95 91.83 87.21 80.86 2 4 83.37 75.38 67.51 60.07
4 5 94.95 91.90 87.31 80.95 2 5 82.83 74.89 67.12 59.78

make

5 2 97.65 95.89 93.12 89.22

gzip

3 2 93.01 88.90 84.30 79.42
5 3 97.61 96.05 93.61 90.04 3 3 93.10 89.09 84.61 79.83
5 4 97.64 96.08 93.77 90.42 3 4 93.10 89.09 84.59 79.79
5 5 97.53 95.99 93.70 90.40 3 5 93.08 89.04 84.52 79.71

grep

2 2 79.69 63.04 48.32 36.58

gzip

4 2 95.86 93.24 90.06 86.51
2 3 78.76 62.76 48.33 36.67 4 3 95.86 93.36 90.34 86.96
2 4 79.29 63.03 48.51 36.82 4 4 95.85 93.32 90.28 86.87
2 5 78.21 62.49 48.28 36.74 4 5 95.85 93.32 90.28 86.87

grep

3 2 94.23 86.15 76.33 66.27

gzip

5 2 97.93 96.53 94.70 92.56
3 3 93.98 87.17 78.36 68.77 5 3 97.93 96.69 95.15 93.34
3 4 93.57 86.89 78.27 68.86 5 4 97.93 96.69 95.18 93.46
3 5 93.49 86.74 78.17 68.87 5 5 97.93 96.68 95.16 93.41

5.3 Fault detection

• RQ5: How effective are the prioritised test suites at
detecting faults?

– Which technique finds all the faults first?

– Which technique provides the fastest rate of fault
detection?

– Does prioritising by pairwise interactions lead to
faster fault detection rate than when prioritising
by higher-strength interactions?

– Is there a ‘best’ combination when time constraints
are considered, for example, creating 4-way con-
strained covering arrays and prioritising by pair-
wise coverage?

Table 10 presents the percentage of detected faults after
25%, 50%, 75%, and 100% of each test suite is executed, ag-
gregated over all versions of subject programs. With flex,
grep, and sed, CAs with higher generation strength do de-
tect more faults when executed in their entirety. In all cases
the number of faults detected by test cases covering at least
two parameters was found to be identical in the case of t-
way covering arrays and full TSL test suites provided in
SIR. Thus, we achieve the same fault detection by using a

smaller number of tests. For flex, this was achieved with
fourway covering arrays, for make we just needed pairwise
coverage; for grep, 3-way coverage; for sed, 3-way as well.
For gzip, it was sufficient to generate a pairwise covering
array to detect the same faults as the full TSL suite.

Partially answering RQ5, we have found no consistency
between the different prioritisation strategies. This might be
partially due to the small amount of faults available. How-
ever, pairwise coverage scaled well in comparison to higher
strength coverage prioritisation criteria.

Since higher strength CAs contain a larger number of test
cases, comparing fault detection rate against percentages of
test suite executed is not fair for lower strength CAs. Ta-
ble 11 presents the fault detection rate information against
actual number of test cases executed, allowing direct com-
parison of all CAs: it shows the percentage of detected faults
after multiples of 10 test case executions (CAs smaller than
the given number of executions are marked with -). It pro-
vides mixed response to the remainder of RQ5: there is
no dominant prioritisation criterion with respect to fault
detection rate after specific number of test executions, as
lower strength CAs produces fault detection rates compara-
ble to those of higher strengths. This suggests the following
best practice: given enough time and resource for testing,
higher strength CAs under constrains are feasible and detect

more faults. However, with limited time and resource, lower
strength CAs still provide reliable fault detection rate.

6. CONCLUSIONS
In this paper we examined the constrained prioritised in-

teraction testing problem for higher strengths, presenting
results for multiple versions of five systems and interaction
strengths from 2-way (pairwise) to 5-way interactions. Han-
dling constraints and prioritisation are both important in
order to make testing practical. Real systems are typically
constrained and their constraints must be accounted for to
avoid the generation of inapplicable or misleading test cases.
Real testers also require prioritised of test cases because they
may not have time to simply apply all test cases available
to them.

Therefore, to investigate practical Combinatorial Interac-
tion Testing, we report results for constrained prioritised
interaction testing. More specifically, we study the rela-
tionship between interaction strength and faults found. Our
findings challenge the conventional wisdom that higher strength
interaction testing is infeasible; we were able to construct 5-
way interaction test suites in reasonable time. We find that
test suites constricted to achieve these higher strength inter-
actions do find more faults overall, making them worthwhile.
We also find that ordering test suites for lower strengths per-
forms no worse than higher strengths in terms of early faults
revelation.

We therefore conclude that future work on interaction
testing should exploit the largely untapped potential of higher
strength test suites for comprehensive testing, but for ‘quick
and usable’ results (seeking to find the first fault) we may
be able to rely on lower strength prioritisation. To facilitate
replication and to support this future work we make pub-
licly available all data and results for our experiments. Our
results and test data, together with reports of coverage and
fault detection and plots of Average Percentage of Covering-
array Coverage for all cases are contained in this paper’s
companion website: http://www0.cs.ucl.ac.uk/staff/s.

yoo/cit/cit.html.

7. REFERENCES
[1] R. C. Bryce and C. J. Colbourn. Test prioritization for

pairwise interaction coverage. ACM SIGSOFT
Software Engineering Notes, 30(4):1–7, 2005.

[2] R. C. Bryce and C. J. Colbourn. Prioritized
interaction testing for pair-wise coverage with seeding
and constraints. Information & Software Technology,
48(10):960–970, 2006.

[3] R. C. Bryce and A. M. Memon. Test suite
prioritization by interaction coverage. In A. Hartman,
M. Katara, and A. M. Paradkar, editors, DOSTA,
pages 1–7. ACM, 2007.

[4] R. C. Bryce, S. Sampath, and A. M. Memon.
Developing a single model and test prioritization
strategies for event-driven software. IEEE Trans.
Software Eng., 37(1):48–64, 2011.

[5] R. C. Bryce, S. Sampath, J. B. Pedersen, and
S. Manchester. Test suite prioritization by cost-based
combinatorial interaction coverage. Int. J. Systems
Assurance Engineering and Management,
2(2):126–134, 2011.

[6] D. M. Cohen, S. R. Dalal, M. L. Fredman, and G. C.
Patton. The aetg system: An approach to testing
based on combinatiorial design. IEEE Trans. Software
Eng., 23(7):437–444, 1997.

[7] D. M. Cohen, S. R. Dalal, M. L. Fredman, and G. C.
Patton. The AETG system: an approach to testing
based on combinatorial design. IEEE Transactions on
Software Engineering, 23(7):437–444, 1997.

[8] M. B. Cohen, C. J. Colbourn, P. B. Gibbons, and
W. B. Mugridge. Constructing test suites for
interaction testing. In Proceedings of the International
Conference on Software Engineering, pages 38–48,
May 2003.

[9] M. B. Cohen, M. B. Dwyer, and J. Shi. Interaction
testing of highly-configurable systems in the presence
of constraints. In D. S. Rosenblum and S. G. Elbaum,
editors, ISSTA, pages 129–139. ACM, 2007.

[10] M. B. Cohen, M. B. Dwyer, and J. Shi. Constructing
interaction test suites for highly-configurable systems
in the presence of constraints: A greedy approach.
IEEE Trans. Software Eng., 34(5):633–650, 2008.

[11] H. Do, S. G. Elbaum, and G. Rothermel. Supporting
controlled experimentation with testing techniques:
An infrastructure and its potential impact. Empirical
Software Engineering, 10(4):405–435, 2005.

[12] S. G. Elbaum, A. G. Malishevsky, and G. Rothermel.
Prioritizing test cases for regression testing. In ISSTA,
pages 102–112, 2000.

[13] B. J. Garvin, M. B. Cohen, and M. B. Dwyer.
Evaluating improvements to a meta-heuristic search
for constrained interaction testing. Empirical Software
Engineering, 16(1):61–102, 2011.

[14] M. Grindal, J. Offutt, and J. Mellin. Handling
constraints in the input space when using combination
strategies for software testing. 2006.

[15] B. Hnich, S. D. Prestwich, E. Selensky, and B. M.
Smith. Constraint models for the covering test
problem. Constraints, 11(2-3):199–219, 2006.

[16] D. Kuhn, R. Kacker, and Y. Lei. Automated
combinatorial test methods: Beyond pairwise testing.
Crosstalk, Journal of Defense Software Engineering,
21(6), 2008.

[17] D. R. Kuhn and V. Okun. Pseudo-exhaustive testing
for software. In SEW, pages 153–158. IEEE Computer
Society, 2006.

[18] D. R. Kuhn, D. R. Wallace, and A. M. Gallo. Software
fault interactions and implications for software testing.
IEEE Trans. Software Eng., 30(6):418–421, 2004.

[19] Y. Lei, R. Kacker, D. R. Kuhn, V. Okun, and
J. Lawrence. Ipog/ipog-d: efficient test generation for
multi-way combinatorial testing. Softw. Test., Verif.
Reliab., 18(3):125–148, 2008.

[20] T. Nanba, T. Tsuchiya, and T. Kikuno. Using
satisfiability solving for pairwise testing in the
presence of constraints. IEICE Transactions,
95-A(9):1501–1505, 2012.

[21] C. Nie and H. Leung. A survey of combinatorial
testing. ACM Comput. Surv., 43(2):11, 2011.

[22] X. Qu and M. B. Cohen. A study in prioritization for
higher strength combinatorial testing. The 2nd
International Workshop on Combinatorial Testing,

Table 10: Percentage of Detected Faults for All Versions of 5 Subjects

Subjects
Gen. Prio. % of Test Suite Executed

Subjects
Gen. Prio. % of Test Suite Executed

Crit. Crit. 25% 50% 75% 100% Crit. Crit. 25% 50% 75% 100%

flex

2 2 86.0 88.0 90.0 92.0

flex

4 2 94.0 94.0 98.0 100.0
2 3 92.0 92.0 92.0 92.0 4 3 96.0 98.0 98.0 100.0
2 4 66.0 90.0 90.0 92.0 4 4 92.0 96.0 98.0 100.0
2 5 90.0 90.0 92.0 92.0 4 5 92.0 94.0 98.0 100.0

flex

3 2 94.0 94.0 94.0 94.0

flex

5 2 96.0 100.0 100.0 100.0
3 3 90.0 94.0 94.0 94.0 5 3 96.0 100.0 100.0 100.0
3 4 88.0 94.0 94.0 94.0 5 4 94.0 100.0 100.0 100.0
3 5 74.0 92.0 94.0 94.0 5 5 94.0 94.0 98.0 100.0

make

2 2 50.0 100.0 100.0 100.0

make

4 2 100.0 100.0 100.0 100.0
2 3 100.0 100.0 100.0 100.0 4 3 100.0 100.0 100.0 100.0
2 4 100.0 100.0 100.0 100.0 4 4 100.0 100.0 100.0 100.0
2 5 100.0 100.0 100.0 100.0 4 5 100.0 100.0 100.0 100.0

make

3 2 100.0 100.0 100.0 100.0

make

5 2 100.0 100.0 100.0 100.0
3 3 100.0 100.0 100.0 100.0 5 3 100.0 100.0 100.0 100.0
3 4 100.0 100.0 100.0 100.0 5 4 100.0 100.0 100.0 100.0
3 5 100.0 100.0 100.0 100.0 5 5 100.0 100.0 100.0 100.0

grep

2 2 91.67 91.67 91.67 91.67

grep

4 2 91.67 100.0 100.0 100.0
2 3 83.33 91.67 91.67 91.67 4 3 91.67 91.67 100.0 100.0
2 4 83.33 83.33 83.33 91.67 4 4 100.0 100.0 100.0 100.0
2 5 75.0 83.33 83.33 91.67 4 5 91.67 100.0 100.0 100.0

grep

3 2 91.67 91.67 100.0 100.0

grep

5 2 100.0 100.0 100.0 100.0
3 3 91.67 100.0 100.0 100.0 5 3 100.0 100.0 100.0 100.0
3 4 91.67 91.67 100.0 100.0 5 4 91.67 91.67 91.67 100.0
3 5 83.33 91.67 100.0 100.0 5 5 91.67 100.0 100.0 100.0

sed

2 2 90.48 90.48 90.48 95.24

sed

4 2 85.71 95.24 100.0 100.0
2 3 80.95 85.71 90.48 95.24 4 3 95.24 100.0 100.0 100.0
2 4 85.71 95.24 95.24 95.24 4 4 95.24 95.24 100.0 100.0
2 5 76.19 90.48 95.24 95.24 4 5 90.48 100.0 100.0 100.0

sed

3 2 85.71 90.48 95.24 100.0

sed

5 2 95.24 95.24 95.24 100.0
3 3 90.48 100.0 100.0 100.0 5 3 95.24 100.0 100.0 100.0
3 4 90.48 100.0 100.0 100.0 5 4 95.24 95.24 100.0 100.0
3 5 90.48 90.48 95.24 100.0 5 5 85.71 100.0 100.0 100.0

gzip

2 2 80.0 100.0 100.0 100.0

gzip

4 2 100.0 100.0 100.0 100.0
2 3 100.0 100.0 100.0 100.0 4 3 100.0 100.0 100.0 100.0
2 4 80.0 100.0 100.0 100.0 4 4 100.0 100.0 100.0 100.0
2 5 80.0 80.0 100.0 100.0 4 5 100.0 100.0 100.0 100.0

gzip

3 2 80.0 100.0 100.0 100.0

gzip

5 2 100.0 100.0 100.0 100.0
3 3 80.0 100.0 100.0 100.0 5 3 100.0 100.0 100.0 100.0
3 4 100.0 100.0 100.0 100.0 5 4 100.0 100.0 100.0 100.0
3 5 100.0 100.0 100.0 100.0 5 5 100.0 100.0 100.0 100.0

2013.

[23] X. Qu, M. B. Cohen, and G. Rothermel.
Configuration-aware regression testing: an empirical
study of sampling and prioritization. In Proceedings of
the International Symposium On Software Testing and
Analysis, pages 75–86, 2008.

[24] X. Qu, M. B. Cohen, and K. M. Woolf. Combinatorial
interaction regression testing: A study of test case
generation and prioritization. In ICSM, pages
255–264. IEEE, 2007.

[25] R. B. S. S. D. R. K. S. Manchester, N. Samant and
R. Kacker. Applying higher strength combinatorial
criteria to test prioritization: a case study. Journal of
Combinatorial Mathematics and Combinatorial
Computing - to appear TBD 2012.

[26] S. Sampath, R. C. Bryce, G. Viswanath,
V. Kandimalla, and A. G. Koru. Prioritizing
user-session-based test cases for web applications
testing. In ICST, pages 141–150. IEEE Computer
Society, 2008.

[27] P. Schroeder, P. Bolaki, and V. Gopu. Comparing the
fault detection effectiveness of n-way and random test
suites. In Proceedings of Empirical Software
Engineering, pages 49–59, August 2004.

[28] L. Shi, C. Nie, and B. Xu. A software debugging
method based on pairwise testing. In International
Conference on Computational Science (3), pages
1088–1091, 2005.

[29] C. Yilmaz, M. B. Cohen, and A. Porter. Covering
arrays for efficient fault characterization in complex
configuration spaces. IEEE Transactions on Software
Engineering, 31(1):20–34, Jan 2006.

[30] S. Yoo and M. Harman. Regression testing
minimisation, selection and prioritisation: A survey.
Software Testing, Verification, and Reliability,
22(2):67–120, March 2012.

Table 11: Percentage of Detected Faults up to Multiples of 10 Test Case Executions

Subjects
Gen. Prio. Num. of Test Cases Executed

Subjects
Gen. Prio. Num. of Test Cases Executed

Crit. Crit. 10 20 30 40 50 60 Crit. Crit. 10 20 30 40 50 60

flex

2 2 88.0 90.0 - - - -

flex

4 2 86.0 94.0 94.0 94.0 94.0 98.0
2 3 92.0 92.0 - - - - 4 3 88.0 96.0 96.0 96.0 96.0 98.0
2 4 70.0 90.0 - - - - 4 4 88.0 92.0 92.0 92.0 92.0 96.0
2 5 90.0 92.0 - - - - 4 5 86.0 92.0 92.0 94.0 94.0 98.0

flex

3 2 92.0 94.0 94.0 94.0 94.0 -

flex

5 2 94.0 96.0 96.0 96.0 98.0 98.0
3 3 90.0 94.0 94.0 94.0 94.0 - 5 3 88.0 90.0 92.0 96.0 96.0 96.0
3 4 88.0 94.0 94.0 94.0 94.0 - 5 4 94.0 94.0 94.0 94.0 98.0 98.0
3 5 72.0 74.0 92.0 94.0 94.0 - 5 5 92.0 92.0 94.0 94.0 94.0 94.0

make

2 2 - - - - - -

make

4 2 100.0 100.0 - - - -
2 3 - - - - - - 4 3 100.0 100.0 - - - -
2 4 - - - - - - 4 4 100.0 100.0 - - - -
2 5 - - - - - - 4 5 100.0 100.0 - - - -

make

3 2 100.0 - - - - -

make

5 2 100.0 100.0 100.0 100.0 100.0 100.0
3 3 100.0 - - - - - 5 3 100.0 100.0 100.0 100.0 100.0 100.0
3 4 100.0 - - - - - 5 4 100.0 100.0 100.0 100.0 100.0 100.0
3 5 100.0 - - - - - 5 5 100.0 100.0 100.0 100.0 100.0 100.0

grep

2 2 91.67 91.67 91.67 91.67 - -

grep

4 2 75.0 83.33 83.33 83.33 91.67 91.67
2 3 83.33 83.33 91.67 91.67 - - 4 3 75.0 83.33 91.67 91.67 91.67 91.67
2 4 83.33 83.33 83.33 83.33 - - 4 4 75.0 83.33 91.67 100.0 100.0 100.0
2 5 75.0 83.33 83.33 83.33 - - 4 5 83.33 83.33 91.67 91.67 91.67 91.67

grep

3 2 91.67 91.67 91.67 91.67 91.67 91.67

grep

5 2 75.0 83.33 83.33 83.33 83.33 91.67
3 3 83.33 91.67 91.67 91.67 91.67 91.67 5 3 75.0 83.33 91.67 91.67 91.67 91.67
3 4 83.33 91.67 91.67 91.67 91.67 91.67 5 4 83.33 91.67 91.67 91.67 91.67 91.67
3 5 58.33 83.33 83.33 83.33 83.33 91.67 5 5 75.0 75.0 75.0 75.0 83.33 83.33

sed

2 2 80.95 90.48 90.48 90.48 90.48 -

sed

4 2 71.43 76.19 80.95 85.71 85.71 85.71
2 3 61.9 85.71 85.71 90.48 95.24 - 4 3 61.9 80.95 90.48 95.24 95.24 95.24
2 4 66.67 90.48 95.24 95.24 95.24 - 4 4 71.43 85.71 85.71 90.48 95.24 95.24
2 5 61.9 85.71 90.48 90.48 95.24 - 4 5 71.43 71.43 90.48 90.48 90.48 90.48

sed

3 2 76.19 85.71 85.71 85.71 90.48 90.48

sed

5 2 66.67 95.24 95.24 95.24 95.24 95.24
3 3 42.86 85.71 90.48 90.48 90.48 90.48 5 3 76.19 90.48 95.24 95.24 95.24 95.24
3 4 80.95 85.71 85.71 90.48 95.24 95.24 5 4 80.95 80.95 85.71 90.48 95.24 95.24
3 5 71.43 76.19 76.19 90.48 90.48 90.48 5 5 80.95 80.95 80.95 80.95 85.71 85.71

gzip

2 2 100.0 - - - - -

gzip

4 2 100.0 100.0 100.0 100.0 100.0 100.0
2 3 100.0 - - - - - 4 3 100.0 100.0 100.0 100.0 100.0 100.0
2 4 100.0 - - - - - 4 4 100.0 100.0 100.0 100.0 100.0 100.0
2 5 80.0 - - - - - 4 5 100.0 100.0 100.0 100.0 100.0 100.0

gzip

3 2 80.0 100.0 100.0 100.0 - -

gzip

5 2 100.0 100.0 100.0 100.0 100.0 100.0
3 3 80.0 100.0 100.0 100.0 - - 5 3 100.0 100.0 100.0 100.0 100.0 100.0
3 4 100.0 100.0 100.0 100.0 - - 5 4 100.0 100.0 100.0 100.0 100.0 100.0
3 5 100.0 100.0 100.0 100.0 - - 5 5 100.0 100.0 100.0 100.0 100.0 100.0

