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ABSTRACT
This paper introduces SHOM, a mutation-based test data
generation approach that combines Dynamic Symbolic Ex-
ecution and Search Based Software Testing. SHOM targets
strong mutation adequacy and is capable of killing both first
and higher order mutants. We report the results of an em-
pirical study using 17 programs, including production indus-
trial code from ABB and Daimler and open source code as
well as previously studied subjects. SHOM achieved higher
strong mutation adequacy than two recent mutation-based
test data generation approaches, killing between 8% and
38% of those mutants left unkilled by the best performing
previous approach.

Categories and Subject Descriptors
D.2.5 [Software Engineering]: Testing and Debugging

General Terms
Experimentation
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1. INTRODUCTION
Mutation testing is a fault based testing technique, first

proposed by DeMillo et al. [7] and Hamlet [13] and widely
studied since [22]. The idea underpinning mutation testing is
to seed faults to assess the adequacy of the testing approach.
The fault-seeded version of the original program is called a
‘mutant’. Research activity in mutation testing is increasing
and its tools and techniques are reaching a state of maturity
and widespread applicability [22].

If a test case distinguishes the behaviour of the original
program from that of one of its mutants, then the test case
is said to ‘kill’ the mutant. If the test case merely causes the
state to change after the mutation point is executed then the
mutant is said to be ‘weakly’ killed. However, if the test case
causes this state change to propagate to an output, where
an observable failure is observed, then the test case is said
to ‘strongly’ kill the mutant.
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Strong mutation testing embodies a more demanding test
adequacy criterion than weak mutation testing, making it
preferable that a test suite would be strong mutation ade-
quate, where possible [41]. By definition a test that strongly
kills a mutant must also weakly kill it, but not necessarily
vice versa.

If a mutant and the original program are semantically
identical then the mutant is said to be ‘equivalent’; no test
case can kill it. Equivalent mutants are a problem for muta-
tion testing, because equivalence is undecidable, making it
hard to know whether an unkilled mutant is killable.

Based on the types of faults seeded, mutation testing can
classified as ‘first order’ or ‘higher order’. First order muta-
tion seeds only simple faults, generated by a single syntac-
tic change to the original program. Higher order mutation
combines simple first order faults to simulate more complex
faults, motivated by a desire to capture subtle faults [21].

Higher Order Mutation Testing has been the subject of
much recent attention [5, 16, 27]. As well as its ability to
model more complex masking faults [20], there is evidence
to suggest that it may reduce mutation effort [38] and also
the proportion of mutants that are equivalent [25, 35].

There has been much work on different techniques and
tools for generating mutants, with over 250 publications on
mutation testing. However, the literature contains only 10
publications (about 4% of the total) that address the prob-
lem of automatically generating test data to kill mutants
[22]. A summary of these 10 papers is presented in Ta-
ble 1. While mutation generation remains important, it is
also clearly desirable to be able to use mutation testing to
generate test cases as well as to asses them.

Previous work on the generation of test data to kill mu-
tants has used traditional structural-oriented test data gen-
eration techniques, for example, traditional symbolic execu-
tion [8, 26, 30, 31, 32], Dynamic Symbolic Execution (DSE)
[34, 37, 42] and Search Based Software Testing (SBST) [4,
11]. However, all of the existing techniques are designed to
achieve only weak mutation adequacy and only for first or-
der mutants. There is neither existing work on killing higher
order mutants, nor any work on generating strong mutation
adequate test data.

This paper presents SHOM, a novel hybrid approach that
draws on previous work from both DSE and SBST to achieve
strong higher order mutation adequacy1. The paper presents
evidence to support the claim that SHOM is efficient and
effective for both first order and higher order mutation.

1
A first order mutant is a special case of a higher order mutant so

SHOM also achieves first order mutation adequacy.
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The contributions of the paper can be summarised as fol-
lows:

1. We introduce a hybrid test data generation approach
for strongly killing both first order and higher order
mutants. We evaluate our approach on 17 subject pro-
grams, including 7 real world programs (four from two
different closed source industrial systems and three for
which source code is publicly available). For backward
compatibility with comparable recent studies (that use
C) and the older ones (that use Fortran) we also in-
clude C versions of 10 of the smaller programs stud-
ied in this previous work. However, our study also
includes programs an order of magnitude larger than
any of these smaller programs.

2. We report the results of an empirical evaluation of
SHOM’s efficiency and effectiveness for strong first or-
der mutation adequacy. The results show that SHOM
can kill up to 38% of the first order mutants left un-
killed using reachability and infection, which in turn
kills up to 36% of the mutants left unkilled using reach-
ability alone.

3. We also report the results of a further empirical study
of SHOM’s efficiency and effectiveness for strong sec-
ond order mutation adequacy. The results show that
SHOM can kill up to 48% of the second order mutants
left unkilled using reachability and infection, which in
turn kills up to 41% of the mutants left unkilled using
reachability alone.

The rest of this paper is organised as follows. Section 2
introduces our hybrid DSE/SBST approach, while Section 3
briefly describes implementation details. Section 4 explains
the experimental method, the results of which are discussed
in Section 5. Section 6 introduces related work, and the
paper concludes with Section 7.

2. STRONGLYKILLINGHIGHERORDER
MUTANTS USING DSE AND SBST

We first define a mutant and a higher order mutant and
what it means to kill them, before explaining our approach
to generating test data using a combination of DSE and
SBST to strongly kill higher order mutants.

Definition 1 (First Order Mutant). A first order
mutant p′ of a program p is constructed by making a sin-
gle syntactic change to p. A transformation that produces
a mutant from the original program is called a ‘mutation
operator’.

Of course there remains the question of what is a ‘sin-
gle syntactic change’. There are many definitions of such
sets of mutation operators in the literature [1, 33]. For our
purposes, it is only important to define first order mutation
so that we can define higher order mutation in terms of it.
Higher order mutation can only be formally defined with
respect to a set of first order mutation operators.

Definition 2 (Higher Order Mutant). Given a set
of first order mutation operators M , if a mutant p′ is created
from a program p by the application of k operators from M
then p′ is said to be a kth order mutant of p.

Definition 2 of Higher Order Mutation subsumes Defini-
tion 1 of first order mutation because setting k = 1 in Defini-
tion 2 yields Definition 1. In general, care will be required to
ensure that all of the k mutation operations creates a distinct
syntactic change when applied to p. It may also be necessary
to define the order of application of the k mutation opera-
tors, since different application orders may produce different
overall syntactic effect. However, we leave these topics for
future studies on higher order mutation.

Higher order mutants are generally easier to kill than first
order mutants. However, there also exists a small set of
higher order mutants that is harder to kill than the first or-
der mutants from which they are constructed. This type of
higher order mutant is known as a subsuming higher order
mutant [21]. Figure 1 shows a simple illustrative example
of subsuming higher order mutant. Both mutant 1 and mu-
tant 2 are so-called ‘dumb’ mutants (those which are very
easy to kill). In this case both are killed by any and every
test cases; the dumbest possible. However, the higher order
mutants created by inserting both mutant 1 and mutant 2
together is far from dumb. It is much harder to kill than
either of its first order mutants. Essentially, in this sort of
situation, fault masking can create subtle higher order bugs
from unsubtle first order bugs.

In order to (strongly) kill a first order mutant the killing
conditions are well studied in the literature: A test input
needs to satisfy following three conditions: Reachability, In-
fection and Propagation (RIP), each of which subsumes the
preceding condition(s):

1. Reachability: The location of the mutant in the pro-
gram must be executed by the test case. We say the
mutant is ‘reached’. Reaching all mutants of a pro-
gram can be achieved by any branch adequate test
set, so reachability is an instance of branch coverage,
which is widely studied in literature [2, 12, 19, 39].

2. Infection: Immediately after mutant execution, the
original program state and that of the mutant must
differ. We say, the mutant ‘infects’ the state. A test
case that achieves infection for a mutant m is also said
to ‘weakly kill’ the m [8, 22, 28].

3. Propagation: The infected state must propagate to
some point in the program at which it can be observed,
such as an output statement. A test case that achieves
propagation for a mutant m is also said to ‘strongly
kill’ the m [8, 22, 28].

2.1 Weakly Killing Mutants
DSE has proved to be an effective means of satisfying

both the reachability and infection conditions [12, 39] and,
as a result, there has been work on DSE as a technique for
achieving weak mutation adequacy [34, 37, 42]. However, it
has not been adapted to handle strong mutation.

Our approach uses DSE to generate weakly killing con-
straints and test data that satisfy them. When generating
mutants, properties denoting reachability infection are col-
lected for each mutant. The reachability property is cap-
tured by the set of critical predicate nodes that transitively
control mutant reachability. This property is generated by
traditional control dependence analysis. The second prop-
erty is the infection constraint which is determined by the
specific type of mutant. We use the infection conditions
found in the work of DeMillo and Offutt [8].

213



Table 1: Mutation-based Test Data Generation. In referring to study example sizes, ‘tiny’ refers to laboratory
programs consisting of a single procedure, while ‘small’ refers to slightly less trivial laboratory programs.
The term ‘non-trivial’ is reserved for real world programs, neither written by students, nor the experimenters
themselves, nor drawn from the ‘Siemens Suite’. (†)The work of Offutt et al. [31, 32] reported basic block
and dataflow coverage, but not Mutation Score. (‡)The work of Fraser and Zeller achieved (R)eachability
and (I)nfection and also a constrained form of (P)ropagation, because it sought to maximize the mutant’s
effect on assertions, providing a form of propagation and also a way to maximise mutant impact.
Authors [Ref] Year (R)eaches,

(I)nfects,
(P)ropagates

Technique Tool
Avail-
able?

Subjects Studied Subject
Lan-
guage

Largest
Subject

Average
mutation
score

(F)irst
order /
(H)igher
order

DeMillo and
Offutt [30, 8]

1991 R,I
(Weak)

Static Do-
main Reduc-
tion

Yes 5 tiny examples Fortran 55 Lines 98% F

Offutt et al.
[31, 32]

1994 R,I
(Weak)

Dynamic
Domain
Reduction

Yes 12 tiny examples Fortran 100
Lines

Not†

given
F

Liu et al. [26] 2006 R,I
(Weak)

Dynamic
Domain
Reduction

No 5 tiny examples C 21 Lines 95% F

Zhang et al.
[42]

2010 R,I
(Weak)

DSE Yes 5 small examples C# 472
Lines

90% F

Papadakis
et al. [36]

2010 R,I
(Weak)

DSE No 5 tiny examples plus
3 small Siemens suite
examples

C 500
Lines

63% F

SHOM
[this paper]

2011 R,I,P
(Strong)

DSE&SBST Yes 8 non-trivial exam-
ples in Table 2 and
10 of the above
listed in Table 3 for
comparability

C 9,564
Lines

First:
69%
Second:
71%

F&H

Ayari et al.
[4]

2007 R
(Weak)

SBST No 2 tiny examples Java 72 Lines 88% F

Papadakis et
al. [37]

2010 R
(Weak)

DSE Yes 10 tiny examples Java 100 Loc 90% F

Fraser and
Zeller [11]

2010 R,I
(Firm)‡

SBST Yes 2 non-trivial exam-
ples: Commons-
Math & Joda- Time

Java 412
Classes

72% F

2.2 Handling Higher Order Mutants
We adopt and adapt the previous work on DSE for first

order mutation testing, so that it is able to handle higher
order mutants in addition to first order mutants. A higher
order mutant, m, of order n is a is a composition of n first
order mutants. We shall call these n first order mutants the
‘constituent’ mutants of m. For each higher order mutant,
there are two important cases to consider: Case 1: There ex-
ists a path that traverses all constituent first order mutants.
Case 2: There does not exist such a path.

If Case 1 applies, then it is possible that the higher order
mutant is a subsuming higher order mutant. A ‘subsuming’
higher order mutant is one that is harder to kill than any
of its first order constituents, due to fault masking among
the constituent first order mutants [21]. In testing terms,
we may say that ‘the sum of the collection of first order mu-
tants is more demanding to test than the union of its parts’.
However, if there does not exist a path that passes through
all constituent first order mutants then, by definition, they
cannot all mask one another and so the ‘sum is merely the
union of its parts’ and is, therefore, easier to kill.

Of course, in Case 2 there could be a path that traverses
some subset, S, of the constituent first order mutants, but
this would mean that there would also be a lower order mu-
tant composed of precisely the S constituent mutants. If we
seek to progressively increase the order of mutants consid-

ered, then such a case will already have been encountered.
Therefore, we focus our attention on Cases 1 and 2 as defined
above.

Suppose a higher order mutant that we seek to weakly
kill is constructed from a set of constituent first order mu-
tants f1, . . . , fn. If there is a path in the control flow graph
of the program that passes through all the critical predi-
cate nodes of f1, . . . , fn then the higher order mutant may
be subsuming. This is Case 1. For these higher order mu-
tants, we define the critical predicate nodes of the higher
order mutant to be the union of the critical predicate nodes
of the f1, . . . , fn. By extension, the infection constraint of
the higher order mutant is the conjunction of the infection
constraints of f1, . . . , fn.

If there is no such path (Case 2), then it is not possible to
find a test case that executes all the constituent first order
mutants that combine to make the higher order mutant. In
this situation, our approach treats the higher order mutant
as merely a set of first order mutants; it is killed if any of
the constituent first order mutants is killed.

We use a different variant of the DSE algorithm to that
previously used for mutation testing [34, 37, 42]. Our reach-
ability approach is the same as previous work and this is
inherited from the standard DSE approach to branch cover-
age [12, 39]. However, we handle infection constraints differ-
ently, because we need to retain and extend the constraints
for subsequent generation of strongly killing test cases.
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Figure 1: Illustrative example: two dumb first order mutants combine to make a subtler second order mutant

i n tput s : a , x , y
1 z = x ;
2 z = z + y ;
3 i f ( a > 0)
4 re turn z ;
5 e l s e
6 re turn 2 ∗ x + z ;

mutant 1: changes line 1 to z = ++x
mutant 2: changes line 2 to z = z + - -y
mutant 12 (2nd order mutant): combines mutant1 and mutant2 together

inputs output schema
tests original mutant 1 mutant 2 mutant 12
a > 0 x+ y x+ y + 1 x+ y − 1 x+ y
a ≤ 0 3x+ y 3x+ y + 3 3x+ y − 1 3x+ y + 2

n/a killed by all killed by all killed by half

Previous work uses a testability transformation to trans-
form the traditional branch adequacy problem, which is han-
dled well by DSE, into weak mutation adequacy. This is
done by simply replacing mutants with additional branches,
the predicates of which capture the infection constraint.

Our approach does not transform the program. Rather,
once a mutation point is reached, our DSE variant continues
to generate test data to satisfy the weak killing constraint.
This allows us to retain a mapping of mutants and the cor-
responding infection constraints, so that we can assess the
fitness of each individual mutant when it subsequently comes
to the task of propagating infections. The pseudo code of
this DSE algorithm is shown in Algorithm 1.

If the DSE approach fails to generate weakly adequate test
data for a mutant, we use standard SBST approaches to seek
to weakly kill it. This is because it is known [23] that DSE
and SBST achieve coverage of distinct, but overlapping, sets
of branches. For example, SBST is well adapted to test data
generation in the presence of floating point computation.
This motivated work on a hybrid DSE–SBST approach, now
incorporated into the Pex tool [24].

However, for our experiments (reported in Section 4), we
switch off this search based weak killing feature of the SHOM
implementation, so that weak adequacy is achieved by DSE
alone. This was because we wish to compare the additional
effort required and effectiveness achieved in terms of strong
adequacy compared to the DSE–only approaches to weak
adequacy.

Having used DSE to generate weakly adequate test data
our hybrid DSE–SBST approach uses SBST to search for
test inputs that propagate infected data states to outputs,
thereby transforming weak mutation into strong mutation.
The next section explains our SBST approach to strong
higher order mutation testing, which lies at the heart of
our overall SHOM approach.

2.3 Strongly Killing Mutants
In order to strongly kill a mutant, its infection must be

propagated to an output so that the fault is manifested as a
failure. The propagation problem has previously been con-
sidered to be hard because there may be infinitely many
paths from the infection point to the point at which an out-
put occurs. Therefore, the problem of propagation, for each
mutant, can be reduced to the path coverage problem. Even
if we approximate path coverage, this process would still
have to be repeated for each mutant and so the cost would
potentially be prohibitive.

Our approach uses SBST to search for paths from the
infection point to the output that are more likely to propa-
gate the infection, based on heuristic assumptions about the
differences in paths taken by the original and the mutant,
which we seek to maximise using the search.

Algorithm 1 The dynamic symbolic execution algorithm

Require: the set of critical predicate nodes N reaching the
mutant

Require: the InfectionConstraint of the mutant
For program P, randomly generate concrete test input T
while within execution upper bound do

execution path p ← dynamic execution (P, T )
symbolic expression sc ← symbolic execution (P, T )
if p does not reach the mutant then

current critical node n ← get next critical node (N, p)
p ←update constraints (p, n)
T ← constraint solver(p, sc)

else
break

end if
end while
weak killing constraint wkc ← InfectionContraint ∧ p
T ← constraint solver(wkc)
return T

In this way, we do not explicitly try all paths from infec-
tion to output. Rather, we search for those more likely to
propagate, guided by a fitness function that measures con-
trol flow differences between original program and mutant.

We first use a testability transformation to ensure that the
program has only a single return point; the return of the pro-
cedure in which the mutant resides. This simple transforma-
tion is always possible, because multiple return statements
can be directed to a single ‘gathered’ return point.

We seek to maximally disrupt the path taken by the mu-
tant version of the program from the infection point to this
unique return statement. This increases the likelihood that
any output statement that can be executed after the infec-
tion point will be executed differently (or even not at all).
This, in turn, increases the likelihood that the mutant’s out-
put will be distinguishable from that of the original, thereby
strongly killing the mutant.

We wish to favour tests that maximise disagreement on
predicate choices made by the original program and mu-
tant, thereby maximally disrupting the control flow path
from the infection to the return. If a test makes the mutant
follow a different path to the original after execution then it
is very likely to produce a different value at the return point,
thereby strongly killing the mutant. Let Branch(p, i, t) de-
note the branch taken by program p at predicate i on input
t. Let inf(m) denote the infection point of mutantm and let
ret(m) denote the return point of the procedure containing
m. Let pred(p, x, y) denote all critical predicates between
point x and point y in program p.
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We define the decision function d for program p and mu-
tant m at predicate i on input t as follows:

d(p,m, i, t) =

{
1 if Branch(p, i, t) = Branch(m, i, t)
0 if Branch(p, i, t) #= Branch(m, i, t)

Our fitness f(p,m, t) of a test case t executed on a mu-
tant m of an original program p is defined to maximise the
average ‘predicate disagreement’ between m and p:

f(p,m, t) =
∑

i∈Pred(m,inf(m),ret(m)) d(p,m,i,t)

n

Recent results [18] have demonstrated that random restart
hill climbing provides an effective and efficient way to gener-
ate test data using SBST. Motivated by this finding, we use
a random re-start hill climbing algorithm to search for the
test inputs that propagate the infection, as shown in Algo-
rithm 2. However, the particular choice of SBST algorithm
is a parameter to our approach and a pluggable component
to its implementation.

2.4 Preserving Weak Adequacy
Using Constrained Search

Our representation and move operations are designed to
guarantee that the previously obtained reachability and in-
fection constraints are also satisfied by any candidate input
we consider during the SBST phase of our overall approach.
To do this we represent an individual candidate solution to
the problem of killing a mutant as a conjunction of con-
straints. This conjunction starts off as the reachability and
infection constraints, to which we may subsequently only
ever add additional conjuncts during the search process.

In order to express a potential move to a new test input
in the search, we add an extra conjunct to the current con-
straint, representing the result in Conjunctive Normal Form
(CNF). In this way we can only ever consider weakly killing
test cases. The constraint solver is used to generate a candi-
date using the extended CNF consisting of the weakly killing
constraint plus some candidate new constraint. The test in-
put generated by the constraint solver is then evaluated for
fitness and, if it improves fitness, it becomes the new current
solution in the hill climb.

Our ‘constrained search’ approach to searching for test
data is a novel aspect of our mutant killing technique that
has not been used in any previous work on SBST. It may
find other applications in more general work on SBST out-
side the domain of mutation testing. It allows us to com-
bine constraint solving and SBST in a manner that preserves
the value captured by the constraints, while extending it to
achieve some additional aspiration using search.

3. SHOM IMPLEMENTATION
Figure 2 depicts the architecture of SHOM, the implemen-

tation of our hybrid DSE–SBST approach to Strong Higher
Order Mutation. To compute adequacy scores we use the
tool MiLu[20, 21]. MiLu is a higher order mutant genera-
tion and assessment tool that supports general purpose first
and higher order mutant generation for C. We used the sub-
set of the Agrawal et al.’s 77 C mutation operators [1] that
fall into the widely studied ‘selective’ mutation operators,
defined and studied first by Offutt el al. [33]. We use our
own implementation of the DSE phase so that we could ex-
tend it to include the subsequent SBST phase.

Algorithm 2 Out hill climbing algorithm

Require: A weak killing test T
Require: The weak killing constraint wkc

if T kills the mutant strongly then
return T

else
while current evaluation < max evaluation do

NeighboursTests ← neighbours(T )
for all t in NeighboursTests do

if t kills the mutant strongly then
return t

end if
for all t in NeighboursTests do

if fitness(t) > bestfitness then
BestTest ← t
bestfitness ←fitness(BestTest)

end if
end for
if bestfitness ≤ fitness(T ) then

T ← get a weak killing test T
else

T ← BestTest
end if

end for
end while

end if

We use the CIL transformation system [29] to pre-process
the program and its mutants for the DSE and SBST phases
of our implementation. However, this is merely a testability
transformation that reduces constraint and path analysis ef-
fort. It does not alter the semantics of the program under
test, nor does it affect the test adequacy criteria involved.
As illustrated in Figure 2, the test data generated using our
approach is evaluated on the mutants generated by MiLu,
not the transformed versions.

Three transformation steps are performed. We first sim-
plify the expressions denoting array indeces and other mem-
ory access operators. In this step, additional temporary vari-
ables are introduced to hold intermediate values for complex
memory expressions which involve more than one memory
reference. After this step, the lvalue of the simplified ex-
pression only contains a memory constructor. This simpli-
fies our subsequent static analysis and dynamic symbolic ,
execution, by reducing the number of cases that have to be
considered.

We also use CIL’s standard transformations to simplify
loop and switch statements, reducing all such control flow
constructs to a simple canonical form, consisting of condi-
tionals and branches. Once again, this leaves the semantics
of the original unaltered, but eases the subsequent down-
stream analyses that we perform.

Finally, we transform each procedure to an equivalent
single–entry/single–exit version, so that it contains exactly
one single return statement, to which we seek to propagate
the infection of all mutants that lie inside that procedure.
As explained in the previous section, this simplifies strong
mutation testing, since it means that our SBST phase need
only consider a single exit node. For this single exist node,
SBST seeks inputs that cause execution to flow from the in-
fection point along a maximally disrupted control flow path
to the exit node.
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We also use CIL to perform our control dependence anal-
ysis. This collects the critical predicate nodes for each mu-
tant, used to form the reachability and infection conditions.
The dependence analysis is also used to identify those predi-
cates for which SBST seeks to cause the mutant and original
to disagree from infection to return.

The constraints for reachability and infection are repre-
sented in Conjunctive Normal Form. SHOM uses the Yices
constraint solver [10] to solve these constraints. Yices is a
Satisfiability Modulo Theories (SMT) constraint solver that
uses a collection of advanced constraint solving techniques
to find a satisfying assignment of values to variables in for-
mulæ. We use it to satisfy the constraints for reachability
and infection. Yices was chosen for two reasons:

1. Yices provides a C language application interface. This
is necessary since we cannot simply use constraint solving
as a ‘black box’ component. While this is possible for weak
mutation killing techniques that simply use testability trans-
formation to reformulate weak mutation as branch coverage,
it is not possible for strong mutation. For strong mutation
we require control over exactly which constraints need to be
satisfied at each part of the overall SHOM process.

2. Yices provides state-of-the-art constraint solving. It
supports a wide range of constraints, including linear ex-
pressions, scalar types, recursive datatypes, tuples, records,
arrays and bit-vectors, all of which can arise in the con-
straints found in programming languages. It won first place
for several of the categories of the 2005, 2006 and 2007
SMT-COMP competitions organised as part of the Com-
puter Aided Verification Conference (CAV).

Figure 2: The SHOM Architecture. The DSE and SBST
components were built from scratch. However, the DSE
component delegates constraint solving to Yices [10]. It
performs its analysis on transformed mutants, but all
test data generated by SHOM is executed and evaluated
by MiLu[20]. Transformation is performed CIL [29].

4. EMPIRICAL STUDY
In our studies we consider, separately, first order mutation

and higher order mutation, because first order mutation has
been the subject of previous work, while no other previous
study has considered test data generation to kill higher or-
der mutants. We consider only second order mutants and,
for larger programs, only sets of randomized samples from
the set of all possible second order mutants. Sampling is
required because of the infeasibility of considering all higher
order mutants due to the explosion in mutant numbers that
occurs at higher orders.

4.1 Subject Programs Studied
We applied SHOM to the example subjects in Tables 2

and 3. The examples in Table 2 are non-trivial real world
programs. Four are modules from closed source industrial
production code. Two of these, DeFroster and F1, come
from Daimler and are used in automative control systems
for a rear window defrosting system and an engine controller
respectively and have been used in previous studies [14]. The
other two, Hash and Buff, come from ABB and are used in
robot controller systems.

We cannot provide the source code for these examples, be-
cause they are proprietary closed source code from industrial
partners with which we have Non Disclosure Agreements in
place. However, to support replication and more robust eval-
uation, we also include three additional larger programs, for
which source code is readily available.

The program Space is a widely studied interpreter for
an array definition language used by the European Space
Agency. It is not open source, but its code is available
from the Software-artifact Infrastructure Repository (SIR)
[9]. The other two programs, Gzip (v1.5) and GArray (v2.26)
are both open source. Gzip is the widely used compression
program. GArray is an array data structure used in the
GNU Glib. All programs in this non-trivial subject set of
examples are summarised in Table 2.

The second set, summarised in Table 3, contains smaller
laboratory programs that have been widely studied in the lit-
erature on mutation-based test data generation. We include
this set of relatively small programs to provide backward
compatibility with these previously studied examples.

The set includes three programs taken from SIR that orig-
inated in the Siemens suite: Tcas is an aircraft anti-collision
system. Schedule is a program that prioritises schedulers.
Replace performs pattern matching and substitution.

The remainder are a sample of some of the tiny programs
used in previous studies. We make no attempt to infer find-
ings from the results obtained using these tiny examples,
but include them to facilitate replication. Triangle classifies
the type of a triangle by the lengths of its three edges. Bub-
ble is the standard bubble sort algorithm. Days calculates
the number of days between two given days. Find locates
and sorts the input array with a given index. Mid returns
the middle value of three inputs. GCD is Euclid’s GCD al-
gorithm and MinMax returns the minimum and maximum
values of the input array.

4.2 Mutant Generation
Some of the programs studied perform no output. For ex-

ample, many of the tiny programs simply compute a single
value as their result. For such programs we need to clarify
what we mean by ‘output’. If we took an overly pedantic
and literal definition of output, for example: ‘something that
appears on an output device’, then all mutants of such pro-
grams would be equivalent, because no mutation can change
a non-existent output. Therefore, we allow ‘output’ include
the result of the computation returned to the environment
(such as a return value or the result computed in a global
variable).

For the larger programs where the code is not a support
routine, but an entire program, there is no such issue. These
larger programs perform output, to screen and/or files and
this is monitored and compared with the output of the orig-
inal to determine whether the mutant is strongly killed.
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4.3 Research Questions
Our study asks three research questions, which we define

here, explaining how our experiments are designed to ad-
dress them.

RQ1: How first-order-adequate is SHOM? To explore
SHOM’s test effectiveness for strong first order mutation,
we compare SHOM with RI-DSE. We also report on the im-
provement RI-DSE achieves over R-DSE. In both cases we
generate test sets for R-DSE and RI-DSE and compute the
number of mutants each kills strongly and compare this to
the number of mutants strongly killed by SHOM. This al-
lows us to evaluate the degree to which a reached mutant
is infected and propagates merely by reaching it using DSE
and also the degree to which those mutants infected using
DSE also already happen to propagate. We repeat all ex-
periments ten times and take the average to cater for the
stochastic nature of the search algorithm.

RQ2: How second-order-adequate is SHOM? The
number of higher order mutants grows exponentially with
the order k, presenting obvious experimental design chal-
lenges. For all of the ten programs from Table 3, the to-
tal number of second order mutants is 392,458 (which is
manageable). However, for the real world programs in Ta-
ble 2, the total number of second order mutants is 63,799,406
(which is unmanageable).

The quadratic increase in the number of second order mu-
tants makes it impractical to consider all second order mu-
tants. We therefore adopt a sampling approach. For pro-
grams with 0–4,999 second order mutants we use 100% of
the mutants. For programs with 5,000–49,999 mutants, we
sample 10%. For programs with 50,000–499,999 mutants, we
sample 1%. For programs with 500,000–4,999,999 mutants,
we sample 0.1%. For programs with 5,000,000 or more mu-
tants, we sample 0.01%. To avoid sampling bias, we sample
randomly from the set of all second order mutants. We
also repeat the sampling experiment 10 times and compute
the average levels of strong second order mutation adequacy
achieved over all 10 samples.

To answer RQ2 we compare SHOM with RI-DSE and
compare RI-DSE with R-DSE. However, there is no previous
work on generating test data to kill second order mutants
(either weakly or strongly). Therefore, to provide a baseline
for comparison, we use the union of all test data generated
for each of the two first order mutants from which the second
order mutant is constructed as follows:

Suppose s is a second order mutant with constituent first
order mutants f1 and f2. We use R-DSE to generate test
data to kill f1, creating a set of test data d1. We then use
R-DSE to generate test data to kill f2, creating a second
set of test data d2. We define the result of applying R-DSE
to s to be d1 ∪ d2. Similarly, for RI-DSE, we generate two
test sets, one for each of f1 and f2 and define the test set
produced by RI-DSE for s to be the union of the two.

Using this approach, R-DSE and RI-DSE should be capa-
ble, in theory, of killing all those second order mutants that
are coupled to their first order constituents in a way that
killing either first order mutant kills the second order mu-
tant. However, for second order mutants where fault mask-
ing may take place, a test set that kills both constituent first
order mutants it not guaranteed to kill the second order mu-
tant.

Table 2: The 7 larger programs used in the experi-
ments. The upper 5 are industrial programs, while
the lowest 2 are open source.
Program Lines Func- Branches 1st 2nd
Name Of tions order order

Code mutants mutants

DeFroster 237 2 76 215 22,732
F2 511 1 42 212 22,113
Hash 1,011 12 76 465 107,211
Space 9,564 136 1,190 4,410 9,715,606
Buff 1,371 14 182 1,544 1,189,040

GArray 808 58 17 1,363 926,286
Gzip 7,933 97 1,717 10,182 51,816,418

Table 3: 10 smaller programs included for backward
compatibility with previous studies.

Program Lines Func- Branches 1st 2nd
Name Of tions order order

Code mutants mutants

Triangle 88 1 32 253 31,522
Bubble 35 1 6 80 3,032
Days 86 1 28 242 28,849
Find 88 1 22 201 19,791
Mid 43 1 10 65 1,970
GCD 43 1 6 73 2,526
MinMax 44 1 6 39 657

Tcas 166 8 66 223 24,496
Replace 595 23 176 714 253,585
Schedule 425 18 66 230 26,000

RQ3: How efficient is the SHOM data generation
approach? The efficiency was measured using both the
elapsed time for test data generation and the number of fit-
ness evaluations required. Again, to cope with the stochastic
nature of the search process, each experiment was repeated
ten times and averages are reported.

The time was recorded using the Linux time utility. This
is the elapsed time, so it includes all time taken to generate
mutants, test data and to run test data on the program
under test. As such, the timing information denotes a worst
case upper bound on the total amount of time a tester would
be expected to wait for test data to be produced by each
technique. The experiments we undertaken on a Macbook
pro laptop with Intel Duo2 2.6 GHz CPU, 4GB Memory in
the Ubuntu 10.10 operating system.

5. RESULTS AND ANALYSIS
In this section we present the answer to each research

question in turn, indicating how the results answer each. We
consider strong first order effectiveness, followed by strong
second order effectiveness and finally report on the efficiency
of the SHOM implementation.

5.1 SHOM’s First Order Adequacy
The results relating to RQ1 are summarised in Table 4.

Answer to RQ1: As can be seen, SHOM produces in-
creases in strong first order mutation adequacy compared
to RI-DSE, which in turn produces noticable improvements
on the strong adequacy achieved by R-DSE. For the smaller
programs, the improvement in strong adequacy achieved by
both RI-DSE and SHOM is less notable than it is for the
larger programs.
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Table 4: The complete results for all experiments. Columns labelled ‘R-DSE’ and ‘RI-DSE’ report, as
percentages, the strong adequacy achieved by R-DSE and RI-DSE respectively for 1st and 2nd order mutants.
Of the four columns labelled RI-DSE, the second two columns report the percentage of mutants left unkilled by
R-DSE which are killed by RI-DSE. The four columns labelled ‘SHOM’ report the strong adequacy achieved
by our new approach SHOM. The figures in the first two columns for SHOM report the average percentage of
first and second order mutants killed over ten runs. The parenthetic numbers report the standard deviation.
The figures in the second two columns for SHOM report the average percentage improvement of SHOM
over RI-DSE for first and second order mutation. In these two columns the parenthetic numbers report the
number of runs, out of ten, for which SHOM outperformed RI-DSE. The two columns labelled ‘Time’ report
the average time taken by SHOM (in minutes). The final two columns, labelled ‘Fitness’ report the average
number of kilo fitness evaluations required.

Program

R-DSE % RI-DSE % SHOM % Time Fitness
Order Order Imp. on R Order (Std.) Imp. on RI (# wins) Order Order

1st 2nd 1st 2nd 1st 2nd 1st 2nd 1st 2nd 1st 2nd 1st 2nd
Triangle 48 49 59 61 21 24 62 (1.6) 67 (3.8) 7 (10) 15 (10) 13 102 3 17
Bubble 76 77 76 77 0 0 76 (0.0) 77 (0.0) 0 (0) 0 (0) 22 141 0.2 8
Days 62 66 64 68 5 6 65 (0.5) 72 (2.6) 3 (10) 13 (10) 14 114 5 13
Find 64 59 69 60 14 2 69 (0.0) 61 (0.2) 0 (0) 3 (10) 28 191 2 9
Mid 65 62 66 73 3 29 82 (4.2) 82 (2.3) 47(10) 33 (10) 6 48 0.3 4
GCD 71 73 73 82 7 33 73 (0.0) 82 (0.0) 0 (0) 0 (0) 12 88 0.2 5
MinMax 75 64 77 75 8 31 77 (0.0) 76 (0.2) 0 (0) 4 (10) 22 84 0.1 3
Tcas 42 55 54 67 21 27 62 (2.1) 69 (9.1) 17 (10) 6 (10) 48 172 3 12
Replace 46 42 53 56 13 24 72 (2.2) 77 (11.5) 40 (10) 48 (10) 200 272 8 18
Schedule 55 57 57 62 4 12 69 (5.4) 70 (7.2) 28 (10) 21 (10) 110 202 4 15
Hash 51 54 56 61 10 15 63 (2.9) 64 (3.5) 16 (10) 8 (10) 81 128 5 8
Buff 63 64 71 73 22 25 82 (6.1) 85 (6.5) 38 (10) 44 (10) 152 176 11 7
GArray 64 68 77 81 36 41 82 (3.7) 86 (5.7) 22 (10) 26 (10) 95 131 2 3
DeFroster 53 55 62 63 19 18 66 (2.1) 68 (4.0) 11 (10) 14 (10) 102 272 2 11
F2 44 44 63 60 34 29 66 (1.2) 67 (8.4) 8 (10) 18 (10) 122 321 2 14
Space 30 32 46 51 23 28 52 (2.3) 57 (12.2) 11 (10) 12 (10) 1,423 884 43 18
Gzip 34 33 42 44 12 16 50 (1.5) 52 (13.4) 14 (10) 14 (10) 2,762 1,794 92 64

Average 55 56 62 65 15 21 69 (2.1) 71 (5.3) 15 (7.6) 16 (8.8) 307 301 11 13

This difference in behaviour is a further justification for in-
cluding larger programs in the study of mutation-based test
data generation. As we have seen, using only tiny examples
may skew the results due to the relatively trivial nature of
the test data generation problem for these tiny programs.

R-DSE and RI-DSE are entirely deterministic. SHOM
builds on RI-DSE, but it is a randomised algorithm, so it can
produce different values each time it is run. However, it is
guaranteed to perform no worse than RI-DSE by construc-
tion, so we report the improvement it achieves (averaged
over ten runs) together with standard deviation.

These are the first results reported for strong mutation
test data generation so it is not possible to directly compare
our results with previous findings, such as those in Table 1.
Perhaps the closest work to ours is that of Frazer and Zeller
[11].

Though Fraser and Zeller report on test data generation
for Java, while we report on test data generation for C, their
work is evaluated on two larger, non-trivial subjects and it
achieves a form of propagation (to assertions in the program
rather than outputs). Fraser and Zeller reported an overall
average first order mutation score of 72% which lies between
our weighted average strong first order mutation score for
the whole programs (which was 59%) and that we achieved
for the libraries (which is 76%).

There is a noticeable difference in the performance of all
techniques for smaller and larger programs. For the smaller
programs from Table 3, R-DSE is able to strongly kill be-
tween 42% and 76% of the first order mutants. RI-DSE can
improve on this, but for some of the programs the test prob-

lem is so trivial that even weakly adequate test sets achieve
high levels of strong mutation adequacy.

For the larger programs the results are more interesting.
The behaviour of all three techniques falls into two distinct
categories, depending on whether the larger program is a
whole program or merely a collection of library routines to
be called by some other program. Of the larger programs,
Hash, Buff and GArray are each collections of routines to
be called from elsewhere; these three programs consist of
libraries of subordinate routines; they have no main function.
The other four of the larger programs: DeFroster, F2, Space
and Gzip, are invoked, in their entirety, from their main
function so that the whole program is tested.

It has been known for some time [3] that whole program
analyses are more challenging than inter-procedural analyses
that focus on a single procedure. This is also true for test
data generation. For the libraries, we need merely test each
procedure in turn, thereby focusing the testing on a single
procedure body rather than a whole program. The single
procedure may call others in the library, so testing is still
an inter-procedural activity, but it is not a ‘whole program
activity’.

This dichotomy between whole programs and libraries is
borne out in the results. For the libraries, R-DSE is able to
strongly kill between 51% and 64% of the first order mutants,
whereas for the whole programs it kills between 30% to 53%
of the mutants. RI-DSE improves on this, killing between
10% and 36% of the remaining mutants for the libraries and
between 12% and 34% of the remaining mutants for the
whole programs.
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SHOM further improves strong first order mutation scores
in all of the larger programs studied. For the library pro-
grams it manages to kill between 16% to 38% of the remain-
ing mutants left unkilled by RI-DSE. For the whole pro-
grams, SHOM kills between 8% and 14% of the remaining
mutants unkilled by RI-DSE.

5.2 SHOM’s Second Order Adequacy
As can be seen from Table 4, on average, over all programs

studied, all three techniques (R-DSE, RI-DSE and SHOM)
are better at killing second order mutants than first order
mutants. This is to be expected since second order mutants
are, in general, coupled to first order mutants [22, 25]. These
are the first results reported in the literature for automated
test data generation to kill second order mutants, so they
provide a baseline for future work.

The results also provide a baseline against which to eval-
uate SHOM. Over all programs studied, it produces an im-
provement in strong second order adequacy over RI-DSE,
which, in turn, produces an improvement over R-DSE. Once
again, we report average performance for SHOM (over ten
runs) and standard deviation. Note that statistical tests
such as the t-test or Mann Whitney test are not suitable
here: The empirical evaluation is required to determine the
size of this improvement, but SHOM is guaranteed to per-
form no worse than RI-DSE by construction.

For the larger programs from Table 2, the dichotomy be-
tween libraries and whole programs is evident for second
order mutation (as it is for first order mutation). For whole
programs, the adequacy of all techniques is reduced com-
pared to that for libraries. Over all larger programs, RI-DSE
kills between 15% and 41% of the second order mutants left
unkilled by R-DSE, while SHOM further increases this ef-
fectiveness, killing between 8% and 44% of the mutants left
unkilled by RI-DSE

5.3 SHOM’s Efficiency
Table 4 reports the number of fitness evaluations and time

required to kill all mutants. The number of fitness evalua-
tions required is not dissimilar to that required for branch
coverage of similar sized programs using search based tech-
niques [2], so performance can be expected to be in line with
previous work on SBST.

For the practicing software tester, the number of fitness
evaluations, though machine-independent, will be of less in-
terest; the results for the time taken to find an adequate
test set are more important. The largest of the programs
previously studied for mutation-based test data generation
with C are the Siemen’s suite examples (Schedule, Replace
and Tcas from Table 3). For these programs we are able to
generate a weakly killing test set in seconds.

It is not possible for us to compare these findings with
the previously reported results from the literature on mu-
tant test data generation for C. This is because the relevant
papers for which a comparison would be meaningful reported
in detail upon only the effectiveness (mutation score) of the
approaches on which they reported and did not report the
execution time details required for a comparison.

Of course, after two decades of Moore’s Law, even were
timing data available then, for those older studies from the
1990s, a head-to-head time-based comparison would have
been grossly unfair to the achievements of previous work.
For the more recently reported results (from 2010), even

were timing data available, differences in techniques, plat-
forms and configurations would also have made comparison
problematic. In the present paper, we report on our exe-
cution times, configuration and platform details in order to
support potential backward comparison in future work on
strong and higher order mutation testing.

Mutation testing is generally regarded as a comparatively
slow and expensive approach to testing. Despite this, it
has endured through more than three decades as a research
topic, perhaps because of results that demonstrate that it
provides a particularly demanding test adequacy criterion
and one that is attractively generic and flexible.

Given these historical perspectives, our timing findings
are encouraging because they indicate that weak, strong
and higher order mutation testing can all be used to gen-
erate test data within reasonable time on a standard lap-
top. Generation of test data by hand (the only currently
available alternative for either strong or higher order mu-
tation) would take considerably longer, and, using human
effort rather than machine effort would be (perhaps pro-
hibitively) more expensive.

6. RELATEDWORK
Constraint Based Testing (CBT) was the first test data

generation technique used for mutation testing. It was pro-
posed by DeMillo and Offutt, based on the idea of control
flow analysis and symbolic execution [8, 30]. Constraint
based testing seeks to generate test data to kill mutants
weakly by reaching and infecting mutants, thereby achiev-
ing the ‘R’ and ‘I’ of the ‘RIP’ framework described in Sec-
tion 2. Offutt and DeMillo represent reachability as a set
of path conditions, constructed using control flow analysis
and symbolic execution and augment these path constraints
with constraints that denote infection.

The initial approach to CBT suffered from several prob-
lems inherited from the state-of-the-art in symbolic evalua-
tion available at the time and also from the static domain
reduction technique used. It was unable to handle arrays,
loops and nested expressions well. To overcome these restric-
tions, Offutt et al. proposed a dynamic domain reduction
technique [31, 32]. The dynamic domain reduction tech-
nique uses a more sophisticated back-tracker to dynamically
split domains.

Dynamic Symbolic Execution (DSE) [12, 39] is a more
recent innovation that overcomes many of the limitations of
traditional symbolic execution. Using DSE, non-linear path
constraints are simplified by the instantiation of concrete
runtime values, harvested from program execution. DSE
has been used in several coverage based testing tools, such
as DART [12], CUTE [39] and Pex [40].

DSE also provides a natural way to generate weakly ade-
quate mutation-based test inputs. A simple testability trans-
formation [15] can be used to augment the program with
conditional statements, the predicates of which capture the
infection constraints. By construction, covering the branches
of the transformed program entails satisfying these infection
constraints, thereby tranforming branch coverage into weak
mutation coverage. This approach was first suggested by Liu
et al. [26], and was implemented by Zhang et al. [42] and
Papadakis et al. [36] who evaluated it on small programs,
such as those found in Table 3.
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Search Based Software Testing (SBST) [2, 17] has also
been applied to the generation of weakly adequate mutation-
based test data. Bottaci was the first to suggest using SBSE
to kill mutants [6]. However, Search Based Mutation Test
Generation remained unimplemented and unevaluated until
the subsequent for work of Ayari et al. [4] and Fraser and
Zeller [11], both of whom target Java. This previous work is
not directly comparable to SHOM since SHOM targets C.

Ayari et al. evaluated their approach on small programs;
essentially these are Java versions of those programs used in
the previous work on mutant-based test data generation for
Fortran and C, the largest of which is 70 Lines of Code. The
more recent work by Fraser and Zeller reports results from
a larger-scale study involving two Java programs, the larger
of which contains 412 classes.

The SHOM approach introduced in this paper combines
DSE and SBST. It uses DSE to achieve weak mutation
adequacy and extends this with a constraint-aware search
based approach that maintains weak adequacy, while seek-
ing to propagate tests to achieve strong mutation adequacy.
SHOM thus extends previous work by generating test data
for strong mutation adequacy and by generating test data
for higher order mutants. Like the recent work of Fraser
and Zeller on Java, SHOM is evaluated on much larger ex-
amples; an order of magnitude larger than previous work on
mutant-based test data generation for C.

7. CONCLUSIONS
In this paper we introduced a hybrid DSE and SBST ap-

proach to generate strongly adequate test data to kill first
and higher order mutants. We implemented our approach
in a tool called SHOM. We also implemented the two previ-
ously published approaches, based on reachability alone and
reachability together with infection and used these imple-
mentations to evaluate our approach on 17 example pro-
grams. Our results show that SHOM is able to achieve
higher levels of strong mutation coverage than either pre-
viously published approach for first order mutants. For sec-
ond order mutants there is no previous work on test data
generation so we compared our second order test sets with
those composed from the union of the corresponding first
order sets. Once again, SHOM was found to outperform ap-
proaches based on either reachability alone or reachability
and infection.
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