
A
Fault Localization Prioritization: Comparing Information Theoretic and
Coverage Based Approaches

Shin Yoo, Mark Harman and David Clark, University College London

Test case prioritization techniques seek to maximise early fault detection. Fault localization seeks to use
test cases already executed to help find the fault location. There is a natural interplay between the two

techniques; once a fault is detected, we often switch focus to fault fixing, for which localization may be a

first step. In this paper we introduce the Fault Localization Prioritization (FLP) problem, which combines
prioritization and localization. We evaluate three techniques: a novel FLP technique based on information

theory, FLINT (Fault Localization using Information Theory), that we introduce in this paper, a standard

Test Case Prioritization (TCP) technique and a ‘test similarity technique’ used in previous work. Our
evaluation uses five different releases of four software systems. The results indicate that FLP and TCP

can statistically significantly reduce fault localization costs for 73% and 76% of cases respectively and that

FLINT significantly outperforms similarity-based localization techniques in 52% of the cases considered in
the study.

Categories and Subject Descriptors: D.2.5.7 [Software Engineering]: Testing and Debugging—Debugging Aids

General Terms: Algorithm

Additional Key Words and Phrases: Test Case Prioritization, Fault Localization, Information Theory

ACM Reference Format:
ACM Trans. Softw. Eng. Methodol. V, N, Article A (January YYYY), 29 pages.
DOI = 10.1145/0000000.0000000 http://doi.acm.org/10.1145/0000000.0000000

1. INTRODUCTION
Fault localization can be used to prioritize the statements of a program according to the like-
lihood that each contains a fault that causes a known failure [Jones et al. 2002; Renieres
and Reiss 2003]. Regression test prioritization is used to order statements according to early
achievement of some testing goal such as coverage [Elbaum et al. 2000; Li et al. 2007; Rother-
mel et al. 2001; Yoo and Harman 2012].

Regression testing and fault localization are naturally complementary: we test to see if
change has introduced a fault and, if we discover that it has, we switch from regression testing
to fault localization as a first step towards fault fixing. Having fixed the fault we switch back
to regression testing and so the cycle continues. This ‘test–find–fix’ cycle is familiar to many
software engineers.

Complete execution of all test cases in a regression test suite can be slow; execution times of
up to seven weeks have been reported in the literature [Rothermel et al. 2001]. For larger test
suites, it may not be realistic to expect the engineer to wait for all test cases to be executed
before they can start work on fault fixing. Also, it may not be worth executing all test cases,
once the first failure has been detected. In many scenarios, as soon as the first failure is
detected, the engineer will want to switch from testing to fixing.

Even if the engineer does not wish to make this switch at the first failure, there may be,
at some subsequent test execution, a failure for which the engineer will want to switch from
testing to fixing: for example, if the engineer expects that the failure is important, or requires
immediate action. Also, if the engineer expects that the fault which causes the currently de-
tected failure will also cause many cascaded downstream failures, then it would be wasteful
to have to wait for regression testing to continue, flagging up all such cascaded errors in the
process.

There are many situations where this switch between testing and fixing may occur, partic-
ularly when many faults have been inserted. In such a situation, regression testing will be

ACM Transactions on Software Engineering and Methodology, Vol. V, No. N, Article A, Pub. date: January YYYY.

A:2 Shin Yoo et al.

most likely an iterative process: executing test cases until the first fault is found and then
switching to fixing this first fault. Once the first fault is fixed, the engineer will switch back to
regression testing until the next fault is found.

Of course, whenever the engineer switches from testing to fixing, the prioritization algo-
rithm that provides automated support must also switch from test case prioritization for fault
revelation to test case prioritization for fault localization. Since the two goals are different,
the order in which the remaining test cases should be executed may also be different.

One approach would be to switch immediately to fault localization, using the set of test
cases executed up to the point at which the failure was observed. In some situations, this may
be all that is required. However, there may be too few test cases for effective fault localiza-
tion, particularly if the first failure is observed early in the process. In this situation testing
will need to continue for a while to provide a sufficiently large pool of test cases for effective
localization. This raises the question that lies at the heart of this paper:

“Having found a fault, what is the best order in which to rank the remaining test
cases to maximize early localization of the fault?”

We call this problem the ‘Fault Localization Prioritization’ (FLP) problem. Existing ap-
proaches to fault localization need to be adapted to prioritize, not just statements (according to
their suspiciousness), but also to prioritize the test cases according to how well they contribute
to early elevation of faulty statement suspiciousness.

We believe that FLP, like many other testing problems, is a naturally information theo-
retic problem. That is, we seek to choose the next test case to be executed to be the test case
that gives the most information about where the fault might lie. Therefore, we also introduce
a novel information theoretic approach called FLINT: Fault Localization using INformation
Theory. FLINT uses Shannon’s Information Theory [Shannon 1948] to define an entropy re-
duction measure for test cases, such that the next test case in an ordering is the one that
maximally reduces fault locality entropy. This makes Shannon’s mathematical theory of infor-
mation a natural choice; one that we formalize, implement and evaluate in this paper.

For the FLP problem, we order statements of the program according to their suspiciousness,
as is common with other work on fault localization. However, we also order test cases according
to their ability to increase the early identification of the suspiciousness of the faulty statement.
In our experiments, we chose to use the widely studied Tarantula suspiciousness metric [Jones
et al. 2002; Jones and Harrold 2005]. However, the choice of suspiciousness measurement
is a parameter to any FLP problem, so one can easily incorporate metrics from other fault
localization work [Cleve and Zeller 2005; Liblit et al. 2005; Renieres and Reiss 2003].

We evaluate our FLINT approach to FLP against three other alternatives. We use a random
ordering as a baseline to see whether any of our orderings has any value compared to an
arbitrary ordering. We also use two ‘more intelligent’ alternatives against which to compare
our FLINT approach.

The first of these more intelligent approaches is to simply continue to order test cases ac-
cording to their coverage, as would be done by the continuation of the TCP approach. It ought
to make sense to continue to try to cover more of the code, particularly should little coverage
have been achieved when the engineer switches from testing to fixing. Surely this would help
with localization? This observation motives a comparison of ‘standard TCP’ with FLINT.

The second alternative against which we compare is based on the similarity between
tests [Artzi et al. 2010]. The intuition behind this approach is that similar tests that have
different pass/fail outcomes help to improve the effectiveness of fault localization, as the sim-
ilarity would maximize the chance that the fault is correlated with the relatively small differ-
ence between tests. This suggests that we might consider prioritizing the remaining test cases

ACM Transactions on Software Engineering and Methodology, Vol. V, No. N, Article A, Pub. date: January YYYY.

FLINT: Fault Localization using Information Theory A:3

according to their similarity to the test case that revealed the fault. We call this the ‘similarity
ordering’.

We report the results of a set of empirical studies of the three techniques’ suitability for FLP
on five different releases of four software systems for which test suites and fault information
are available. We start by evaluating the effect of FLP on the suspiciousness of the faulty
statement. In order to qualify as a suitable method for FLP, a technique must order test cases
so that the faulty statement will attain higher suspiciousness early in the prioritization.

Raising suspiciousness is only a necessary, but not a sufficient property for an FLP method
to be useful. There is an interaction between the suspiciousness metric and the FLP technique
and so the degree to which early suspiciousness elevation ensures efficient fault localization
also needs to be studied empirically. It could be that the faulty statement has an early eleva-
tion of suspiciousness, as desired, but the effect is masked by co-lateral early suspiciousness
elevation of fault-free statements. This can be assessed through an empirical study of the
traditional fault localization cost of the induced prioritizations of statements according to sus-
piciousness. In our empirical study we report results for the elevation of suspiciousness and
the traditional fault localization cost.

Reducing cost (for test cases with known coverage) is also insufficient, on its own, for FLP
to be useful. In order to be useful a candidate FLP technique must reduce traditional fault
localization cost, but it also needs to cope with an ‘information impoverished environment’.
That is, for those test cases already executed at the point we switch from testing to fixing, we
shall have reliable coverage. However, for those that remain to be executed, we shall have to
make do with coverage information available from the previous version of the software.

This information is only partly accurate, because changes to the previous version of the
software that create the current version may also change test case coverage results recorded
for the previous version. We therefore evaluate the performance of the two prioritization ap-
proaches for the ‘test–find–fix’ cycle in which coverage information is only available about
the previous release. We also explore the correlation between good performance of the FLP
techniques on the previous release of the software with their performance at the next release.

We may summarize the primary contributions of the paper as follows:

(1) The paper introduces a problem that we term the ‘Fault Localization Prioritization (FLP)
problem’, which we believe captures the ‘test–find–fix’ cycle that many engineers adopt in
practice.

(2) The paper introduces FLINT, an information theoretic approach to FLP. Shannon entropy
provides a quantitative theoretical foundation on which to build a new approach to fault
localization in which both statements and test cases are prioritized. Statements are or-
dered by suspiciousness, while test cases are ordered by the degree to which they reduce
the entropy inherent in fault localization.

(3) The paper presents the results of an empirical study that demonstrates that both our FLP
approaches outperform arbitrary ordering, making them sensible FLP candidate tech-
niques. Our study also reveals that information theoretic ordering outperforms the two
more intelligent orderings: coverage-based TCP and similarity ordering.

(4) The paper presents results from a further empirical study that provides evidence to sup-
port the claim that information theoretic ordering copes well with imperfect, partial and
noisy information. This makes the approach applicable after code changes have degraded
existing test coverage information. Traditional test case prioritization based on coverage
also performs well in this information impoverished environment, though less well than
FLINT.

(5) The paper presents empirical evidence to support the claim that the engineer can use past
performance as a guide to determine which FLP technique to use.

ACM Transactions on Software Engineering and Methodology, Vol. V, No. N, Article A, Pub. date: January YYYY.

A:4 Shin Yoo et al.

The rest of the paper is organized as follows: Section 2 explains the underlying concepts
of the suspiciousness metric and test case prioritization as well as presenting a motivating
example for FLINT. Section 3 presents the theoretical foundation for the FLINT approach
and sets out the research questions. Section 4 describes the algorithms for FLINT. Section 5
discusses the experimental setup of the empirical study, the results of which are analyzed in
Section 6. Section 7 discusses threats to validity. Section 8 presents related work and Section 9
concludes.

2. BACKGROUND
2.1. Test Case Prioritization
Test case prioritization concerns the ordering of test cases for early maximization of some
desirable properties, such as the rate of fault detection [Yoo and Harman 2012]. It seeks
to find the optimal permutation of the sequence of test cases with respect to a property. It
does not involve selection of the test cases, and assumes that the set of test cases may be
executed in the order of the permutation it produces, but that testing may be terminated at
some arbitrary point during the testing process. More formally, the prioritization problem is
defined as follows:

DEFINITION 1. The Test Case Prioritization Problem

Given: a test suite, T , the set of all permutations of T , PT , and a function from PT to real
numbers, f : PT → R.

Problem: to find T ′ ∈ PT such that (∀T ′′)(T ′′ ∈ PT)(T ′′ 6= T ′)[f(T ′) ≥ f(T ′′)].

The ideal choice of the priority function, f , would be one that would result in an ordering of
tests with the maximum rate of fault detection. Since this information is unavailable before
the testing is finished, various surrogates including code coverage [Elbaum et al. 2000; Rother-
mel et al. 2001], test execution history [Kim and Porter 2002] and expert knowledge [Tonella
et al. 2006; Yoo et al. 2009] have been studied.

2.2. Fault Localization Metrics
Fault location techniques aim to reduce the cost of debugging by automating the process of
searching for the location of the fault in the program. A widely studied approach to fault
localization is to assign to each structural element in the program a suspiciousness value
that corresponds to the relative likelihood of the element containing the fault [Liblit et al.
2005; Jones and Harrold 2005; Abreu et al. 2007]. For example, the Tarantula suspiciousness
metric [Jones and Harrold 2005] for a statement s in a program is calculated as follows:

Tarantula metric τ(s) =

fail(s)
totalfail

pass(s)
totalpass + fail(s)

totalfail

(1)

In Equation 1, fail(s) and pass(s) represent the number of times the statement s was exe-
cuted by failing and passing tests, respectively, whereas totalfail and totalpass represent the
number of failing and passing tests.

The highest possible value for τ is 1 and the lowest is 0. If a statement s is executed by all
tests, at least one of which fails, it gets assigned τ = 0.5. A statement s′ gets assigned τ = 1
if and only if all failing tests and none of the passing tests executes s′. However, it is possible

ACM Transactions on Software Engineering and Methodology, Vol. V, No. N, Article A, Pub. date: January YYYY.

FLINT: Fault Localization using Information Theory A:5

that some statements other than the faulty statement get a higher τ value than s′. Suppose
that s′ causes a failure only for certain input values, whereas an error handling routine s′′ is
executed whenever s′ fails: s′′ will get assigned τ = 1, whereas s′ might get assigned τ less
than 1 depending on the test input.

Table I. Motivating Example: coverage-based prioritization would execute
t3 after the first failure (t2), resulting in sub-optimal suspiciousness metric
values. However, if t4 is executed after the first failure, the faulty s7 will get
assigned the optimal suspiciousness value.

Structural Test Test Test Tarantula Test Tarantula
Elements t1 t2 t3 Metric(τ) t4 Metric(τ)
s1 • • 0.00 0.00
s2 • • 0.00 0.00
s3 • • 0.00 0.00
s4 • 0.00 0.00
s5 • • 0.00 0.00
s6 • 1.00 • 1.00
s7 (faulty) • • 0.67 • 1.00
s8 • 1.00 • 1.00
s9 • • 0.67 • 0.50
Result P F P - F -

2.3. Prioritizing for Fault Localization
Existing work on fault localization treated the calculation of suspiciousness metrics as a post
hoc procedure. That is, fault localization was attempted only after the entire test suite was
executed. However, this contradicts the assumptions behind test case prioritization, i.e. that
there may not be enough time to execute the entire test suite.

Suppose that the tester encounters a failing test while executing a test suite prioritized for
maximum fault detection capability. We argue that, after the initial failure, different tests
contribute different amounts of information regarding the location of the faulty structural
element. It follows that, after the initial failure, the tester should choose a test that would
provide the most information as the next test case whenever possible, followed by other tests
in the order of a decreasing amount of information provided.

Consider the motivating example in Table I. Test t1 to t4 is prioritized based on the struc-
tural coverage following the additional approach with resets [Elbaum et al. 2000]. The dots (•)
show the coverage relation: for example, structural element s1 is covered by test t1 and t3. The
prioritized test suite detects the first fault with t2, which covers the faulty element s7. Sup-
pose that there is only time to execute one additional test: the next two columns show what
the final suspiciousness metric would look like if t3 or t4 is chosen to be executed. According to
the coverage-based prioritization, the next test is t3 and the faulty element will get assigned
the suspiciousness of 0.67. However, this is misleading as s6 and s8 are assigned with higher
suspiciousness values. On the other hand, if t4 is executed, the faulty element is assigned the
suspiciousness of 1.0 along with other elements, which would be a more precise result. This
shows that the choice of the next test case can affect the accuracy of the suspiciousness metric
if the testing is terminated at an arbitrary point.

In reality, it is impossible to predict whether a test would pass or fail. Therefore, it is also
impossible to make the ideal choice for fault location. However, it is possible to formulate a
probabilistic approximation that can be used as a surrogate, much in the same way as test
case prioritization techniques use structural coverage as a surrogate for the measure of fault
detection capability. We turn to Information Theory for this probabilistic approximation.

ACM Transactions on Software Engineering and Methodology, Vol. V, No. N, Article A, Pub. date: January YYYY.

A:6 Shin Yoo et al.

3. FAULT LOCALITY & ENTROPY
This section presents the formulation of fault localization as an entropy reduction process and
outlines the research questions.

3.1. Problem Formulation
3.1.1. Assumptions & Basic Notations. Let S = {s1, . . . , sm} be the set of structural elements in

the System Under Test (SUT); let T = {t1, . . . , tn} be the test suite with n tests. A single ele-
ment in S contains the fault. Let C : T → 2S be the mapping from tests to executed structural
elements, i.e.:

C(t) = {s ∈ S|t covers s when executed}
Finally, let F (t) be a boolean statement that says test t has failed. Similarly, let B(s) be a

boolean statement that says structural element s contains a fault and P be the mapping from
events to probabilities. We will make the following assumptions for our approximation:

(1) The results from all tests in T are deterministic, i.e. ∀t ∈ T : F (t) ∨ ¬F (t).
(2) The suspiciousness metric is competent and does reflect the likelihood of faultiness, i.e.

P(B(s)) ∼ τ(s).
(3) The mapping between tests and structural elements, C, is known (we relax this assump-

tion in Section 6.2).

The first assumption underpins most existing work for software testing. The second as-
sumption states that the suspiciousness metric we use will work as expected, i.e. higher sus-
piciousness of si ∈ S means a higher chance of si being faulty. This assumption is supported
by empirical evidence in the existing work [Jones and Harrold 2005; Abreu et al. 2007], the
findings of which the paper replicates. It is important to acknowledge that our approach will
only amplify the suspiciousness metric that is used for the parametric τ : the better the sus-
piciousness metric is at localising faults, the better our approach will be at maximising early
fault localization. Regarding the third assumption, the empirical study in the paper considers
both the case when it holds and the case when it does not. The assumption about the knowl-
edge of coverage information may not be realistic in certain cases. However, when the exact
information C is not known, it is possible to approximate C with information from the testing
of the previous version, similar to the way in which test case prioritization techniques use the
coverage information from the previous version.

Now we describe the situation in which the ith test fails during testing. Without losing
generality, let Ti−1 be the set of the first i−1 tests, {t1, . . . , ti−1}, that have passed; let ti be the
first failing test. For the sake of brevity, let TPi and TFi be the total number of passing/failing
tests, respectively, after executing the tests in Ti. Similarly, let CPi(sj) and CFi(sj) be the
number of times sj has been covered by passing/failing tests, respectively, after executing the
tests in Ti.

3.1.2. Entropy of Fault Locality. Given a set of tests at least one of which fails, it is possible to
calculate the suspiciousness of each statement based on the tests executed up to and including
the first test that has failed. Given a set of tests Ti = Ti−1 ∪ {ti}, let τ(s|Ti) denote the suspi-
ciousness of s calculated using the tests in Ti. Based on the Assumption 2, the approximated
probability that statement sj contains the fault, based on the information observed with Ti, is
calculated as the normalized suspiciousness metric for sj :

PTi(B(sj)) =
τ(sj |Ti)∑m
j=1 τ(sj |Ti)

(2)

ACM Transactions on Software Engineering and Methodology, Vol. V, No. N, Article A, Pub. date: January YYYY.

FLINT: Fault Localization using Information Theory A:7

The normalization is required to convert the set of suspiciousness metric values into a prob-
ability distribution. Using this, Shannon’s entropy regarding the locality of the fault can now
be defined as follows:

HTi(S) = −
m∑
j=1

PTi(B(sj)) · logPTi(B(sj)) (3)

Ideally, fault localization is complete when we add sufficient tests so as to arrive at some
TN with HTN

= 0: the probability P(B(s′)) will be 1 for the faulty statement s′ and 0 for the
remaining statements. Our aim is to minimize HTN

as much as possible. This means not only
increasing the suspiciousness of the faulty statement, but also decreasing the suspiciousness
of the non-faulty statements.

When locating a fault that can be detected deterministically (Assumption 1), it should be
noted that the entropy of fault locality, calculated following Equation 3, is identical for the
same set of tests, i.e. T = T ′ → HT (S) = HT ′(S). That is, the same set of tests yields the same
amount of information regarding the locality of the fault. The aim of FLINT is not, and cannot
be, to increase the amount of information; rather, it is to order tests so that the maximum
information is extracted as early as possible. It follows that the next test to execute, ti+1,
should be the one that yields the smallest HTi+1(S).

3.1.3. Entropy Lookahead. To estimate HTi+1
(S) on the basis of what we know so far,

PTi+1
(B(sj)) needs to be approximated. Since it is not possible to predict whether ti+1 will

pass or fail, we use conditional probability to express both cases, based on the law of total
probability, as follows:

PTi+1
(B(sj)) = PTi+1

(B(sj)|F (ti+1)) · α+

PTi+1(B(sj)|¬F (ti+1)) · (1− α)

(4)

where α is the probability of ti+1 failing. The conditional probabilities PTi+1(B(sj)|F (ti+1))
and PTi+1(B(sj)|¬F (ti+1)) can be calculated using the Tarantula metric and Equation 2: we
simply consider two separate cases (ti+1 passes or fails) and calculate the lookahead suspi-
ciousness metric accordingly.

The remaining term, α, is the probability that the (i + 1)th test fails, i.e., PTi+1
(F (ti+1)).

Instead of using an arbitrarily fixed value, we use the observed feedback from the execution
of tests in Ti as follows:

α = PTi+1(F (ti+1)) ≈ TFi

TPi + TFi
(5)

1− α = PTi+1
(¬F (ti+1)) ≈ TPi

TPi + TFi
(6)

Using the lookahead suspiciousness, Equations 5 and 6, it is possible to estimate Equation 4,
i.e. the lookahead probability of each statement containing the fault. Once normalized, the
lookahead probability distribution enables the calculation of the lookahead entropy that is
expected from the execution of each candidate test case for ti+1. For faster fault localization
after the detection of the first failing test, the tester should select the next test case that is
expected to yield the lowest entropy by the approximation.

ACM Transactions on Software Engineering and Methodology, Vol. V, No. N, Article A, Pub. date: January YYYY.

A:8 Shin Yoo et al.

It is important to note that, while we evaluate FLINT with the Tarantula metric in the
paper, the entropy lookahead described in this Section is independent of the suspiciousness
metric. The better the fault localization metric is, the more effective FLINT becomes.

Table II. Working Example: calculation of lookahead entropy with the test example shown in Section 2.2

Structural Test Test Test τ τ Lookahead Test τ τ Lookahead
Elements t1 t2 t3 if ¬F (t3) if F (t3) P (B(sj)) t4 if ¬F (t4) if F (t4) P (B(sj))
s1 • • 0.00 0.33 0.04 0.00 0.00 0.00
s2 • • 0.00 0.33 0.04 0.00 0.00 0.00
s3 • • 0.00 0.33 0.04 0.00 0.00 0.00
s4 • 0.00 0.00 0.00 0.00 0.00 0.00
s5 • • 0.00 0.33 0.19 0.00 0.00 0.13
s6 • 1.00 1.00 0.21 • 0.67 1.00 0.28
s7 (faulty) • • 0.67 1.00 0.26 • 0.67 1.00 0.28
s8 • 1.00 1.00 0.21 • 0.67 1.00 0.24
s9 • • 0.67 0.33 0.54 • 0.50 0.50 0.57

Result P F P F H=0.87 P F H=0.71

3.2. A Working Example
Let us revisit the example test scenario in Section 2.2. The first failure is detected by t2, after
which the tester has to determine the next test to execute between t3 and t4. Table II explains
the detailed steps of entropy lookahead. Column 4 and 8 show the coverage information of
t3 and t4 respectively. With the coverage information and specific assumptions about the test
results, it is possible to calculate the lookahead Tarantula metric. For example, assuming t3
passes, the lookahead Tarantula metric value for s9 is:

τ(s9) =

fail(s9)
totalfail

pass(s9)
totalpass + fail(s9)

totalfail

=
1
1

1
2 + 1

1

=
2

3

Column 5 and 6 contain Tarantula metric values while assuming t3 passes (i.e. ¬F (t3)) and
fails (i.e. F (t3)) respectively. Similarly, column 9 and 10 contain Tarantula metric values while
assuming t4 passes and fails. Normalizing these values results in a probability distribution of
P (B(s)|¬F (t)) and P (B(s)|F (t)).

After executing t1 and t2, we approximate the probability of the next test failing to be 0.5,
since TF

TP+TF = 1
1+1 . Now we use Equation 4 to combine pass and fail cases. For example, with

t3, the lookahead probability pf s9 containing the fault is calculated as follows:

P(B(s9)) = P(B(s9)|¬F (tf)) ·P(¬F (tf)) + P(B(s9)|F (tf)) ·P(F (tf))

= 0.67 ∗ 0.5 + 0.33 ∗ 0.5 = 0.54

(7)

Finally, combining the lookahead probability distribution with Equation 3, we can calculate
the lookahead entropy for t3 and t4, which are 0.87 and 0.71 respectively. Since t4 produces a
lower lookahead entropy value, FLINT will advise the tester to execute t4 before t3.

3.3. Multiple Faults
Section 3.1 assumed that we are locating a single fault. Ideally, if the suspiciousness metric
that is plugged into the fault locality entropy can deal with multiple faults, FLINT will be able
to cope with localizing multiple faults. For this, the ideal suspiciousness metric would have to

ACM Transactions on Software Engineering and Methodology, Vol. V, No. N, Article A, Pub. date: January YYYY.

FLINT: Fault Localization using Information Theory A:9

produce high values for all the structural elements that contain the fault and low values for
everything else. In reality, the structure of the program, coupled with the locations of multiple
faults, is likely to confound fault localization metrics.

However, it is not unrealistic to expect the tester to benefit from FLINT even when there
exist multiple faults. For certain classes of programs and faults, we conjecture that the tester
would be able to connect different failures to corresponding faults. If the tester can act as a
filter of failure information, it is possible to utilize FLINT to target multiple faults one by one.

3.4. Research Questions
The first set of empirical studies concerns the case when C, i.e. the coverage information
for each test, is known. This corresponds to the use case in which the tester wants to use
FLINT for posteriori debugging, i.e. seeking guidance for debugging by ranking tests after
executing all the tests in the order of the amount of information they reveal regarding the
locality of the fault. We will refer to this study as the “Precision” study because it utilizes the
precise coverage information.

RQ1. Suspiciousness: Does FLINT increase the suspiciousness of the faulty statement
during testing? If so, by how much?

RQ2. Expense: If FLINT successfully increases the suspiciousness of the faulty statement,
does this result in a reduction in Expense metric, i.e. the percentage of statements to be
inspected before the tester encounters the faulty statement?

RQ1 is answered by observing the suspiciousness metric of the faulty statement during the
execution of the test suite in two different orders: coverage-based prioritization and entropy-
based prioritization. RQ2 is answered by analyzing the percentage of the number of state-
ments that the tester has to investigate, following the suspiciousness ranking, until the faulty
statement is encountered.

The second set of empirical studies considers the case when the coverage relation between
tests and statements is not known and, therefore, has to be replaced by the coverage infor-
mation from the previous version. This corresponds to the use case when the tester wants to
use FLINT for the actual execution of tests, not posteriori debugging. We will refer to this
study as the “Robustness” study because it investigates how robust FLINT is when coverage
information is not precise.

RQ3. Robustness: Does the use of coverage information from the previous version affect the
effectiveness of FLINT? If so, by how much?

RQ4. Correlation: Is there any correlation between the results obtained using outdated and
current coverage information?

RQ3 is answered by observing the suspiciousness and Expense metric while applying
FLINT with coverage information from previous versions. RQ4 is answered by analyzing the
statistical correlation between results obtained using outdated coverage (i.e. using coverage
from version n − 1 to prioritize version n) and current coverage (i.e. using coverage from ver-
sion n to prioritize version n) for the same subject and the same fault. If there is a positive
correlation, the tester can decide whether to use FLINT in version n based on the performance
of FLINT measured using the coverage and faults information from version n− 1.

ACM Transactions on Software Engineering and Methodology, Vol. V, No. N, Article A, Pub. date: January YYYY.

A:10 Shin Yoo et al.

Algorithm 1: Entropy Lookahead
EL(t)
Input: A candidate test, t
Output: Lookahead entropy, H
(1) foreach sj ∈ S
(2) cp ← CPi(sj)
(3) if sj ∈ C(t) then cp ← cp + 1
(4) τp,j ←TARANTULA(TPi + 1, TFi, cp, CFi(sj))
(5) cf ← CFi(sj)
(6) if sj ∈ C(t) then cf ← cf + 1
(7) τf,j ←TARANTULA(TPi, TFi + 1, CPi(sj), cf)
(8) P ← {pj = 0|1 ≤ j ≤ m}
(9) Psum ← 0
(10) foreach sj ∈ S
(11) pj ← TFi

TPi+TFi
· τf,j∑m

j=1 τf,j
+ TPi
TPi+TFi

· τp,j∑m
j=1 τp,j

(12) Psum ← Psum + pj
(13) H ←

∑
pj∈P −

pj
Psum

· log
pj

Psum

(14) return H

Algorithm 2: FLINT
FLINT(T)
(1) G← {}
(2) while |G| < |T |
(3) t← NEXTTCPORDER(index)
(4) Execute t and update TPi, TFi, CPi

and CFi

(5) G← G ∪ {t}
(6) if t fails then break
(7) R← T −G
(8) while |R| > 0
(9) Pick t ∈ R s.t. ∀(t′ ∈ R)(t′ 6= t)(EL(t) ≤

EL(t′))
(10) Execute t and update TPi, TFi, CPi

and CFi

(11) R← R− {t}

4. ALGORITHMS
4.1. Entropy Lookahead Algorithm
To keep the pseudo-code concise, let us assume that the counter functions described in Sec-
tion 3.1, TP, TF,CPi, CFi : S → N, as well as the coverage relation, C, remain available
throughout Algorithm 1 and 2. The variable i denotes, whenever present, that the algorithm
is seeking to find the i-th test to execute.

Algorithm 1 presents the lookahead algorithm for entropy. The loop in Line (1) calculates
the lookahead suspiciousness for each statement, sj : Lines from (2) to (4) calculate τp,j , i.e.
the lookahead suspiciousness of sj for the case when that test t executes sj (i.e. sj ∈ C(t)) and
passes (hence the increase of cp, pass counter, by 1). Similarly, Lines from (5) to (7) calculate
τf,j for the case when test t executes sj (i.e. sj ∈ C(t)) and passes (hence the increase of cf ,
failure counter, by 1). Both cases use Equation 1 to calculate the lookahead suspiciousness val-
ues. Line (11) combines passing and failing lookahead cases using the conditional probability
defined in Equation 4 in Section 3.1.3, while Line (12) calculates the sum of all probabilities.
Line (13) calculates the lookahead entropy using the result from Line (12) to normalize the
probability distribution.

4.2. FLINT Algorithm
Algorithm 2 illustrates the top-level algorithm for FLINT. We assume the test suite T is al-
ready prioritized using the additional TCP approach [Elbaum et al. 2000]: NEXTTCPORDER()
is an iterator over the prioritized test suite. The loop in Line (2) follows the TCP ordering un-
til the first failure is encountered. Once the failure is detected, it is possible to calculate the
lookahead entropy following Algorithm 1. The loop in Line (8) chooses the next test t such that
the lookahead entropy of t is lower than any other choice. FLINT repeats this until all tests
are prioritized.

The computational complexity of the FLINT algorithm depends on the number of tests in
the test suite and the number of statements in SUT. For a test suite with n tests, Algorithm 1,
the entropy lookahead, requires O(n). For a SUT with m statements, Algorithm 2 needs to
invoke EL(t) m times. Therefore, the overall computational complexity of FLINT is O(mn).

ACM Transactions on Software Engineering and Methodology, Vol. V, No. N, Article A, Pub. date: January YYYY.

FLINT: Fault Localization using Information Theory A:11

5. EXPERIMENTAL SETUP
5.1. Subjects
Table III lists the subject programs studied in the paper. All four Unix utility programs are
obtained from Software Infrastructure Repository (SIR) [Do et al. 2005] along with their test
suites: flex is a lexical analyzer, grep is a text-search utility, gzip is a compression utility and
sed is a stream text editor. We consider five consecutive versions for each program. Table IV
presents the quantity of changes, measured in terms of the numbers of insertions and dele-
tions in the source code, between consecutive versions. This was measured using the standard
diff tool, with options to ignore white space and blank lines and to minimize the number of
changes.

Since SIR only contains the fault matrices, statement coverage information was collected
using the widely used GNU profiler, gcov. The number of executable lines in Table III is
produced by gcov version 4.3.2 running on Linux version 2.6.27. Both the coverage-based test
case prioritization and FLINT have been performed using only the executable lines.

For each subject program, we selected a test suite that can be applied across all five versions.
This is to ensure that, when FLINT is being applied to version n of the program, there exists
matching coverage data for each test from version n − 1. However, test suites for versions 4
and 5 of sed were completely re-written from those for the previous versions and, therefore,
could not be used as part of the robustness study.

Table III. Subject Programs from SIR

Subject # of Tests Lines of Code Executable Lines

flex 567 12,407–14,244 3,393–3,965
grep 199 12,653–13,363 3,078–3,314
gzip 214 6,576– 7,996 1,705–1,993
sed 360 8,082–11,990 1,923–2,172

Table IV. Insertions/Deletions in Source Code between Versions

Subject V1→V2 V2→V3 V3→V4 V4→V5

flex 3,758/1,891 881/834 204/121 234/248
grep 1,196/621 2,376/2,232 2,310/2,324 9/76
gzip 820/196 196/140 2581/2517 1139/467
sed 7,321/3,406 7,603/9.543 47/92 4,004/7,343

5.2. Faults & Versions
SIR provides a total of 219 (both real and seeded) faults across the five versions of the four sub-
ject programs [Do et al. 2005]. Out of 219 faults, 35 were excluded because these faults were
unreachable in the compiled binary for the experimental environment. Out of the remaining
184 faults, another 92 were excluded because they were not detected by any test from the cho-
sen test suites. The paper thus considers the remaining 92 faults, which are listed in Table V.

Table V. Number of studied faults

Subject V1 V2 V3 V4 V5

flex 15 14 7 9 2
grep 2 1 5 3 0
gzip 7 3 0 3 5
sed 0 5 6 1 4

ACM Transactions on Software Engineering and Methodology, Vol. V, No. N, Article A, Pub. date: January YYYY.

A:12 Shin Yoo et al.

The robustness study uses versions from 2 to 5 of subject programs, because it requires
coverage information from the previous version. Therefore, the robustness study considers
only 63 faults.

5.3. Evaluation
We compare both the FLINT approach and traditional Test Case Prioritization (TCP, here-
after) with random orderings of tests to assess the effectiveness of each for early fault local-
ization. For each pair of subject programs and available faults, we have evaluated 30 random
orderings and measured the average effort required for fault localization.

The precision study utilizes both TCP and FLINT using the coverage information of the
current version, whereas the robustness study depends on the coverage information from the
previous version.

The research question RQ2 concerns a widely-studied metric that measures the effective-
ness of fault localization, Expense [Renieres and Reiss 2003], which is defined as follows:

Expense =
rank of faulty statement

of executable statements
· 100

The numerator is the rank of the faulty statement when sorted according to the suspicious-
ness metric: the rank assigned to tied statements are equal to the sum of the number of the
tied statements and the number of statements ranked before them [Yu et al. 2008; Renieres
and Reiss 2003]. The Expense metric represents the percentage of the source code the tester
must investigate before the faulty statement will be encountered. Intuitively, higher suspi-
ciousness for the faulty statement should result in a lower Expense metric. However, for the
reasons discussed in Section 2.2, the suspiciousness metric and the Expense metric may not
always agree with each other.

The Tarantula metric was originally developed as a visualization for fault localization and
contained two components: hue and brightness [Jones et al. 2001]. We use the hue component
as suspiciousness metric following other work [Abreu et al. 2007; Yu et al. 2008], reserving
brightness as a mean of discriminating when hue gives a tied suspiciousness of two or more
statements1.

We execute the test suite following Random ordering, TCP ordering and FLINT ordering.
The TCP ordering is obtained using the additional approach with resets [Elbaum et al. 2000].
After executing each test for each ordering, we calculate the suspiciousness of the faulty state-
ment and the corresponding Expense metric, thus providing a time-series of both metrics for
each ordering.

The improvement in suspiciousness is observed by measuring the increment in suspicious-
ness achieved by FLINT and TCP over Random; the improvement in Expense is observed
by measuring the reduction in Expense achieved by FLINT and TCP over Random ordering.
Finally, we compare the Expense reduction of FLINT and TCP to each other. We report the
comparison of mean values and the results of the statistical hypothesis tests.

By definition, FLINT, TCP and Random all produce the same suspiciousness metric value
for all statements and, therefore, the same Expense value after the entire test suite has been
executed. However, our interest lies in the case when the testing is terminated at an arbitrary
point in time. Since there is no set point at which we can announce the fault has been localized,
it is not possible to calculate the specific number of tests required to localize a fault. Rather,
the aim of prioritizing tests for fault localization is to ensure the cost of fault localization
is as low as possible even if the testing is terminated prematurely. To measure the benefit
of FLP techniques, we calculate the mean suspiciousness and the mean Expense reduction

1This use of brightness as a tie-breaker was suggested by one of the anonymous referees.

ACM Transactions on Software Engineering and Methodology, Vol. V, No. N, Article A, Pub. date: January YYYY.

FLINT: Fault Localization using Information Theory A:13

Table VI. Summary of results from Precision Study

Subject Ver. τ̄R τ̄T τ̄F ¯∆ETR ¯∆EFR ¯∆EFT

flex 1 0.80 0.81 0.83 0.64 1.53 0.90
flex 2 0.79 0.88 0.88 5.08 7.29 2.22
flex 3 0.77 0.86 0.86 5.53 5.79 0.26
flex 4 0.87 0.87 0.90 -1.24 0.74 1.99
flex 5 0.96 0.94 0.95 -6.99 -1.46 5.53

grep 1 0.88 0.90 0.95 1.04 1.18 0.14
grep 2 0.67 0.66 0.83 1.91 4.88 2.98
grep 3 0.65 0.76 0.83 6.81 10.64 3.83
grep 4 0.93 0.87 0.84 -1.07 -2.33 -1.26

gzip 1 0.71 0.85 0.86 11.90 11.56 -0.35
gzip 2 0.73 0.75 0.72 0.27 0.75 0.48
gzip 4 0.65 0.98 0.97 32.42 32.30 -0.12
gzip 5 0.69 0.89 0.91 15.97 14.90 -1.06

sed 2 0.75 0.78 0.76 0.37 1.33 0.96
sed 3 0.89 0.96 0.97 6.81 6.67 -0.14
sed 4 0.59 0.94 0.94 35.28 35.28 0.00
sed 5 0.91 0.95 0.95 3.57 3.42 -0.15

from n observations made after executing 1, 2, . . . n tests. The mean values represent the
suspiciousness and the Expense reduction that can be expected by the tester if the testing
is terminated at an arbitrary point. We also apply statistical hypothesis test to the set of n
observations and categorize the results into the following:

— Positive with Significance (PS): the technique shows statistically significant improve-
ment over the random ordering.

— Positive with No significance (PN): the mean value of the metric does show improvement,
but without statistical significance.

— Equal(EQ): the technique performs as well as the random ordering.
— Negative with No significance (NN): the mean value of the metric does show degenera-

tion, but without statistical significance.
— Negative with Significance (NS): the technique shows statistically significant degenera-

tion compared to the random ordering.

Category EQ is possible when, for example, the faulty statement is detected by the first test
and its suspiciousness remains 1.0 throughout the testing, regardless of the ordering of tests:
any ordering produced by TCP or FLINT will always result in the same suspiciousness values.

6. RESULTS
6.1. Precision Study
Table VI contains the results from the precision study as well as the statistical analysis. The
statistical details for each individual fault can be found in Table XII in the Appendix. Columns
τ̄R, τ̄T and τ̄F contain the mean suspiciousness of the faulty statement, over the entire test
suite, by Random, TCP and FLINT respectively. Columns ¯∆ETR and ¯∆EFR contain the mean
reductions in the Expense metric achieved by TCP and FLINT over Random respectively.

¯∆EFT is the mean reduction in the Expense metric achieved by FLINT over TCP.
For FLINT to produce more effective fault localization, it should provide the tester with

higher suspiciousness and lower Expense metric for the faulty statement. This is analyzed
using the Mann-Whitney ‘U’ test. The Mann-Whitney ‘U’ test is a non-parametric statisti-
cal hypothesis test, i.e. it allows the comparison of two samples with unknown distributions.
Columns H1, H2 and H3 contain the result classifications of the Mann-Whitney ‘U’ test for the

ACM Transactions on Software Engineering and Methodology, Vol. V, No. N, Article A, Pub. date: January YYYY.

A:14 Shin Yoo et al.

grep, v3, F_KP_3

0.
5

1.
0

S
us

pi
ci

ou
sn

es
s

FLINT
TCP
Random

0 20 40 60 80 100

Percentage of Executed Tests

−
20

−
10

0
10

E
xp

en
se

 R
ed

uc
tio

n

Exp. Reduction FLINT
Exp. Reduction Greedy

(a)

flex, v5, F_JR_2

1.
0

S
us

pi
ci

ou
sn

es
s

FLINT
TCP
Random

0 20 40 60 80 100

Percentage of Executed Tests

−
20

−
10

0
10

E
xp

en
se

 R
ed

uc
tio

n

Exp. Reduction FLINT
Exp. Reduction Greedy

(b)

flex, v1, F_JR_2

0.
5

1.
0

S
us

pi
ci

ou
sn

es
s

FLINT
TCP
Random

0 20 40 60 80 100

Percentage of Executed Tests

−
40

−
20

0
10

E
xp

en
se

 R
ed

uc
tio

n

Exp. Reduction FLINT
Exp. Reduction Greedy

(c)

gzip, v5, F_TW_1

0.
5

1.
0

S
us

pi
ci

ou
sn

es
s

FLINT
TCP
Random

0 20 40 60 80 100

Percentage of Executed Tests

−
10

−
5

0
5

E
xp

en
se

 R
ed

uc
tio

n

Exp. Reduction FLINT
Exp. Reduction Greedy

(d)

Fig. 1. Plots of suspiciousness and Expense reduction from the precision study. Figure 1(a) represents the cases
when the FLINT approach produces higher suspiciousness and lower Expense. Figure 1(b) and 1(c) represent the
cases when the reduction in entropy achieved by FLINT results in reduced Expense, even though the suspiciousness
value of the faulty statement is largely equal to that of TCP (Figure 1(b)) or even lower (Figure 1(c)). However, in
Figure 1(d), the suspiciousness metric is not in alignment with Expense: the increased suspiciousness metric resulted
in higher Expense.

Expense metric. The null hypothesis for all three hypothesis tests is that there is no difference
in the mean values between the compared approaches. For H1, the alternative hypothesis is
that TCP produces a lower mean Expense than Random does (ĒT < ĒR); for H2, the alterna-
tive hypothesis is that FLINT produces a lower mean Expense than Random does (ĒF < ĒR).
Similarly, for H3, the alternative hypothesis is that FLINT produces a lower mean Expense
than TCP does (ĒF < ĒT). The confidence level is 95%2.

2Given a test suite with n tests, our ‘sample’ for Mann-Whitney ‘U’ test is n comparisons of Expense between two per-
mutations of the test suite. If we limit our scope to a pair of permutations, our ‘sample’ is in fact the entire population

ACM Transactions on Software Engineering and Methodology, Vol. V, No. N, Article A, Pub. date: January YYYY.

FLINT: Fault Localization using Information Theory A:15

Table VII contains the classification of the statistical hypothesis testing for the precision
study. Both TCP and FLINT produce a lower mean Expense metric for more than 70% of the
faults. However, Random also produces a lower mean Expense metric than both approaches
for more than 25%. Considering the existing evidence that test case prioritization is effective
for early fault detection, the results suggest that prioritization of test cases for early fault
localization may be an entirely different task from prioritization for early fault detection.

The results for H3 in Table VII also suggest that FLINT performs equally well or better
than TCP for about 54% of the studied faults. Considering that each fault is unique not only
in its own characteristics but also in its interaction with the structure of the SUT and the
test suite, assessing the risk of applying FLINT to faults for which TCP does better may not
be obvious. However, the robustness study in Section 6.2 provides a potential way forward in
deciding whether or not to apply FLINT or TCP.

Figure 1 provides a more detailed explanation with exemplar cases. The upper panes of
each of its 4 subfigures show how the suspiciousness metric for the faulty statement changes
during the execution of tests, following the orders from Random, TCP and FLINT. The lower
panes show the reductions in Expense (∆ETR and ∆EFR).

Figure 1(a) shows a case when both TCP and FLINT produce mean Expense values that
belong to a PS category. FLINT produces higher suspiciousness than the other two approaches
during most of the duration of the testing, which results in reductions in Expense.

Figure 1(b) and 1(c) represent two interesting cases. Reduction in Expense is achieved de-
spite the fact that the suspiciousness metric for the faulty statement from FLINT either re-
mains identical to that of TCP at 1.0 (Figure 1(b)), or even becomes lower (Figure 1(c)). These
results are achieved because choosing a test that produces the lowest entropy may not only
increase the suspiciousness of the faulty statement but also lower the suspiciousness of the
non-faulty statements (Section 3.1.2).

However, the results also show that an increment of the suspiciousness metric may not
always result in a reduction in Expense, as discussed in Section 2.2 and Section 5.3. In Fig-
ure 1(d), although FLINT achieves a higher suspiciousness metric for the fault F TW 1 for
version 5 of gzip than other approaches, it fails to make reductions in Expense. This provides
evidence that a higher suspiciousness value for the faulty statement may not always result in
a lower Expense for locating it.

Table VII. Hypothesis Test for Precision Study

Hypothesis PS PN EQ NN NS

H1 : ĒT < ĒR 72.83% 0.00% 0.00% 0.00% 27.17%
H2 : ĒF < ĒR 76.09% 1.09% 0.00% 1.09% 21.74%
H3 : ĒF < ĒT 40.22% 4.35% 9.78% 3.26% 42.39%

To answer RQ1, Table VI and XII provide evidence that FLINT achieves a higher sus-
piciousness for the faulty statement during the execution of the test suite for many of the
studied faults. More importantly, the increased suspiciousness leads to reductions in Expense
in many cases, which provides the answer to RQ2: FLINT reduces the Expense metric with
statistical significance for 76% of the studied faults when compared to Random ordering. The
cases presented in Figure 1 show that the reduction in Expense is possible, even when in-
creasing the suspiciousness of the faulty statement is not possible.

(i.e., all possible comparisons between two permutations), which would eliminate the necessity of statistical testing.
However, our comparison is, in a way, still a sample from all possible permutations, which is the reason why we still
rely on the statistical test.

ACM Transactions on Software Engineering and Methodology, Vol. V, No. N, Article A, Pub. date: January YYYY.

A:16 Shin Yoo et al.

Table VIII. Summary of results from Robustness Study

Subject Ver. τ̄R τ̄T τ̄F ¯∆ETR ¯∆EFR ¯∆EFT

flex 2 0.79 0.87 0.88 4.79 5.95 1.16
flex 3 0.77 0.86 0.86 5.53 5.79 0.26
flex 4 0.87 0.87 0.90 -1.24 0.93 2.18
flex 5 0.96 0.94 0.95 -6.99 -1.48 5.51

grep 2 0.67 0.66 0.83 -3.35 4.90 8.25
grep 3 0.65 0.76 0.83 6.69 11.09 4.41
grep 4 0.93 0.93 0.90 1.88 0.62 -1.25

gzip 2 0.73 0.76 0.70 0.81 1.08 0.27
gzip 4 0.65 0.98 0.97 32.43 32.31 -0.12
gzip 5 0.69 0.89 0.86 16.32 15.58 -0.75

sed 2 0.75 0.78 0.77 0.27 0.78 0.52
sed 3 0.89 0.96 0.97 6.83 7.09 0.26

6.2. Robustness Study
Table VIII contains the results from the robustness study as well as the statistical analysis.
The statistical details for each individual fault can be found in Table XIII in the Appendix.
The results of the statistical hypothesis tests are summarized in Table IX. Both TCP and
FLINT produce lower mean Expense than Random for about 70% of the studied faults.

Figure 2 presents the representative outcome of the robustness study. Figure 2(a) and 2(b)
contain the plots for the same faults depicted in Figure 1(a) and 1(b). It shows that the changes
in suspiciousness of the faulty statement retain similar patterns when FLINT is applied using
coverage information from the previous version rather than the current version. The results
shown in these two plots remain positive, as they did for the precision study.

Similarly, Figure 2(c) and Figure 2(d) show cases that correspond to Figure 1(c) and Fig-
ure 1(d). Even when FLINT depends on coverage information from the previous version, it
is possible either to reduce Expense metric without producing higher suspiciousness (Fig-
ure 1(c)) or to increase suspiciousness without necessarily reducing Expense (Figure 1(d)).

To answer RQ3, comparing the results of the robustness study (Table XIII and IX, Fig-
ure 2) to those of the precision study indicates that the use of previous coverage information
does not affect the performance of FLINT in any significant way. The trends and patterns
observed in the precision study manifest themselves again in the robustness study. Both TCP
and FLINT achieved statistically significant Expense reductions for about 70% of the studied
faults.

To answer RQ4, we compare the reductions in Expense obtained using the coverage from
current versions with those obtained using the coverage from the previous versions, for each
of 63 faults from versions 2 to 5 of the four subject programs. The impact of outdated coverage
information is analyzed by testing Pearson’s correlation between the Expense reduction ob-
tained with precise and outdated information. If the use of outdated coverage information has
no impact, there will be a perfect Pearson’s correlation with ρ = 1.0. A strong positive corre-
lation will indicate that coverage information from the previous version can be used without
damaging the performance of fault localization techniques.

Figure 3 shows the correlation observed in the ∆ETR, ∆EFR, and ∆EFT values for the 63
faults studied for the robustness study. The x-axis denotes the reductions in Expense obtained
for each fault using the precise (i.e. current) coverage information. The y-axis denotes the re-
ductions in Expense for the same fault using the outdated (i.e. previous) coverage information.
All three plots show strong positive correlations with statistical significance. This provides an
answer to RQ4: the impact of outdated coverage information on the performance of fault lo-
calization techniques is not significant. In particular, Figure 3(c) provides supporting evidence

ACM Transactions on Software Engineering and Methodology, Vol. V, No. N, Article A, Pub. date: January YYYY.

FLINT: Fault Localization using Information Theory A:17

grep, v3, F_KP_3

0.
5

1.
0

S
us

pi
ci

ou
sn

es
s

FLINT
TCP
Random

0 20 40 60 80 100

Percentage of Executed Tests

−
20

−
10

0
10

E
xp

en
se

 R
ed

uc
tio

n

Exp. Reduction FLINT
Exp. Reduction Greedy

(a)

flex, v5, F_JR_2

1.
0

S
us

pi
ci

ou
sn

es
s

FLINT
TCP
Random

0 20 40 60 80 100

Percentage of Executed Tests

−
20

−
10

0
10

E
xp

en
se

 R
ed

uc
tio

n

Exp. Reduction FLINT
Exp. Reduction Greedy

(b)

flex, v5, F_AA_4

1.
0

S
us

pi
ci

ou
sn

es
s

FLINT
TCP
Random

0 20 40 60 80 100

Percentage of Executed Tests

−
20

−
10

0
10

E
xp

en
se

 R
ed

uc
tio

n

Exp. Reduction FLINT
Exp. Reduction Greedy

(c)

sed, v2, F_AG_19

1.
0

S
us

pi
ci

ou
sn

es
s

FLINT
TCP
Random

0 20 40 60 80 100

Percentage of Executed Tests

−
20

−
10

0
10

E
xp

en
se

 R
ed

uc
tio

n

Exp. Reduction FLINT
Exp. Reduction Greedy

(d)

Fig. 2. Plots of suspiciousness and Expense reduction from the robustness study. Figures 2(a) and 2(b) correspond
to Figures 1(a) and 1(b) respectively: FLINT achieves improved suspiciousness and reduced Expense for these faults,
despite the use of outdated coverage information from the previous version. Figure 2(c) shows another case where
FLINT achieves a reduction in Expense even though its suspiciousness is lower than that of Random, similar to
Figure 1(c). Figure 2(d) shows a negative case when increased suspiciousness does not lead to a reduction in Expense.

that developers can decide which fault localisation technique to use, based on how well each
technique performs for localising known faults from the previous version.

Table IX. Hypothesis Test for Robustness Study

Hypothesis PS PN EQ NN NS

H1 : ĒT < ĒR 69.84% 0.00% 0.00% 0.00% 30.16%
H2 : ĒF < ĒR 69.84% 3.17% 0.00% 1.59% 25.40%
H3 : ĒF < ĒT 44.44% 4.76% 9.52% 0.00% 41.27%

ACM Transactions on Software Engineering and Methodology, Vol. V, No. N, Article A, Pub. date: January YYYY.

A:18 Shin Yoo et al.

-10 0 10 20 30 40 50

-1
0

0
10

20
30

40
50

With actual coverage

W
ith

 p
re

vi
ou

s
co

ve
ra

ge

(a) ∆ETR, ρ = 0.9952

-10 0 10 20 30 40 50

-1
0

0
10

20
30

40
50

With actual coverage

W
ith

 p
re

vi
ou

s
co

ve
ra

ge

(b) ∆EFR, ρ = 0.9851

-5 0 5 10

-2
0

2
4

6
8

10

With actual coverage

W
ith

 p
re

vi
ou

s
co

ve
ra

ge

(c) ∆EFT , ρ = 0.8355

Fig. 3. Correlation plots that show the impact of using coverage information from previous versions. Each data point
corresponds to the reductions in Expense with previous and current coverage with respect to localizing a specific fault.
The closer to 1.0 the correlation coefficient is, the smaller the impact of using coverage information from previous
versions will be. The p–values for the Pearson’s correlation test for all three cases are less than 10−10.

6.3. Comparison to Similarity Sorting
One potential approach to prioritizing test cases for faster fault localization would be to sort
the test cases according to the similarity to the first test that has detected the fault [Artzi et al.
2010], hoping that similar tests would also fail and contribute to higher suspiciousness value
for the real faulty statement3. To compare FLINT to this approach, we have implemented
the similarity sorting approach. To measure the similarity between test cases, we adopted
Hamming distance between the binary execution traces of test cases. For a program with n
statements, the execution trace of a test is a binary string of length n: the i-th digit is 1 if
the i-th statement was executed by the test, 0 if not. Binary execution trace has been used to
effectively capture the similarity between test cases for regression testing techniques [Leon
and Podgurski 2003; Yoo et al. 2009].

Algorithm 3 illustrates the pseudo-code of the similarity sorting approach. The algorithm is
similar to FLINT described in Algorithm 2 except Line (7) and (11). In Line (7), the similarity
sorting algorithm records the first failing test case, tf . In Line (11), the algorithm chooses
the test case with minimum Hamming distance to tf as the next test to execute: function
HD(t1, t2) denotes the calculation of Hamming distance between the execution trace of test t1
and t2.

3This ‘similarity’ approach was suggested to us by one of the anonymous referees.

ACM Transactions on Software Engineering and Methodology, Vol. V, No. N, Article A, Pub. date: January YYYY.

FLINT: Fault Localization using Information Theory A:19

Algorithm 3: SimilaritySort
SIMILARITYSORT(T)
(1) G← {}
(2) while |G| < |T |
(3) t← NEXTTCPORDER(index)
(4) Execute t and update TPi, TFi, CPi and CFi

(5) G← G ∪ {t}
(6) if t fails
(7) tf ← t
(8) break
(9) R← T −G
(10) while |R| > 0
(11) Pick t ∈ R s.t. ∀(t′ ∈ R)(t′ 6= t)(HD(t, tf) ≤ HD(t′, tf))
(12) Execute t and update TPi, TFi, CPi and CFi

(13) R← R− {t}

Table X presents the result of comparison between FLINT and the similarity sorting ap-
proach. Detailed results for each individual fault can be found in Table XIV in the Appendix.
Both techniques are evaluated against the random baseline results: ¯∆EFR denotes the reduc-
tion of Expense produced by FLINT over the random, whereas ¯∆ESR denotes the reduction of
Expense brought in by the similarity sorting approach over the random. Columns H contains
the results of Mann-Whitney ‘U’ test in the manner described in Section 5.3. The null hypoth-
esis is that there is no difference in mean Expense reduction between two approaches. The
alternative hypothesis is that FLINT produces smaller Expense values than the similarity
sorting approach.

Table X. Results of comparison to similarity sorting approach

Subject Ver. τ̄R τ̄F τ̄S ¯∆EFR ¯∆ESR ¯∆EFS

flex 1 0.80 0.83 0.86 1.53 1.51 0.03
flex 2 0.79 0.88 0.81 7.29 5.11 2.18
flex 3 0.77 0.86 0.86 5.79 4.39 1.40
flex 4 0.87 0.90 0.86 0.74 -2.68 3.42
flex 5 0.96 0.95 0.76 -1.46 -23.09 21.63

grep 1 0.88 0.95 0.88 1.18 -3.75 4.94
grep 2 0.67 0.83 0.55 4.88 -0.89 5.78
grep 3 0.65 0.83 0.63 10.64 1.65 8.99
grep 4 0.93 0.84 0.83 -2.33 -1.99 -0.34

gzip 1 0.71 0.86 0.86 11.56 11.58 -0.02
gzip 2 0.73 0.72 0.69 0.75 0.17 0.57
gzip 4 0.65 0.97 0.97 32.30 32.33 -0.03
gzip 5 0.69 0.91 0.84 14.90 13.54 1.37

sed 2 0.75 0.76 0.68 1.33 -3.20 4.53
sed 3 0.89 0.97 0.95 6.67 7.11 -0.44
sed 4 0.59 0.94 0.94 35.28 35.28 0.00
sed 5 0.91 0.95 0.94 3.42 3.82 -0.40

Overall, it can be seen that the similarity sorting approach fails to achieve reductions in
expense for many faults. Table X and XIV show that FLINT produces lower Expense, with
statistical significance, than the similarity sorting approach for over 50% of the studied faults.
It may appear surprising that the similarity sorting approach fails to consistently outperform

ACM Transactions on Software Engineering and Methodology, Vol. V, No. N, Article A, Pub. date: January YYYY.

A:20 Shin Yoo et al.

Table XI. Hypothesis Test for Similarity Sorting Study

Hypothesis PS PN EQ NN NS

H : ĒF < ĒS 52.17% 3.26% 10.87% 10.87% 22.83%

the random prioritization. We conjecture that this is due to the discrepancies between the ac-
tual semantic similarity between tests and that between execution traces measured in Ham-
ming distance. Depending on the location and the nature of a fault, sorting tests according to
Hamming distance to the failing one may or may not prioritise reproduction of the fault (i.e.
the next sorted test does execute the faulty statement but does not fail, therefore hindering
the fault localization process). When the sorting does not contribute to the fault reproduction,
the approach may fail to outperform the random prioritization.

7. THREATS TO VALIDITY
There are a few threats to validity regarding the generalization of the results presented in
this paper. First, FLINT was evaluated using only Tarantula metric as the basis of probabil-
ity distribution. Using other fault localization metrics may lead to different results. However,
the overall approach of FLINT should apply, regardless of the choice of the fault localization
metric, as long as the assumptions stated in Section 3.1.1 are met. Second, different faults or
subject programs may affect the performance of FLINT. We have tried to include various types
of faults across multiple versions of subject programs, but only additional study can further
reduce this threat. Similarly, the degrees of change between consecutive versions can vary
widely: changes that are significantly different from those we studied may result in different
levels of effectiveness when FLINT is used with coverage information from the previous ver-
sion. Finally, certain classes of faults may not satisfy the assumptions stated in Section 3.1.1.
For example, concurrency faults or any failure that is caused in a nondeterministic manner
can affect the performance of FLINT adversely. While it is beyond the scope of this paper, we
conjecture that the entropy model of fault locality would have to be extended with probabilistic
model in order for it to cater for nondeterministic factors.

8. RELATED WORK
Test case prioritization is a regression testing technique that aims to maximize the rate of
fault detection when the testing is terminated at an arbitrary point [Yoo and Harman 2012].
Since the fault information is not known, test case prioritization techniques often rely on
surrogates, for which structural coverage is widely used [Rothermel et al. 2001; Elbaum et al.
2000; Li et al. 2007]. Other prioritization criteria such as execution history [Kim and Porter
2002], execution profile [Leon and Podgurski 2003] and expert knowledge [Tonella et al. 2006;
Yoo et al. 2009] have also been studied. However, test case prioritization techniques do not
separately consider the case when a fault is actually detected during the execution of the
prioritized test suite. This paper is the first to consider the effectiveness of fault localization
under the impact of time constraints.

Fault localization is a debugging technique that aims to aid the tester to locate a detected
fault [Renieres and Reiss 2003]. Existing work focuses on coverage-based metrics, program
spectra analysis or the Program Dependence Graph (PDG) to locate faults [Renieres and Reiss
2003; Cleve and Zeller 2005; Liblit et al. 2005; Jones and Harrold 2005; Abreu et al. 2007].
Recent work uses a probabilistic causal inference model for better fault localization [Baah
et al. 2010] or fuzzy set logic to improve the relationship between tests and fault locality [Hao
et al. 2008]. There is existing work that investigates how fault localization is affected by test
suite reduction [Yu et al. 2008] or test case prioritization [Jiang et al. 2009].

There are existing techniques for prioritizing tests for fault localization. Gonzalez-Sanchez
et al. prioritized test cases for fault localization by minimizing the fault locality entropy sim-

ACM Transactions on Software Engineering and Methodology, Vol. V, No. N, Article A, Pub. date: January YYYY.

FLINT: Fault Localization using Information Theory A:21

ilarly to FLINT [Gonzalez-Sanchez et al. 2011]. The technique from Gonzalez-Sanchez uses
Bayesian theory to calculate suspiciousness and prioritize the entire test suite for fault lo-
calization only. FLINT can use any existing fault localization metric to calculate the entropy
and takes over from normal test case prioritization technique only after the first failing test is
executed, thereby preserving both fault detection and localization capability. Artzi et al. pro-
posed that fault localization can be aided by generating and executing tests that have similar
execution paths to that of the failing one [Artzi et al. 2010]. The intuition is that similar tests
with passing and failing results would maximize the chance that the fault is correlated with
the small difference between them.

Information Theory [Cover and Thomas 1991], now an extensive branch of probability
theory with many applications, was famously founded by Claude Shannon in a single pa-
per [Shannon 1948]. It has been applied in many research areas related to computer science
including machine learning, analysis of algorithms, and data mining. Applications to software
engineering and particularly to programming languages, have been less common. Software
metrics [Allen and Khoshgoftaar 1999] and software evolution [Arbuckle 2011] are both ar-
eas which have seen contributions but the most active area at the present time is program
analysis for quantifying information flow.

Questions about quantified information flow (QIF) arise naturally in the theory of depen-
dence, particularly in the theory of security, in order to measure the strength of dependence
(e.g. for potential covert channels). It is not surprising that one of the the earliest applications
of Shannon information to programming languages was in Denning’s 1982 book on cryptog-
raphy and data security [Denning 1982] where it appears in an informal discussion of how to
analyze program constructs in terms of information flow, along with an attempt to define flow
quantity. Although it subsequently became fashionable to use information theory in discus-
sions of security properties for software systems, the first automatable analysis for QIF did
not appear until 2002 [Clark et al. 2002]. This latter work was extended to a Turing complete
language [Clark et al. 2007] and to a process language [Boreale et al. 2010]. In the last five
years, a vibrant community of researchers into QIF has developed. However, all the applica-
tions to date have been concerned with flow security.

Our paper introduces a novel application of Shannon entropy to the analysis of programs
and has potential for extension to a theoretical framework for a probabilistic approach to
testing. It is not QIF based but it adopts a similar approach to Clarkson et alia’s Bayesian-
influenced paper on quantifying information flow [Clarkson et al. 2009]. The paper describes a
security attack in which a series of experiments successively update the attacker’s belief about
the probability distribution on the space of secrets with the aim of refining that probability
distribution to the one in which the actual secret input to the program has probability 1 while
all others have probability 0.

9. CONCLUSION & FUTURE WORK
This paper presents the first use of Information Theory for fault localization. We build an en-
tropy model for the locality of the fault. The probability distribution of the locality of the fault
is approximated using an existing fault localization metric. The proposed technique, FLINT,
aims to improve the effectiveness of fault localization by trying to reduce the Shannon entropy
of the locality of the fault. While the paper uses the Tarantula metric, any fault localization
metric can be plugged into FLINT.

We evaluate FLINT by evaluating its effectiveness for a novel problem: Fault Localization
Prioritization (FLP). Once a test suite, prioritized for early fault detection, detects a fault,
we switch to the FLINT approach to maximize the chance of early fault localization, even if
testing is terminated prematurely. Empirical evaluation of FLINT shows that it is possible to

ACM Transactions on Software Engineering and Methodology, Vol. V, No. N, Article A, Pub. date: January YYYY.

A:22 Shin Yoo et al.

increase the suspiciousness metric and reduce the fault localization cost for more than 70% of
the studied faults.

Future work will include the use of more advanced fault localization analysis for the looka-
head method, with an emphasis on reducing the discrepancy between the suspiciousness and
the Expense metric.

REFERENCES
ABREU, R., ZOETEWEIJ, P., AND VAN GEMUND, A. J. C. 2007. On the accuracy of spectrum-based fault localization. In

Proceedings of the Testing: Academic and Industrial Conference Practice and Research Techniques - MUTATION.
IEEE Computer Society, 89–98.

ALLEN, E. B. AND KHOSHGOFTAAR, T. M. 1999. Measuring coupling and cohesion: An information-theory approach.
In IEEE METRICS.

ARBUCKLE, T. 2011. Studying software evolution using artefacts’ shared information content. Science of Computer
Programming 76, 12, 1078–1097.

ARTZI, S., DOLBY, J., TIP, F., AND PISTOIA, M. 2010. Directed test generation for effective fault localization. In
Proceedings of the 19th international symposium on Software testing and analysis. ISSTA ’10. ACM, New York,
NY, USA, 49–60.

BAAH, G. K., PODGURSKI, A., AND HARROLD, M. J. 2010. Causal inference for statistical fault localization. In
Proceedings of the 19th International Symposium on Software Testing and Analysis (ISSTA 2010). ACM Press,
73–84.

BOREALE, M., CLARK, D., AND GORLA, D. 2010. A semiring-based trace semantics for processes with applications
to information leakage analysis. In Theoretical Computer Science, C. Calude and V. Sassone, Eds. IFIP Advances
in Information and Communication Technology Series, vol. 323. Springer Boston, 340–354.

CLARK, D., HUNT, S., AND MALACARIA, P. 2002. Quantitative analysis of the leakage of confidential data. Electronic
Notes in Theoretical Computer Science 59, 3, 1–14.

CLARK, D., HUNT, S., AND MALACARIA, P. 2007. A static analysis for quantifying information flow in a simple
imperative language. Journal of Computer Security 15, 3, 321 – 372.

CLARKSON, M. R., MYERS, A. C., AND SCHNEIDER, F. B. 2009. Quantifying information flow with beliefs. Journal
of Computer Security 17, 5, 655–701.

CLEVE, H. AND ZELLER, A. 2005. Locating causes of program failures. In Proceedings of the 27th international
conference on Software engineering. ICSE ’05. ACM, New York, NY, USA, 342–351.

COVER, T. M. AND THOMAS, J. A. 1991. Elements of Information Theory. Wiley Interscience.
DENNING, D. E. R. 1982. Cryptography and Data Security. Addison-Wesley.
DO, H., ELBAUM, S. G., AND ROTHERMEL, G. 2005. Supporting controlled experimentation with testing techniques:

An infrastructure and its potential impact. Empirical Software Engineering 10, 4, 405–435.
ELBAUM, S. G., MALISHEVSKY, A. G., AND ROTHERMEL, G. 2000. Prioritizing test cases for regression testing. In

Proceedings of International Symposium on Software Testing and Analysis (ISSTA 2000). ACM Press, 102–112.
GONZALEZ-SANCHEZ, A., PIEL, É., ABREU, R., GROSS, H.-G., AND VAN GEMUND, A. J. C. 2011. Prioritizing tests

for software fault diagnosis. Software: Practice and Experience 41, 10, 1105–1129.
HAO, D., ZHANG, L., PAN, Y., MEI, H., AND SUN, J. 2008. On similarity-awareness in testing-based fault localization.

Automated Software Engineering 15, 207–249.
JIANG, B., ZHANG, Z., TSE, T. H., AND CHEN, T. Y. 2009. How well do test case prioritization techniques support sta-

tistical fault localization. In Proceedings of the 33rd Annual International Computer Software and Applications
Conference (COMPSAC 2009). IEEE Computer Society Press, 99–106.

JONES, J. A. AND HARROLD, M. J. 2005. Empirical evaluation of the tarantula automatic fault-localization tech-
nique. In Proceedings of the 20th International Conference on Automated Software Engineering (ASE2005). ACM
Press, 273–282.

JONES, J. A., HARROLD, M. J., AND STASKO, J. 2002. Visualization of test information to assist fault localization. In
Proceedings of the 24th International Conference on Software Engineering. ACM, New York, NY, USA, 467–477.

JONES, J. A., HARROLD, M. J., AND STASKO, J. T. 2001. Visualization for fault localization. In Proceedings of ICSE
Workshop on Software Visualization. 71–75.

KIM, J.-M. AND PORTER, A. 2002. A history-based test prioritization technique for regression testing in resource
constrained environments. In Proceedings of the 24th International Conference on Software Engineering. ACM
Press, 119–129.

ACM Transactions on Software Engineering and Methodology, Vol. V, No. N, Article A, Pub. date: January YYYY.

FLINT: Fault Localization using Information Theory A:23

LEON, D. AND PODGURSKI, A. 2003. A comparison of coverage-based and distribution-based techniques for filtering
and prioritizing test cases. In Proceedings of the IEEE International Symposium on Software Reliability Engi-
neering (ISSRE 2003). IEEE Computer Society Press, 442–456.

LI, Z., HARMAN, M., AND HIERONS, R. M. 2007. Search Algorithms for Regression Test Case Prioritization. IEEE
Transactions on Software Engineering 33, 4, 225–237.

LIBLIT, B., NAIK, M., ZHENG, A. X., AIKEN, A., AND JORDAN, M. I. 2005. Scalable statistical bug isolation. In
Proceedings of the 2005 ACM SIGPLAN Conference on Programming Language Design and Implementation.
PLDI ’05. ACM, New York, NY, USA, 15–26.

RENIERES, M. AND REISS, S. 2003. Fault localization with nearest neighbor queries. In Proceedings of the 18th
International Conference on Automated Software Engineering. 30 – 39.

ROTHERMEL, G., UNTCH, R. J., AND CHU, C. 2001. Prioritizing test cases for regression testing. IEEE Transactions
on Software Engineering 27, 10, 929–948.

SHANNON, C. E. 1948. A mathematical theory of communication. Bell System Technical Journal 27, 379–423 and
623–656.

TONELLA, P., AVESANI, P., AND SUSI, A. 2006. Using the case-based ranking methodology for test case prioritization.
In Proceedings of the 22nd International Conference on Software Maintenance (ICSM 2006). IEEE Computer
Society, 123–133.

YOO, S. AND HARMAN, M. 2012. Regression testing minimisation, selection and prioritisation: A survey. Software
Testing, Verification, and Reliability 22, 2, 67–120.

YOO, S., HARMAN, M., TONELLA, P., AND SUSI, A. 2009. Clustering test cases to achieve effective & scalable pri-
oritisation incorporating expert knowledge. In Proceedings of International Symposium on Software Testing and
Analysis (ISSTA 2009). ACM Press, 201–211.

YU, Y., JONES, J. A., AND HARROLD, M. J. 2008. An empirical study of the effects of test-suite reduction on fault
localization. In Proceedings of the International Conference on Software Engineering (ICSE 2008). ACM Press,
201–210.

ACM Transactions on Software Engineering and Methodology, Vol. V, No. N, Article A, Pub. date: January YYYY.

A:24 Shin Yoo et al.

Appendix

Table XII: Detailed Statistical Analysis for Precision Study

Subject Fault ID τ̄R τ̄T τ̄F ¯∆ETR H1
¯∆EFR H2

¯∆EFT H3

flex V1

F AA 6 0.48 0.53 0.55 2.78 PS 1.88 PS -0.90 NS
F AA 1 0.76 0.78 0.76 0.89 PS 9.46 PS 8.57 PS
F AA 2 0.99 1.00 1.00 0.40 PS 0.11 PS -0.29 NS
F AA 3 0.53 0.59 0.75 4.56 PS -0.23 NS -4.79 NS
F JR 4 1.00 1.00 1.00 0.04 NS -1.89 NS -1.93 NS
F JR 6 1.00 1.00 1.00 0.05 PS -4.36 NS -4.41 NS
F JR 5 1.00 1.00 1.00 0.62 PS 0.56 PS -0.07 NS
F JR 2 0.78 0.78 0.76 -0.46 PS 8.11 PS 8.57 PS
F JR 3 1.00 1.00 1.00 2.55 PS -1.12 PS -3.67 NS
F HD 3 0.99 1.00 1.00 0.82 PS 0.53 PS -0.29 NS
F HD 1 0.51 0.54 0.56 -0.90 NS 3.26 PS 4.16 PS
F HD 6 0.53 0.51 0.50 -5.25 NS 4.19 PS 9.44 PS
F HD 7 0.93 0.95 0.99 0.72 NS 0.52 PS -0.21 PS
F HD 4 0.51 0.53 0.56 2.57 PS 3.41 PS 0.84 PS
F HD 5 1.00 1.00 1.00 0.12 PS -1.41 PS -1.53 PS

flex V2

F AA 4 0.63 0.63 0.61 1.50 PS -0.54 PS -2.04 NS
F AA 5 0.61 0.61 0.64 -2.84 NS 0.87 PS 3.71 PS
F AA 2 0.46 0.50 0.50 -6.46 NS -2.32 NN 4.14 PS
F AA 3 0.46 0.99 0.99 52.50 PS 52.50 PS 0.00 EQ
F JR 6 0.48 0.97 0.97 35.62 PS 35.78 PS 0.15 PS
F HD 8 0.96 0.96 0.99 -10.92 NS 1.78 PS 12.70 PS
F JR 5 1.00 1.00 1.00 0.10 PS -0.01 NS -0.10 NS
F JR 2 0.97 0.96 0.99 -11.54 NS 1.16 PS 12.70 PS
F JR 3 1.00 0.99 1.00 -6.02 NS -3.25 NS 2.77 PS
F JR 1 1.00 1.00 1.00 0.09 PS -0.01 NS -0.10 NS
F HD 2 0.88 1.00 1.00 12.38 PS 11.87 PS -0.51 NS
F HD 6 0.99 1.00 1.00 0.36 PS -5.64 NS -6.00 NS
F HD 7 0.95 1.00 1.00 4.92 PS 4.92 PS -0.00 NN
F HD 4 0.69 0.69 0.71 1.39 PS 5.00 PS 3.61 PS

flex V3

F AA 4 0.49 0.50 0.50 -5.26 NS -1.57 NS 3.69 PS
F AA 5 0.99 1.00 1.00 0.55 PS 0.31 PS -0.24 NS
F AA 3 0.34 0.53 0.54 1.80 PS 1.54 PS -0.26 NS
F JR 5 0.80 1.00 1.00 19.67 PS 19.21 PS -0.46 NS
F JR 2 0.99 1.00 1.00 0.52 PS 0.28 PS -0.24 NS
F JR 3 0.79 1.00 1.00 20.26 PS 19.79 PS -0.46 NS
F HD 6 0.98 1.00 1.00 1.19 PS 0.95 PS -0.24 NS

flex V4

F AA 7 0.99 0.98 0.99 -1.01 NS 1.75 PS 2.76 PS
F AA 1 0.80 0.81 0.89 0.13 PS 0.93 PS 0.80 PS
F AA 2 0.99 1.00 1.00 0.70 PS 0.44 PN -0.26 NS
F AA 3 0.51 0.54 0.63 -3.25 NS 4.99 PS 8.25 PS
F JR 4 0.99 0.99 0.99 -5.80 NS -4.39 NS 1.41 PS
F JR 2 0.99 1.00 1.00 0.70 NS -1.33 NS -2.02 NS
F JR 3 1.00 1.00 1.00 0.57 PS -0.08 PS -0.65 NS
F JR 1 0.51 0.54 0.63 -3.83 NS 4.42 PS 8.25 PS
F HD 5 0.99 1.00 1.00 0.61 PS -0.05 PS -0.65 NS

flex V5 F AA 4 0.92 0.89 0.91 -15.04 NS -3.74 NS 11.29 PS
F JR 2 1.00 1.00 1.00 1.05 PS 0.81 PS -0.24 NS

ACM Transactions on Software Engineering and Methodology, Vol. V, No. N, Article A, Pub. date: January YYYY.

FLINT: Fault Localization using Information Theory A:25

grep V1 F KP 2 1.00 1.00 1.00 -0.16 PS -1.77 NS -1.61 NS
F DG 4 0.77 0.80 0.91 2.24 PS 4.14 PS 1.90 PS

grep V2 F DG 1 0.67 0.66 0.83 1.91 PS 4.88 PS 2.98 PS

grep V3

F KP 7 0.49 0.84 0.84 35.42 PS 35.42 PS 0.00 EQ
F KP 3 0.62 0.65 0.76 -1.31 PS 7.32 PS 8.62 PS
F DG 8 0.42 0.60 0.70 2.00 PS 0.67 PS -1.32 NS
F DG 2 0.97 0.96 0.99 -4.04 NS 5.52 PS 9.56 PS
F DG 3 0.73 0.75 0.85 1.99 PS 4.29 PS 2.30 PN

grep V4
F KP 8 0.93 1.00 1.00 6.79 PS 4.58 PS -2.20 NS
F DG 3 0.89 0.62 0.62 -9.73 PS -9.74 PS -0.00 NS
F KP 6 0.97 0.98 0.90 -0.26 PS -1.84 NS -1.58 NS

gzip V1

F KL 2 0.47 0.81 0.82 10.51 PS 11.62 PS 1.12 PS
F KL 6 0.50 0.41 0.42 0.34 NS 0.34 NS 0.00 EQ
F KP 10 0.57 0.99 0.99 40.25 PS 40.25 PS 0.00 EQ
F KP 11 0.79 0.77 0.83 -3.06 NS -3.35 NS -0.29 PS
F KP 9 0.79 1.00 1.00 20.07 PS 19.54 PS -0.54 NN
F TW 3 0.90 1.00 1.00 10.68 PS 10.43 PS -0.25 NN
F KP 1 0.94 0.98 0.97 4.52 PS 2.06 PS -2.46 NS

gzip V2
F KL 1 0.67 0.73 0.62 -0.43 PS 0.34 PS 0.77 PS
F KL 3 0.93 0.87 0.90 1.07 PS 1.93 PS 0.86 PS
F KL 8 0.58 0.66 0.65 0.17 PS -0.03 PS -0.20 NS

gzip V4
F KL 1 0.50 0.99 0.99 46.53 PS 46.53 PS -0.00 NS
F KL 8 0.90 0.96 0.94 6.88 PS 6.53 PS -0.35 NS
F KP 3 0.53 0.99 0.99 43.85 PS 43.85 PS 0.00 EQ

gzip V5

F KL 1 0.93 0.96 0.95 5.75 PS 5.42 PS -0.33 NS
F KL 2 0.66 0.89 0.87 12.07 PS 9.66 PS -2.40 NS
F KL 4 0.50 0.91 0.91 34.90 PS 34.90 PS 0.00 EQ
F KL 8 0.69 0.95 0.95 25.75 PS 25.75 PS 0.00 EQ
F TW 1 0.67 0.74 0.86 1.36 PS -1.22 NS -2.58 NS

sed V2

F AG 20 0.62 0.64 0.63 0.71 PS 1.13 PS 0.42 PN
F AG 17 0.34 0.38 0.41 2.81 PS 2.99 PS 0.18 PS
F AG 12 0.94 0.96 0.97 0.49 NS 1.85 PS 1.36 PS
F AG 19 0.88 0.92 0.85 -3.69 NS -0.66 PS 3.03 PS
F AG 2 0.95 0.98 0.95 1.51 PS 1.34 NS -0.17 NS

sed V3

F AG 15 0.93 0.94 0.95 0.10 NS 0.59 PS 0.48 PS
F AG 5 0.82 0.88 0.91 5.69 PS 5.69 PS 0.00 PN
F AG 17 0.99 0.99 0.98 -0.71 NS -1.98 NS -1.27 NS
F AG 6 0.67 1.00 1.00 32.91 PS 32.92 PS 0.01 PN
F AG 11 0.95 0.98 0.99 0.93 NS 0.83 NS -0.10 PS
F AG 18 0.96 0.97 0.97 1.95 PS 1.97 PS 0.03 PS

sed V4 F KRM 2 0.59 0.94 0.94 35.28 PS 35.28 PS 0.00 EQ

sed V5

F KRM 8 0.97 0.99 0.99 1.18 PS 1.06 PS -0.11 NS
F KRM 1 0.92 0.94 0.94 1.48 NS 0.92 NS -0.56 PS
F KRM 2 0.97 1.00 1.00 3.38 PS 3.47 PS 0.09 PS
F KRM 10 0.78 0.87 0.89 8.23 PS 8.23 PS 0.00 EQ

ACM Transactions on Software Engineering and Methodology, Vol. V, No. N, Article A, Pub. date: January YYYY.

A:26 Shin Yoo et al.

Table XIII: Detailed Statistical Analysis for Robustness Study

Subject Fault ID τ̄R τ̄T τ̄F ¯∆ETR H1
¯∆EFR H2

¯∆EFT H3

flex V2

F AA 4 0.63 0.63 0.61 1.64 PS 3.23 PS 1.58 PS
F AA 5 0.61 0.60 0.63 -2.69 NS -0.29 PS 2.39 PS
F AA 2 0.46 0.50 0.50 -6.49 NS -2.26 PS 4.24 PS
F AA 3 0.46 0.96 0.96 49.37 PS 49.37 PS 0.00 EQ
F JR 6 0.48 0.97 0.98 35.62 PS 35.79 PS 0.17 PS
F HD 8 0.96 0.95 0.96 -11.36 NS -7.48 NS 3.87 PS
F JR 5 1.00 1.00 1.00 0.10 PS 0.03 NS -0.06 NS
F JR 2 0.97 0.95 0.96 -11.98 NS -8.11 NS 3.87 PS
F JR 3 1.00 0.99 0.99 -6.35 NS -5.96 NS 0.39 PS
F JR 1 1.00 1.00 1.00 0.09 PS 0.03 NS -0.06 NS
F HD 2 0.88 1.00 1.00 12.37 PS 11.24 PS -1.13 NS
F HD 6 0.99 1.00 1.00 0.39 PS -2.04 NS -2.43 NS
F HD 7 0.95 1.00 1.00 4.90 PS 4.92 PS 0.02 PN
F HD 4 0.69 0.69 0.71 1.44 PS 4.87 PS 3.44 PS

flex V3

F AA 4 0.49 0.50 0.50 -5.26 NS -1.58 NS 3.68 PS
F AA 5 0.99 1.00 1.00 0.55 PS 0.31 PS -0.24 NS
F AA 3 0.34 0.53 0.54 1.80 PS 1.54 PS -0.25 NS
F JR 5 0.80 1.00 1.00 19.67 PS 19.23 PS -0.44 NS
F JR 2 0.99 1.00 1.00 0.52 PS 0.28 PS -0.24 NS
F JR 3 0.79 1.00 1.00 20.26 PS 19.82 PS -0.44 NS
F HD 6 0.98 1.00 1.00 1.19 PS 0.95 PS -0.24 NS

flex V4

F AA 7 0.99 0.98 0.99 -1.01 NS 1.75 PS 2.76 PS
F AA 1 0.80 0.81 0.87 0.13 PS 0.82 PS 0.69 PS
F AA 2 0.99 1.00 1.00 0.70 PS 0.45 PN -0.25 NS
F AA 3 0.51 0.54 0.63 -3.25 NS 4.94 PS 8.19 PS
F JR 4 0.99 0.99 1.00 -5.80 NS -2.75 NS 3.05 PS
F JR 2 0.99 1.00 1.00 0.70 NS -1.60 NS -2.30 NS
F JR 3 1.00 1.00 1.00 0.57 PS 0.20 PS -0.37 NS
F JR 1 0.51 0.54 0.63 -3.83 NS 4.37 PS 8.19 PS
F HD 5 0.99 1.00 1.00 0.61 PS 0.24 PS -0.37 NS

flex V5 F AA 4 0.92 0.89 0.90 -15.04 NS -3.77 NS 11.26 PS
F JR 2 1.00 1.00 1.00 1.05 PS 0.81 PS -0.24 NS

grep V2 F DG 1 0.67 0.66 0.83 -3.35 NS 4.90 PS 8.25 PS

grep V3

F KP 7 0.49 0.84 0.84 34.91 PS 34.91 PS 0.00 EQ
F KP 3 0.62 0.65 0.76 -1.45 PS 7.39 PS 8.84 PS
F DG 8 0.42 0.59 0.70 2.02 PS 2.28 PS 0.26 PS
F DG 2 0.97 0.96 0.99 -4.11 NS 5.38 PS 9.49 PS
F DG 3 0.73 0.75 0.86 2.06 PS 5.49 PS 3.44 PS

grep V4
F KP 8 0.93 1.00 1.00 6.79 PS 4.73 PS -2.06 NS
F DG 3 0.89 0.82 0.81 -0.90 PS -1.01 NN -0.12 NS
F KP 6 0.97 0.98 0.90 -0.26 PS -1.84 NS -1.58 NS

gzip V2
F KL 1 0.67 0.73 0.59 -0.52 PS -0.36 NS 0.16 NS
F KL 3 0.93 0.91 0.95 2.92 PS 3.50 PS 0.59 PS
F KL 8 0.58 0.66 0.55 0.04 PS 0.11 PS 0.07 PN

gzip V4
F KL 1 0.50 0.99 0.99 46.53 PS 46.53 PS 0.00 EQ
F KL 8 0.90 0.96 0.95 6.92 PS 6.56 PS -0.35 NS
F KP 3 0.53 0.99 0.99 43.85 PS 43.85 PS 0.00 EQ

ACM Transactions on Software Engineering and Methodology, Vol. V, No. N, Article A, Pub. date: January YYYY.

FLINT: Fault Localization using Information Theory A:27

gzip V5

F KL 1 0.93 0.96 0.94 5.75 PS 5.41 PS -0.34 NS
F KL 2 0.66 0.89 0.86 12.07 PS 9.09 PS -2.98 NS
F KL 4 0.50 0.93 0.93 35.96 PS 35.96 PS 0.00 EQ
F KL 8 0.69 0.96 0.95 26.22 PS 26.22 PS 0.00 EQ
F TW 1 0.67 0.72 0.63 1.62 PS 1.21 PS -0.41 PS

sed V2

F AG 20 0.62 0.65 0.60 0.60 PS 0.11 PN -0.49 NS
F AG 17 0.34 0.38 0.40 2.44 PS 2.61 PS 0.17 PS
F AG 12 0.94 0.95 0.98 0.45 NS 1.56 PS 1.10 PS
F AG 19 0.88 0.92 0.94 -3.71 NS -1.69 NS 2.02 PS
F AG 2 0.95 0.98 0.94 1.55 PS 1.32 NS -0.23 NS

sed V3

F AG 15 0.93 0.94 0.95 -0.21 NS 0.05 NS 0.26 PN
F AG 5 0.82 0.87 0.91 5.39 PS 5.41 PS 0.01 PS
F AG 17 0.99 0.99 0.99 -0.39 NS -3.06 NS -2.67 NS
F AG 6 0.67 1.00 1.00 32.78 PS 32.99 PS 0.20 NS
F AG 11 0.95 0.97 0.98 0.88 NS 4.63 PS 3.75 PS
F AG 18 0.96 0.98 0.98 2.50 PS 2.53 PS 0.03 PS

Table XIV: Detailed Statistical Analysis of Comparison to Similarity
Sorting Approach

Subject Fault ID τ̄F τ̄S ¯∆EFR ¯∆ESR H

flex V1

F AA 6 0.55 0.50 1.88 -11.73 PS
F AA 1 0.76 0.97 9.46 24.34 NS
F AA 2 1.00 1.00 0.11 0.25 NS
F AA 3 0.75 0.50 -0.23 -11.58 PS
F JR 4 1.00 1.00 -1.89 -1.91 PN
F JR 6 1.00 1.00 -4.36 -2.13 PS
F JR 5 1.00 1.00 0.56 0.49 PS
F JR 2 0.76 0.97 8.11 22.98 NS
F JR 3 1.00 1.00 -1.12 -20.14 PS
F HD 3 1.00 1.00 0.53 0.67 NS
F HD 1 0.56 0.50 3.26 -8.81 PS
F HD 6 0.50 0.98 4.19 43.32 NS
F HD 7 0.99 0.94 0.52 -0.01 PS
F HD 4 0.56 0.50 3.41 -12.89 PS
F HD 5 1.00 1.00 -1.41 -0.23 PS

flex V2

F AA 4 0.61 0.77 -0.54 34.09 NS
F AA 5 0.64 0.52 0.87 17.12 NS
F AA 2 0.50 0.50 -2.32 -16.40 PS
F AA 3 0.99 0.99 52.50 52.50 EQ
F JR 6 0.97 0.97 35.78 35.84 PS
F HD 8 0.99 0.54 1.78 -28.51 PS
F JR 5 1.00 1.00 -0.01 0.04 PS
F JR 2 0.99 0.54 1.16 -29.13 PS
F JR 3 1.00 0.97 -3.25 -12.48 PS
F JR 1 1.00 1.00 -0.01 0.04 PS
F HD 2 1.00 1.00 11.87 12.08 PS
F HD 6 1.00 1.00 -5.64 0.08 NS
F HD 7 1.00 1.00 4.92 4.88 PN
F HD 4 0.71 0.52 5.00 1.46 PS

ACM Transactions on Software Engineering and Methodology, Vol. V, No. N, Article A, Pub. date: January YYYY.

A:28 Shin Yoo et al.

flex V3

F AA 4 0.50 0.50 -1.57 -0.67 NS
F AA 5 1.00 1.00 0.31 0.44 NS
F AA 3 0.54 0.50 1.54 -10.20 PS
F JR 5 1.00 1.00 19.21 19.53 NN
F JR 2 1.00 1.00 0.28 0.41 NS
F JR 3 1.00 1.00 19.79 20.12 NN
F HD 6 1.00 1.00 0.95 1.07 NS

flex V4

F AA 7 0.99 1.00 1.75 1.96 NN
F AA 1 0.89 0.81 0.93 -0.49 PS
F AA 2 1.00 1.00 0.44 0.42 PS
F AA 3 0.63 0.50 4.99 -7.88 PS
F JR 4 0.99 0.97 -4.39 -11.69 PS
F JR 2 1.00 1.00 -1.33 0.73 NS
F JR 3 1.00 1.00 -0.08 0.64 NS
F JR 1 0.63 0.50 4.42 -8.45 PS
F HD 5 1.00 1.00 -0.05 0.68 NS

flex V5 F AA 4 0.91 0.52 -3.74 -27.66 PS
F JR 2 1.00 1.00 0.81 -18.53 PS

grep V1 F KP 2 1.00 1.00 -1.77 -8.26 PS
F DG 4 0.91 0.76 4.14 0.76 PS

grep V2 F DG 1 0.83 0.55 4.88 -0.89 PS

grep V3

F KP 7 0.84 0.84 35.42 35.42 EQ
F KP 3 0.76 0.51 7.32 -8.77 PS
F DG 8 0.70 0.51 0.67 -0.34 PS
F DG 2 0.99 0.70 5.52 -11.96 PS
F DG 3 0.85 0.56 4.29 -6.07 PS

grep V4
F KP 8 1.00 1.00 4.58 6.17 NN
F DG 3 0.62 0.61 -9.74 -9.93 PS
F KP 6 0.90 0.88 -1.84 -2.21 PS

gzip V1

F KL 2 0.82 0.81 11.62 11.10 PS
F KL 6 0.42 0.42 0.34 0.34 EQ
F KP 10 0.99 0.99 40.25 40.25 EQ
F KP 11 0.83 0.84 -3.35 -4.22 PS
F KP 9 1.00 1.00 19.54 20.33 NN
F TW 3 1.00 1.00 10.43 10.39 PN
F KP 1 0.97 0.98 2.06 2.86 NS

gzip V2
F KL 1 0.62 0.56 0.34 0.44 NS
F KL 3 0.90 0.87 1.93 0.27 PS
F KL 8 0.65 0.62 -0.03 -0.18 PS

gzip V4
F KL 1 0.99 0.99 46.53 46.53 EQ
F KL 8 0.94 0.94 6.53 6.62 NN
F KP 3 0.99 0.99 43.85 43.85 EQ

gzip V5

F KL 1 0.95 0.94 5.42 5.50 NN
F KL 2 0.87 0.85 9.66 7.42 PS
F KL 4 0.91 0.91 34.90 34.90 EQ
F KL 8 0.95 0.95 25.75 25.75 EQ
F TW 1 0.86 0.53 -1.22 -5.90 PS

ACM Transactions on Software Engineering and Methodology, Vol. V, No. N, Article A, Pub. date: January YYYY.

FLINT: Fault Localization using Information Theory A:29

sed V2

F AG 20 0.63 0.53 1.13 -7.25 PS
F AG 17 0.41 0.40 2.99 3.26 NS
F AG 12 0.97 0.83 1.85 -6.63 PS
F AG 19 0.85 0.73 -0.66 -6.73 PS
F AG 2 0.95 0.93 1.34 1.36 PS

sed V3

F AG 15 0.95 0.92 0.59 0.83 PS
F AG 5 0.91 0.89 5.69 5.70 NN
F AG 17 0.98 1.00 -1.98 1.01 NS
F AG 6 1.00 1.00 32.92 33.35 NS
F AG 11 0.99 0.93 0.83 -0.17 PS
F AG 18 0.97 0.97 1.97 1.97 NN

sed V4 F KRM 2 0.94 0.94 35.28 35.28 EQ

sed V5

F KRM 8 0.99 0.98 1.06 1.10 NN
F KRM 1 0.94 0.93 0.92 2.99 NS
F KRM 2 1.00 1.00 3.47 2.96 PS
F KRM 10 0.89 0.86 8.23 8.23 EQ

ACM Transactions on Software Engineering and Methodology, Vol. V, No. N, Article A, Pub. date: January YYYY.

