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Abstract. This paper1 provides a motivation for the application of
search based optimization to Software Engineering, an area that has
come to be known as Search Based Software Engineering (SBSE). SBSE
techniques have already been applied to many problems throughout the
Software Engineering lifecycle, with new application domains emerging
on a regular basis. The approach is very generic and therefore finds
wide application in Software Engineering. It facilitates automated and
semi-automated solutions in situations typified by large complex prob-
lem spaces with multiple competing and conflicting objectives. Previ-
ous work has already discussed, in some detail, the advantages of the
SBSE approach for Software Engineering. This paper summarises previ-
ous work and goes further, by arguing that Software Engineering provides
the ideal set of application problems for which optimization algorithms
are supremely well suited.
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1 Introduction

We often speak of ‘Software Engineering’ without thinking too deeply about
what it means to have a discipline of ‘engineering’ that considers the primary
material to be ‘software’. By considering both the ‘engineering’ aspects of ‘Soft-
ware Engineering’ and also the unique properties of ‘software’ as an engineering
material, this paper makes an argument that search based optimization tech-
niques are ideally suited to Software Engineering.

That is, though all other engineering disciplines have also provided rich
sources of application for search based optimization, it is in its application to
problems in Software Engineering that these techniques can find greatest appli-
cation. This acts as a secondary motivation for the field of SBSE. The primary

1 This paper is written to accompany the author’s keynote presentation at Fundamen-
tal Approaches to Software Engineering (FASE 2010). The talk provides an overview
of SBSE and its applications and motivation. The paper focusses on the argument
that the virtual nature of software makes it ideal for SBSE, since other aspects of
SBSE mentioned in the FASE keynote have been covered by the author’s previous
keynotes and invited papers.
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motivation for SBSE comes from the simple observation that these techniques
do, indeed, apply well in other engineering disciplines and that, therefore, should
we wish to regard Software Engineering as truly an engineering discipline, then
it would only be natural to consider the application of search based optimization
techniques. This form of advocacy for SBSE has been put forward by this and
other authors before [CDH+03, HJ01, Har07b, Har07a, Har07c].

The acceptance of SBSE as a well-defined and worthwhile activity within the
rich and diverse tapestry of Software Engineering is reflected by the increasing
number of survey papers on SBSE [ABHPWar, ATF09, HMZ09, McM04, Räi09].
Further evidence for widespread interest and uptake, comes from the many spe-
cial issues, workshops and conferences on the topic. However, this paper seeks
to go a step further. It argues that Software Engineering is not merely an ac-
ceptable subject for the application of search based optimization, but that it is
even better suited than all other areas of engineering activity, as a result of the
very special properties of software as an engineering material.

2 Overview of SBSE

The existing case for SBSE in the literature rests upon the observation that

“Software engineers often face problems associated with the balancing
of competing constraints, trade-offs between concerns and requirement
imprecision. Perfect solutions are often either impossible or impractical
and the nature of the problems often makes the definition of analytical
algorithms problematic.”[HJ01]

The term SBSE was first used by Harman and Jones [HJ01] in 2001. The
term ‘search’ is used to refer to the metaheuristic search–based optimization
techniques. Search Based Software Engineering seeks a fundamental shift of em-
phasis from solution construction to solution description. Rather than devoting
human effort to the task of finding solutions, the search for solutions is automated
as a search, guided by a fitness function, defined by the engineer to capture what
is required rather than how it is to be constructed. In many ways, this approach
to Software Engineering echoes, at the macro level of Software Engineering arti-
facts, the declarative programming approach [DB77], which applies at the code
level; both seek to move attention from the question of ‘how’ a solution is to be
achieved to the question of ‘what’ properties are desirable.

Harman and Jones argued that SBSE could become a coherent field of activ-
ity that combines the expertise and skills of the Metaheuristic Search community
with those of the Software Engineering community. Though there was previous
work on the application of search based optimization to Software Engineering
problems [CCHA94, JES98, TCM98, XES+92], the 2001 paper was the first to
articulate SBSE as a field of study in its own right and to make a case for its
wider study.

Since the 2001 paper, there has been an explosion of SBSE activity, with
evidence for a rapid increase in publications on the topic [HMZ09]. For ex-
ample, SBSE has been applied to testing [BSS02, Bot02, BLS05, GHHD05,
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HHH+04, MHBT06, WBS01], bug fixing [AY08, WNGF09] design, [HHP02,
MM06, SBBP05], requirements, [BRSW01, ZFH08], project management [AC07,
ADH04, KSH02] and refactoring. [OÓ06, HT07]. There have been SBSE spe-
cial issues in the journals Information and Software Technology (IST), Soft-
ware Maintenance and Evolution (JSME) and Computers and Operations Re-
search (COR) with forthcoming special issues in Empirical Software Engineer-
ing (EMSE), Software Practice and Experience (SPE), Information and Soft-
ware Technology (IST) and IEEE Transactions on Software Engineering (TSE).
There is also an established Symposium on Search Based Software Engineering
(SSBSE), a workshop on Search Based Software Testing (SBST) and a dedicated
track of the Genetic and Evolutionary Computation COnference (GECCO) on
SBSE.

2.1 All you need is love of optimization; you already have

Representation and Fitness

Getting initial results from search based algorithms applied to Software En-
gineering is relatively straightforward. This has made SBSE attractive to re-
searchers and practitioners from the Software Engineering community. Becom-
ing productive as a Search Based Software Engineer does not required a steep
learning curve, nor years of apprenticeship in the techniques, foundations and
nomenclature of Optimization Algorithms. It has been stated [Har07d, HJ01]
that there are only two key ingredients required:

1. The choice of the representation of the problem.

2. The definition of the fitness function.

Of course, a Software Engineer is very likely to have, already at their disposal,
a workable representation for their problem. Furthermore, Harman and Clark
argue that

“Metrics are Fitness functions too”[HC04].

They argue that the extensive body of literature on metrics and software
measurement can be mined for candidate fitness functions. This would allow
Software Engineers to optimize according to software measurements, rather than
merely to passively measure software artifacts. Though every metric may not be
effective, because some may fail to measure what they claim to measure [She95],
this need not be a problem. Indeed, one of the attractive aspects of metrics
as fitness functions, is that such failings on the part of the metrics will become
immediately evident through optimization. Harman and Clark show that there is
a close connection between metrics as fitness functions and empirical assessment
of the representation condition of software measurement.
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2.2 Algorithms

The most widely used algorithms in SBSE work have, hitherto [HMZ09], been
local search, simulated annealing genetic algorithms and genetic programming.
However, other authors have experimented with other search based optimizers
such as parallel EAs [AC08], evolution strategies [AC05], Estimation of Distri-
bution Algorithms (EDAs) [SL08], Scatter Search [BTDD07, AVCTV06, Sag07],
Particle Swarm Optimization (PSO) [LI08, WWW07], Tabu Search [DTBD08]
and Local search [KHC+05].

3 Why Software Engineering is the ‘Killer Application’

for search based optimization

Previous work has considered the motivation for SBSE in terms of the advantages
it offers to the Software Engineer. For instance it has been argued [HMZ09,
Har07b] that SBSE is

1. Scalable, because of the ‘embarrassingly parallel’ [Fos95] nature of the un-
derlying algorithms which can yield orders of magnitude scale up over se-
quential implementations [LB08].

2. Generic, due to the wide prevalence of suitable representations and fitness
functions, right across the Software Engineering spectrum.

3. Robust, due to the ability of search based optimization to cope with noise,
partial data and inaccurate fitness.

4. Insight-rich, as a result of the way in which the search process itself can
shed light on the problems faced by decision makers.

5. Realistic, due to the way in which SBSE caters naturally for multiple com-
peting and conflicting engineering objectives.

These five features of SBSE are important and have been described in more
detail elsewhere [HMZ09, Har07b]. However, most are reasons for the use of
search based optimization in general. They apply equally well to any class of op-
timization problems, both within and without the field of Software Engineering.
This does not make them any less applicable to Software Engineering. However,
it does raise the question as to whether there are any special software-centric rea-
sons why SBSE should be considered to be an attractive, important and valuable
field of study in its own right. That is, we ask:

Are there features of Software Engineering problems that make search
based optimization particularly attractive?

Perhaps unsurprisingly, the author’s answer to this question is: ’yes’. The
rest of this paper seeks to explain why.

In more traditional engineering disciplines, such as mechanical, biomedical,
chemical, electrical and electronic engineering, search based optimization has
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been applied for many years [BW96, CHS98, LT92, PCV95]. These applica-
tions denote a wide spectrum of engineering activity, from well-established tra-
ditional fields of engineering to more recent innovations. However, for each, it
has been possible and desirable, to optimize using search based optimization.
This is hardly surprising. After all, surely engineering is all about optimization.
When we speak of finding an engineering solution, do we not include balanc-
ing competing practical objectives in the best way possible. It should not be
surprising, therefore, that optimization algorithms play a very important role.

In all of these fields of engineering, the application of optimization techniques
provides the engineer with a mechanism to consider many candidate solutions,
searching for those that yield an acceptable balance of objectives. The advent
of automatic high speed computation in the past sixty years has provided a
huge stimulus to the optimization community; it has allowed this search to be
automated. Guided by a fitness function, automated search is one of the most
profitable and archetypal applications of computation. It allows a designer to
focus on the desired properties of a design, without having to care about imple-
mentation details.

It is the advent of software and the platforms on which it executes that
has facilitated enormous breakthroughs in optimization methods and techniques.
However, it is only comparatively recently that Software Engineering has started
to catch up with this trend within the wider engineering community. This seems
curious, since search based optimization can be viewed as a software technology.
Perhaps it reflects the comparatively recent realization that the activity of de-
signing and building software-based systems is, indeed, an engineering activity
and thus one for which an optimization-based world view is important.

When we speak of software we mean more than merely the code. We typically
include requirements, designs, documentation and test cases. We also include the
supporting logical infrastructure of configuration control, development environ-
ments, test harnesses, bug tracking, archives and other virtual information-based
resources that form part of the overall system and its development history. The
important unifying property of all of this information is that it is purely logical
and without any physical manifestation. As every software engineer knows, soft-
ware is different to any and every other engineering artifact; very different. One
cannot see, hear, smell, touch nor taste it because it has no physical manifesta-
tion.

This apparently trite observation is so obvious that its importance can some-
times be overlooked, for it is precisely this virtual nature of software makes it
even better suited to search based optimization than traditional engineering ar-
tifacts. The materials with which we perform the automated search are made of
the same ‘virtual stuff’ as the artifacts we seek to optimize. This has profound
implications for the conduct of search based optimization because it directly
impacts the two key ingredients of representation and fitness (see Figure 1).

In traditional engineering optimization, the artifact to be optimized is often
simulated. This is typically necessary precisely because the artifact to be opti-
mized is a physical entity. For instance, if one wants to optimize and aircraft
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engine, one cannot search the space of real engines; building even a small sub-
set of such candidate engine designs would be prohibitively expensive. Rather,
one builds of model of the engine (in software), capturing, hopefully realistically
and correctly, those aspects of performance that are of interest. Furthermore, in
order to compute fitness some form of simulation of the model is required. This
allows us to explore the space of possible engine models, guided by a simulation
of their likely real fitness.

Modelling and simulation create two layers of indirection and consequent
potential for error. The model may not be entirely accurate. Indeed, if we are
able to build a perfect model, then perhaps we would know so much about the
engineering problem that we would be less likely to need to employ optimization.
The fitness of each candidate model considered is calculated indirectly, in terms
of the performance of the model with respect to some simulation of its real world
behaviour. Once again, this introduces indirection and with it, the potential for
error, imprecision and misunderstanding.

Contrast this traditional, physical engineering scenario with that of SBSE.
For instance, consider the widely studied problem of finding test data (for exam-
ple, to traverse a chosen branch of interest [ABHPWar, HMZ09, McM04]). For
this problem there is no need for a model of the software to be tested nor the
test case to be applied. Rather than modelling the test case, the optimization
is applied directly to a vector which is the input to the program under test.
Furthermore, in order to compute fitness, one need not simulate the execution,
one may simply execute directly.

Of course, some instrumentation is required to facilitate fitness assessment.
This can create issues for measurement if, for example, non–functional properties
are to be optimized [ATF09, HMZ09]. These bare a superficial similarity to those
present with simulations. The instrumented program is not the real program; it
could be thought of as a kind of model. However, the instrumented program is
clearly much closer to the original program under test than a simulation of an
engine is to a real physical engine.

Furthermore, many software testing objectives, such as the structural test
adequacy criteria [ABHPWar, HMZ09, McM04] are entirely unaffected by in-
strumentation and so there is no indirection at all. This observation applies in
may aspects of software engineering. The problem of finding suitable sets of re-
quirements operates on the requirements sets themselves. This is also true for
optimization of regression test sets and for optimization of project plans and
architectures.

Of course, there are some aspects of software systems which are modelled.
Indeed, there is an increasing interest in model driven development. When SBSE
is applied to these models, at the design level [Räi09], it may be the case that
search based optimization for Software Engineering acquires a closer similarity
to search based optimization for Traditional Engineering. Nevertheless, there
will remain many applications for which SBSE is ideally suited to the problem
because the engineering artifact is optimized directly (not in terms of a model)
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and the fitness is computed directly from the artifact itself (not from a simulation
thereof).

4 Conclusions

Search Based Software Engineering (SBSE) is a newly emergent paradigm for
both Software Engineering community and the Metaheuristic Search and op-
timization communities. SBSE has had notable successes and there is an in-
creasingly widespread application of SBSE across the full spectrum of Software
Engineering activities and problems. This paper is essentially a ‘position pa-
per’ that argues that the unique ‘virtual’ property of software as an engineering
material makes it ideally suited among engineering materials for search based
optimization. Software Engineers can build candidate Software Engineering ar-
tifacts with comparative ease and little cost compared to traditional engineers,
faced with physical artifact construction and consequent cost. In general, the
Software Engineer can also measure fitness directly, not in terms of a (possibly
imprecise or misrepresented) simulation of real world operation.
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