
Why the Virtual Nature of Software Makes it

Ideal for Search Based Optimization

Mark Harman

CREST, King’s College London, Strand, London,
WC2R 2LS, United Kingdom.

Abstract. This paper1 provides a motivation for the application of
search based optimization to Software Engineering, an area that has
come to be known as Search Based Software Engineering (SBSE). SBSE
techniques have already been applied to many problems throughout the
Software Engineering lifecycle, with new application domains emerging
on a regular basis. The approach is very generic and therefore finds
wide application in Software Engineering. It facilitates automated and
semi-automated solutions in situations typified by large complex prob-
lem spaces with multiple competing and conflicting objectives. Previ-
ous work has already discussed, in some detail, the advantages of the
SBSE approach for Software Engineering. This paper summarises previ-
ous work and goes further, by arguing that Software Engineering provides
the ideal set of application problems for which optimization algorithms
are supremely well suited.

Key words: SBSE, Search Based Optimization, Search Based Testing,
Metaheuristic Search, Optimization Algorithms

1 Introduction

We often speak of ‘Software Engineering’ without thinking too deeply about
what it means to have a discipline of ‘engineering’ that considers the primary
material to be ‘software’. By considering both the ‘engineering’ aspects of ‘Soft-
ware Engineering’ and also the unique properties of ‘software’ as an engineering
material, this paper makes an argument that search based optimization tech-
niques are ideally suited to Software Engineering.

That is, though all other engineering disciplines have also provided rich
sources of application for search based optimization, it is in its application to
problems in Software Engineering that these techniques can find greatest appli-
cation. This acts as a secondary motivation for the field of SBSE. The primary

1 This paper is written to accompany the author’s keynote presentation at Fundamen-
tal Approaches to Software Engineering (FASE 2010). The talk provides an overview
of SBSE and its applications and motivation. The paper focusses on the argument
that the virtual nature of software makes it ideal for SBSE, since other aspects of
SBSE mentioned in the FASE keynote have been covered by the author’s previous
keynotes and invited papers.



2 Mark Harman

motivation for SBSE comes from the simple observation that these techniques
do, indeed, apply well in other engineering disciplines and that, therefore, should
we wish to regard Software Engineering as truly an engineering discipline, then
it would only be natural to consider the application of search based optimization
techniques. This form of advocacy for SBSE has been put forward by this and
other authors before [CDH+03, HJ01, Har07b, Har07a, Har07c].

The acceptance of SBSE as a well-defined and worthwhile activity within the
rich and diverse tapestry of Software Engineering is reflected by the increasing
number of survey papers on SBSE [ABHPWar, ATF09, HMZ09, McM04, Räi09].
Further evidence for widespread interest and uptake, comes from the many spe-
cial issues, workshops and conferences on the topic. However, this paper seeks
to go a step further. It argues that Software Engineering is not merely an ac-
ceptable subject for the application of search based optimization, but that it is
even better suited than all other areas of engineering activity, as a result of the
very special properties of software as an engineering material.

2 Overview of SBSE

The existing case for SBSE in the literature rests upon the observation that

“Software engineers often face problems associated with the balancing
of competing constraints, trade-offs between concerns and requirement
imprecision. Perfect solutions are often either impossible or impractical
and the nature of the problems often makes the definition of analytical
algorithms problematic.”[HJ01]

The term SBSE was first used by Harman and Jones [HJ01] in 2001. The
term ‘search’ is used to refer to the metaheuristic search–based optimization
techniques. Search Based Software Engineering seeks a fundamental shift of em-
phasis from solution construction to solution description. Rather than devoting
human effort to the task of finding solutions, the search for solutions is automated
as a search, guided by a fitness function, defined by the engineer to capture what
is required rather than how it is to be constructed. In many ways, this approach
to Software Engineering echoes, at the macro level of Software Engineering arti-
facts, the declarative programming approach [DB77], which applies at the code
level; both seek to move attention from the question of ‘how’ a solution is to be
achieved to the question of ‘what’ properties are desirable.

Harman and Jones argued that SBSE could become a coherent field of activ-
ity that combines the expertise and skills of the Metaheuristic Search community
with those of the Software Engineering community. Though there was previous
work on the application of search based optimization to Software Engineering
problems [CCHA94, JES98, TCM98, XES+92], the 2001 paper was the first to
articulate SBSE as a field of study in its own right and to make a case for its
wider study.

Since the 2001 paper, there has been an explosion of SBSE activity, with
evidence for a rapid increase in publications on the topic [HMZ09]. For ex-
ample, SBSE has been applied to testing [BSS02, Bot02, BLS05, GHHD05,



A Motivation for SBSE 3

HHH+04, MHBT06, WBS01], bug fixing [AY08, WNGF09] design, [HHP02,
MM06, SBBP05], requirements, [BRSW01, ZFH08], project management [AC07,
ADH04, KSH02] and refactoring. [OÓ06, HT07]. There have been SBSE spe-
cial issues in the journals Information and Software Technology (IST), Soft-
ware Maintenance and Evolution (JSME) and Computers and Operations Re-
search (COR) with forthcoming special issues in Empirical Software Engineer-
ing (EMSE), Software Practice and Experience (SPE), Information and Soft-
ware Technology (IST) and IEEE Transactions on Software Engineering (TSE).
There is also an established Symposium on Search Based Software Engineering
(SSBSE), a workshop on Search Based Software Testing (SBST) and a dedicated
track of the Genetic and Evolutionary Computation COnference (GECCO) on
SBSE.

2.1 All you need is love of optimization; you already have

Representation and Fitness

Getting initial results from search based algorithms applied to Software En-
gineering is relatively straightforward. This has made SBSE attractive to re-
searchers and practitioners from the Software Engineering community. Becom-
ing productive as a Search Based Software Engineer does not required a steep
learning curve, nor years of apprenticeship in the techniques, foundations and
nomenclature of Optimization Algorithms. It has been stated [Har07d, HJ01]
that there are only two key ingredients required:

1. The choice of the representation of the problem.

2. The definition of the fitness function.

Of course, a Software Engineer is very likely to have, already at their disposal,
a workable representation for their problem. Furthermore, Harman and Clark
argue that

“Metrics are Fitness functions too”[HC04].

They argue that the extensive body of literature on metrics and software
measurement can be mined for candidate fitness functions. This would allow
Software Engineers to optimize according to software measurements, rather than
merely to passively measure software artifacts. Though every metric may not be
effective, because some may fail to measure what they claim to measure [She95],
this need not be a problem. Indeed, one of the attractive aspects of metrics
as fitness functions, is that such failings on the part of the metrics will become
immediately evident through optimization. Harman and Clark show that there is
a close connection between metrics as fitness functions and empirical assessment
of the representation condition of software measurement.



4 Mark Harman

2.2 Algorithms

The most widely used algorithms in SBSE work have, hitherto [HMZ09], been
local search, simulated annealing genetic algorithms and genetic programming.
However, other authors have experimented with other search based optimizers
such as parallel EAs [AC08], evolution strategies [AC05], Estimation of Distri-
bution Algorithms (EDAs) [SL08], Scatter Search [BTDD07, AVCTV06, Sag07],
Particle Swarm Optimization (PSO) [LI08, WWW07], Tabu Search [DTBD08]
and Local search [KHC+05].

3 Why Software Engineering is the ‘Killer Application’

for search based optimization

Previous work has considered the motivation for SBSE in terms of the advantages
it offers to the Software Engineer. For instance it has been argued [HMZ09,
Har07b] that SBSE is

1. Scalable, because of the ‘embarrassingly parallel’ [Fos95] nature of the un-
derlying algorithms which can yield orders of magnitude scale up over se-
quential implementations [LB08].

2. Generic, due to the wide prevalence of suitable representations and fitness
functions, right across the Software Engineering spectrum.

3. Robust, due to the ability of search based optimization to cope with noise,
partial data and inaccurate fitness.

4. Insight-rich, as a result of the way in which the search process itself can
shed light on the problems faced by decision makers.

5. Realistic, due to the way in which SBSE caters naturally for multiple com-
peting and conflicting engineering objectives.

These five features of SBSE are important and have been described in more
detail elsewhere [HMZ09, Har07b]. However, most are reasons for the use of
search based optimization in general. They apply equally well to any class of op-
timization problems, both within and without the field of Software Engineering.
This does not make them any less applicable to Software Engineering. However,
it does raise the question as to whether there are any special software-centric rea-
sons why SBSE should be considered to be an attractive, important and valuable
field of study in its own right. That is, we ask:

Are there features of Software Engineering problems that make search
based optimization particularly attractive?

Perhaps unsurprisingly, the author’s answer to this question is: ’yes’. The
rest of this paper seeks to explain why.

In more traditional engineering disciplines, such as mechanical, biomedical,
chemical, electrical and electronic engineering, search based optimization has



A Motivation for SBSE 5

been applied for many years [BW96, CHS98, LT92, PCV95]. These applica-
tions denote a wide spectrum of engineering activity, from well-established tra-
ditional fields of engineering to more recent innovations. However, for each, it
has been possible and desirable, to optimize using search based optimization.
This is hardly surprising. After all, surely engineering is all about optimization.
When we speak of finding an engineering solution, do we not include balanc-
ing competing practical objectives in the best way possible. It should not be
surprising, therefore, that optimization algorithms play a very important role.

In all of these fields of engineering, the application of optimization techniques
provides the engineer with a mechanism to consider many candidate solutions,
searching for those that yield an acceptable balance of objectives. The advent
of automatic high speed computation in the past sixty years has provided a
huge stimulus to the optimization community; it has allowed this search to be
automated. Guided by a fitness function, automated search is one of the most
profitable and archetypal applications of computation. It allows a designer to
focus on the desired properties of a design, without having to care about imple-
mentation details.

It is the advent of software and the platforms on which it executes that
has facilitated enormous breakthroughs in optimization methods and techniques.
However, it is only comparatively recently that Software Engineering has started
to catch up with this trend within the wider engineering community. This seems
curious, since search based optimization can be viewed as a software technology.
Perhaps it reflects the comparatively recent realization that the activity of de-
signing and building software-based systems is, indeed, an engineering activity
and thus one for which an optimization-based world view is important.

When we speak of software we mean more than merely the code. We typically
include requirements, designs, documentation and test cases. We also include the
supporting logical infrastructure of configuration control, development environ-
ments, test harnesses, bug tracking, archives and other virtual information-based
resources that form part of the overall system and its development history. The
important unifying property of all of this information is that it is purely logical
and without any physical manifestation. As every software engineer knows, soft-
ware is different to any and every other engineering artifact; very different. One
cannot see, hear, smell, touch nor taste it because it has no physical manifesta-
tion.

This apparently trite observation is so obvious that its importance can some-
times be overlooked, for it is precisely this virtual nature of software makes it
even better suited to search based optimization than traditional engineering ar-
tifacts. The materials with which we perform the automated search are made of
the same ‘virtual stuff’ as the artifacts we seek to optimize. This has profound
implications for the conduct of search based optimization because it directly
impacts the two key ingredients of representation and fitness (see Figure 1).

In traditional engineering optimization, the artifact to be optimized is often
simulated. This is typically necessary precisely because the artifact to be opti-
mized is a physical entity. For instance, if one wants to optimize and aircraft



6 Mark Harman

Candidate Solution

Modelling

Model of

Candidate Solution

Simulation

Simulated

Fitness
Fitness

Candidate Solution

Optimization

Algorithm

Traditional
Engineering

Software
Engineering

potential for error 

and imprecision

potential for error 

and imprecision

Fig. 1. Direct Application of Optimization is Possible with SBSE



A Motivation for SBSE 7

engine, one cannot search the space of real engines; building even a small sub-
set of such candidate engine designs would be prohibitively expensive. Rather,
one builds of model of the engine (in software), capturing, hopefully realistically
and correctly, those aspects of performance that are of interest. Furthermore, in
order to compute fitness some form of simulation of the model is required. This
allows us to explore the space of possible engine models, guided by a simulation
of their likely real fitness.

Modelling and simulation create two layers of indirection and consequent
potential for error. The model may not be entirely accurate. Indeed, if we are
able to build a perfect model, then perhaps we would know so much about the
engineering problem that we would be less likely to need to employ optimization.
The fitness of each candidate model considered is calculated indirectly, in terms
of the performance of the model with respect to some simulation of its real world
behaviour. Once again, this introduces indirection and with it, the potential for
error, imprecision and misunderstanding.

Contrast this traditional, physical engineering scenario with that of SBSE.
For instance, consider the widely studied problem of finding test data (for exam-
ple, to traverse a chosen branch of interest [ABHPWar, HMZ09, McM04]). For
this problem there is no need for a model of the software to be tested nor the
test case to be applied. Rather than modelling the test case, the optimization
is applied directly to a vector which is the input to the program under test.
Furthermore, in order to compute fitness, one need not simulate the execution,
one may simply execute directly.

Of course, some instrumentation is required to facilitate fitness assessment.
This can create issues for measurement if, for example, non–functional properties
are to be optimized [ATF09, HMZ09]. These bare a superficial similarity to those
present with simulations. The instrumented program is not the real program; it
could be thought of as a kind of model. However, the instrumented program is
clearly much closer to the original program under test than a simulation of an
engine is to a real physical engine.

Furthermore, many software testing objectives, such as the structural test
adequacy criteria [ABHPWar, HMZ09, McM04] are entirely unaffected by in-
strumentation and so there is no indirection at all. This observation applies in
may aspects of software engineering. The problem of finding suitable sets of re-
quirements operates on the requirements sets themselves. This is also true for
optimization of regression test sets and for optimization of project plans and
architectures.

Of course, there are some aspects of software systems which are modelled.
Indeed, there is an increasing interest in model driven development. When SBSE
is applied to these models, at the design level [Räi09], it may be the case that
search based optimization for Software Engineering acquires a closer similarity
to search based optimization for Traditional Engineering. Nevertheless, there
will remain many applications for which SBSE is ideally suited to the problem
because the engineering artifact is optimized directly (not in terms of a model)



8 Mark Harman

and the fitness is computed directly from the artifact itself (not from a simulation
thereof).

4 Conclusions

Search Based Software Engineering (SBSE) is a newly emergent paradigm for
both Software Engineering community and the Metaheuristic Search and op-
timization communities. SBSE has had notable successes and there is an in-
creasingly widespread application of SBSE across the full spectrum of Software
Engineering activities and problems. This paper is essentially a ‘position pa-
per’ that argues that the unique ‘virtual’ property of software as an engineering
material makes it ideally suited among engineering materials for search based
optimization. Software Engineers can build candidate Software Engineering ar-
tifacts with comparative ease and little cost compared to traditional engineers,
faced with physical artifact construction and consequent cost. In general, the
Software Engineer can also measure fitness directly, not in terms of a (possibly
imprecise or misrepresented) simulation of real world operation.

5 Author Biography

Mark Harman is professor of Software Engineering in the Department of Com-
puter Science at King’s College London. He is widely known for work on source
code analysis and testing and he was instrumental in the founding of the field of
Search Based Software Engineering, the topic of this keynote. He has given 14
keynote invited talks on SBSE and its applications in the past four years. Pro-
fessor Harman is the author of over 150 refereed publications, on the editorial
board of 7 international journals and has served on 90 programme committees.
He is director of the CREST centre at King’s College London.

6 Acknowledgements

The author is grateful for ongoing discussion and collaboration with many other
colleagues in the SBSE community, sadly too numerous to list by name here. His
work is currently funded by the EPSRC project Software Engineering by Auto-
mated Search (EP/D050863, SEBASE, 2006-2011), for which the other principal
investigators are John Clark (University of York) and Xin Yao (University of
Birmingham) and by an EPSRC platform grant (EP/G060525, CREST, 2009-
2014). He was also supported by the recently completed EU Specific Targeted
Research Project: Evolutionary Testing (IST-33472, EvoTest, 2006-2009). This
paper draws on work done by the author on these projects.



Bibliography

[ABHPWar] Shaukat Ali, Lionel C. Briand, Hadi Hemmati, and Rajwinder Kaur
Panesar-Walawege. A systematic review of the application and
empirical investigation of search-based test-case generation. IEEE
Transactions on Software Engineering, To appear.

[AC05] Enrique Alba and Francisco Chicano. Software Testing with Evo-
lutionary Strategies. In Proceedings of the 2nd Workshop on Rapid
Integration of Software Engineering Techniques (RISE ’05), volume
3943 of Lecture Notes in Computer Science, pages 50–65, Herak-
lion, Crete, Greece, 8-9 September 2005. Springer.

[AC07] Enrique Alba and Francisco Chicano. Software Project Manage-
ment with GAs. Information Sciences, 177(11):2380–2401, June
2007.

[AC08] Enrique Alba and Francisco Chicano. Observations in using Paral-
lel and Sequential Evolutionary Algorithms for Automatic Software
Testing. Computers & Operations Research, 35(10):3161–3183, Oc-
tober 2008.

[ADH04] Giulio Antoniol, Massimiliano Di Penta, and Mark Harman.
Search-based Techniques for Optimizing Software Project Resource
Allocation. In Proceedings of the 2004 Conference on Genetic
and Evolutionary Computation (GECCO ’04), volume 3103/2004
of Lecture Notes in Computer Science, pages 1425–1426, Seattle,
Washington, USA, 26-30 June 2004. Springer Berlin / Heidelberg.

[ATF09] Wasif Afzal, Richard Torkar, and Robert Feldt. A systematic re-
view of search-based testing for non-functional system properties.
Information and Software Technology, 51(6):957–976, 2009.

[AVCTV06] Ramón Alvarez-Valdes, E. Crespo, José Manuel Tamarit, and
F. Villa. A Scatter Search Algorithm for Project Scheduling under
Partially Renewable Resources. Journal of Heuristics, 12(1-2):95–
113, March 2006.

[AY08] Andrea Arcuri and Xin Yao. A Novel Co-evolutionary Approach
to Automatic Software Bug Fixing. In Proceedings of the IEEE
Congress on Evolutionary Computation (CEC ’08), pages 162–168,
Hongkong, China, 1-6 June 2008. IEEE Computer Society.

[BLS05] Lionel C. Briand, Yvan Labiche, and Marwa Shousha. Stress Test-
ing Real-Time Systems with Genetic Algorithms. In Proceedings
of the 2005 Conference on Genetic and Evolutionary Computation
(GECCO ’05), pages 1021–1028, Washington, D.C., USA, 25-29
June 2005. ACM.

[Bot02] Leonardo Bottaci. Instrumenting Programs with Flag Variables
for Test Data Search by Genetic Algorithms. In Proceedings of
the 2002 Conference on Genetic and Evolutionary Computation



10 Mark Harman

(GECCO ’02), pages 1337–1342, New York, USA, 9-13 July 2002.
Morgan Kaufmann Publishers.

[BRSW01] A. J. Bagnall, V. J. Rayward-Smith, and I. M. Whittley. The
Next Release Problem. Information and Software Technology,
43(14):883–890, December 2001.

[BSS02] André Baresel, Harmen Sthamer, and Michael Schmidt. Fitness
Function Design to Improve Evolutionary Structural Testing. In
Proceedings of the 2002 Conference on Genetic and Evolutionary
Computation (GECCO ’02), pages 1329–1336, New York, USA,
9-13 July 2002. Morgan Kaufmann Publishers.

[BTDD07] Raquel Blanco, Javier Tuya, Eugenia Daz, and B. Adenso Daz.
A Scatter Search Approach for Automated Branch Coverage in
Software Testing. International Journal of Engineering Intelligent
Systems (EIS), 15(3):135–142, September 2007.

[BW96] Peter J. Bentley and Jonathan P. Wakefield. Generic representa-
tion of solid geometry for genetic search. Microcomputers in Civil
Engineering, 11(3):153–161, 1996.

[CCHA94] Carl K. Chang, Chikuang Chao, Su-Yin Hsieh, and Yahya Alsalqan.
SPMNet: a Formal Methodology for Software Management. In Pro-
ceedings of the 18th Annual International Computer Software and
Applications Conference (COMPSAC ’94), pages 57–57, Taipei,
Taiwan, 9-11 November 1994. IEEE.

[CDH+03] John Clark, José Javier Dolado, Mark Harman, Robert Mark Hi-
erons, Bryan Jones, Mary Lumkin, Brian Mitchell, Spiros Man-
coridis, Kearton Rees, Marc Roper, and Martin Shepperd. Refor-
mulating software engineering as a search problem. IEE Proceedings
— Software, 150(3):161–175, 2003.

[CHS98] O. Cordón, F. Herrera, and L. Sánchez. Evolutionary learning pro-
cesses for data analysis in electrical engineering applications. In
D. Quagliarella, J. Périaux, C. Poloni, and G. Winter, editors, Ge-
netic Algorithms and Evolution Strategy in Engineering and Com-
puter Science, pages 205–224. John Wiley and Sons, Chichester,
1998.

[DB77] John Darlington and Rod M. Burstall. A tranformation system for
developing recursive programs. Journal of the ACM, 24(1):44–67,
1977.

[DTBD08] Eugenia Dı́az, Javier Tuya, Raquel Blanco, and José Javier Dolado.
A Tabu Search Algorithm for Structural Software Testing. Com-
puters & Operations Research, 35(10):3052–3072, October 2008.

[Fos95] Ian Foster. Designing and building parallel programs:Concepts and
tools for parallel software. Addison-Wesley, 1995.

[GHHD05] Qiang Guo, Robert Mark Hierons, Mark Harman, and Karnig
Derderian. Constructing Multiple Unique Input/Output Sequences
using Evolutionary Optimisation Techniques. IEE Proceedings -
Software, 152(3):127–140, June 2005.



A Motivation for SBSE 11

[Har07a] Mark Harman. Automated test data generation using search based
software engineering (keynote). In 2nd Workshop on Automation
of Software Test (AST 07) at the 29th International Conference on
Software Engineering (ICSE 2007), Minneapolis, USA, 2007.

[Har07b] Mark Harman. The current state and future of search based soft-
ware engineering. In Lionel Briand and Alexander Wolf, editors,
Future of Software Engineering 2007, pages 342–357, Los Alamitos,
California, USA, 2007. IEEE Computer Society Press.

[Har07c] Mark Harman. Search based software engineering for program com-
prehension (keynote). In 15th International Conference on Program
Comprehension (ICPC 2007), Banff, Canada, 2007.

[Har07d] Mark Harman. The Current State and Future of Search Based Soft-
ware Engineering. In Lionel Briand and Alexander Wolf, editors,
Proceedings of International Conference on Software Engineering
/ Future of Software Engineering 2007 (ICSE/FOSE ’07), pages
342–357, Minneapolis, Minnesota, USA, 20-26 May 2007. IEEE
Computer Society.

[HC04] Mark Harman and John A. Clark. Metrics Are Fitness Functions
Too. In Proceedings of the 10th IEEE International Symposium
on Software Metrics (METRICS ’04), pages 58–69, Chicago, USA,
11-17 September 2004. IEEE Computer Society.

[HHH+04] Mark Harman, Lin Hu, Robert M. Hierons, Joachim Wegener, Har-
men Sthamer, André Baresel, and Marc Roper. Testability Trans-
formation. IEEE Transaction on Software Engineering, 30(1):3–16,
January 2004.

[HHP02] Mark Harman, Robert Hierons, and Mark Proctor. A New Rep-
resentation and Crossover Operator for Search-based Optimization
of Software Modularization. In Proceedings of the 2002 Conference
on Genetic and Evolutionary Computation (GECCO ’02), pages
1351–1358, New York, USA, 9-13 July 2002. Morgan Kaufmann
Publishers.

[HJ01] Mark Harman and Bryan F. Jones. Search-based Software Engi-
neering. Information & Software Technology, 43(14):833–839, De-
cember 2001.

[HMZ09] Mark Harman, Afshin Mansouri, and Yuanyuan Zhang. Search
based software engineering: A comprehensive analysis and review
of trends techniques and applications. Technical Report TR-09-03,
Department of Computer Science, King’s College London, April
2009.

[HT07] Mark Harman and Laurence Tratt. Pareto Optimal Search Based
Refactoring at the Design Level. In Proceedings of the 9th annual
Conference on Genetic and Evolutionary Computation (GECCO
’07), pages 1106–1113, London, England, 7-11 July 2007. ACM.

[JES98] Bryan F. Jones, David E. Eyres, and Harmen-H. Sthamer. A Strat-
egy for using Genetic Algorithms to Automate Branch and Fault-
based Testing. Computer Journal, 41(2):98–107, 1998.



12 Mark Harman

[KHC+05] Bogdan Korel, Mark Harman, S. Chung, P. Apirukvorapinit,
R. Gupta, and Q. Zhang. Data Dependence Based Testability
Transformation in Automated Test Generation. In Proceedings of
the 16th IEEE International Symposium on Software Reliability
Engineering (ISSRE ’05), pages 245–254, Chicago, Illinios, USA,
November 2005. IEEE Computer Society.

[KSH02] Colin Kirsopp, Martin Shepperd, and John Hart. Search Heuristics,
Case-based Reasoning And Software Project Effort Prediction. In
Proceedings of the 2002 Conference on Genetic and Evolutionary
Computation (GECCO ’02), pages 1367–1374, New York, 9-13 July
2002. Morgan Kaufmann Publishers.

[LB08] William B. Langdon and Wolfgang Banzhaf. A SIMD interpreter
for genetic programming on GPU graphics cards. In Proceedings of
the 11th European Conference on Genetic Programming, EuroGP
2008, volume 4971 of Lecture Notes in Computer Science, pages
73–85, Naples, 26-28 March 2008. Springer.

[LI08] Raluca Lefticaru and Florentin Ipate. Functional Search-based
Testing from State Machines. In Proceedings of the First Inter-
national Conference on Software Testing, Verfication and Valida-
tion (ICST 2008), pages 525–528, Lillehammer, Norway, 9-11 April
2008. IEEE Computer Society.

[LT92] J. E. Labossiere and N. Turrkan. On the optimization of the tensor
polynomial failure theory with a genetic algorithm. Transactions of
the Canadian Society for Mechanical Engineering, 16(3-4):251–265,
1992.

[McM04] Phil McMinn. Search-based Software Test Data Generation: A
Survey. Software Testing, Verification and Reliability, 14(2):105–
156, 2004.

[MHBT06] Phil McMinn, Mark Harman, David Binkley, and Paolo Tonella.
The Species per Path Approach to Search-based Test Data Gen-
eration. In Proceedings of the 2006 International Symposium on
Software Testing and Analysis (ISSTA ’06), pages 13–24, Portland,
Maine, USA., 17-20 July 2006. ACM.

[MM06] Brian S. Mitchell and Spiros Mancoridis. On the Automatic Modu-
larization of Software Systems using the Bunch Tool. IEEE Trans-
actions on Software Engineering, 32(3):193–208, March 2006.

[OÓ06] Mark O’Keeffe and Mel Ó Cinnéide. Search-based Software Main-
tenance. In Proceedings of the Conference on Software Maintenance
and Reengineering (CSMR ’06), pages 249–260, Bari, Italy, 22-24
March 2006. IEEE Computer Society.

[PCV95] R. Poli, S. Cagnoni, and G. Valli. Genetic design of optimum linear
and nonlinear QRS detectors. IEEE Transactions on Biomedical
Engineering, 42(11):1137–41, November 1995.

[Räi09] Outi Räihä. A Survey on Search-Based Software Design. Technical
Report D-2009-1, Department of Computer Sciences University of
Tampere, March 2009.



A Motivation for SBSE 13

[Sag07] Ramón Sagarna. An Optimization Approach for Software Test
Data Generation: Applications of Estimation of Distribution Al-
gorithms and Scatter Search. PhD thesis, University of the Basque
Country, San Sebastian, Spain, January 2007.

[SBBP05] Olaf Seng, Markus Bauer, Matthias Biehl, and Gert Pache. Search-
based Improvement of Subsystem Decompositions. In Proceedings
of the 2005 Conference on Genetic and Evolutionary Computation
(GECCO ’05), pages 1045–1051, Washington, D.C., USA, 25-29
June 2005. ACM.

[She95] Martin J. Shepperd. Foundations of software measurement. Pren-
tice Hall, 1995.

[SL08] Ramón Sagarna and José A. Lozano. Dynamic Search Space Trans-
formations for Software Test Data Generation. Computational In-
telligence, 24(1):23–61, February 2008.

[TCM98] Nigel Tracey, John Clark, and Keith Mander. The Way Forward for
Unifying Dynamic Test-Case Generation: the Optimisation-based
Approach. In Proceedings of the IFIP International Workshop on
Dependable Computing and Its Applications (DCIA ’98), pages
169–180, Johannesburg, South Africa, 12-14 January 1998. Uni-
versity of the Witwatersrand.

[WBS01] Joachim Wegener, André Baresel, and Harmen Sthamer. Evolu-
tionary Test Environment for Automatic Structural Testing. In-
formation and Software Technology Special Issue on Software En-
gineering using Metaheuristic Innovative Algorithms, 43(14):841–
854, December 2001.

[WNGF09] Westley Weimer, Thanh Vu Nguyen, Claire Le Goues, and
Stephanie Forrest. Automatically finding patches using genetic pro-
gramming. In International Conference on Software Engineerign
(ICSE 2009), pages 364–374, Vancouver, Canada, 2009.

[WWW07] Andreas Windisch, Stefan Wappler, and Joachim Wegener. Apply-
ing Particle Swarm Optimization to Software Testing. In Proceed-
ings of the 9th annual Conference on Genetic and Evolutionary
Computation (GECCO ’07), pages 1121–1128, London, England,
7-11 July 2007. ACM.

[XES+92] S. Xanthakis, C. Ellis, C. Skourlas, A. Le Gall, S. Katsikas, and
K. Karapoulios. Application of Genetic Algorithms to Software
Testing. In Proceedings of the 5th International Conference on
Software Engineering and Applications, pages 625–636, Toulouse,
France, 7-11 December 1992.

[ZFH08] Yuanyuan Zhang, Anthony Finkelstein, and Mark Harman. Search
Based Requirements Optimisation: Existing Work & Challenges.
In Proceedings of the 14th International Working Conference, Re-
quirements Engineering: Foundation for Software Quality (REFSQ
’08), volume 5025 of LNCS, pages 88–94, Montpellier, France, 16-
17 June 2008. Springer.


