

SScchhooooll ooff PPhhyyssiiccaall SScciieenncceess aanndd EEnnggiinneeeerriinngg

MMSScc iinn AAddvvaanncceedd SSooffttwwaarree EEnnggiinneeeerriinngg

22000055

AAuuttoommaatteedd RReeggrreessssiioonn TTeessttiinngg ooff WWeebb

AApppplliiccaattiioonnss

PPrroojjeecctt RReeppoorrtt

bbyy

NNaaddiiaa AAllsshhaahhwwaann

SSuuppeerrvviisseedd bbyy

PPrrooffeessssoorr MMaarrkk HHaarrmmaann

22
nndd
 SSeepptteemmbbeerr 22000055

 I

AAcckknnoowwlleeddggmmeennttss

I would like to express my gratitude to the following people who provided me with

help and support through out this project.

Professor Mark Harman for his unique way of supervision that increased the learning

outcome of this project and his valuable advice, constant support and helpful insight.

Andrew Macinnes from the BBC for taking an interest into this project.

The British Council and BEA Systems for sponsoring me and giving me the

opportunity to be here.

My friend Gihan Thanushka for his help with the format of the report.

My friends Gassan Almansour and Sara Alghabban for volunteering as external

testers for the evaluation.

And last but not least, my family – my mother and father, Iman, Hatem, Moayad,

Issam and Salah - for their ongoing love, care and support.

 II

AAbbssttrraacctt

CCoonnssiiddeerriinngg wweebb aapppplliiccaattiioonnss eexxppaannddiinngg uussee iinn ddiiffffeerreenntt ccrriittiiccaall ffiieellddss ssuucchh aass

bbuussiinneesssseess aanndd mmeeddiiccaall aanndd ggoovveerrnnmmeennttaall ssyysstteemmss,, tthhee nneeeedd ffoorr qquuaalliittyy aassssuurraannccee

tteecchhnniiqquueess tthhaatt ttaakkee iinnttoo aaccccoouunntt tthhee ssppeecciiaall cchhaarraacctteerriissttiiccss ooff wweebb aapppplliiccaattiioonnss iiss

pprreessssiinngg.. WWeebb aapppplliiccaattiioonnss cchhaannggee mmoorree ffrreeqquueennttllyy tthhaann ttrraaddiittiioonnaall ssooffttwwaarree wwhhiicchh

mmaakkeess rreeggrreessssiioonn tteessttiinngg aa kkeeyy ffaaccttoorr iinn tthheeiirr ssuucccceessss.. HHoowweevveerr,, wwiitthh tthhee hhiigghh

pprreessssuurree nnaattuurree ooff tthhee ddeevveellooppmmeenntt eennvviirroonnmmeenntt,, wweellll ppllaannnneedd tthhoorroouugghh tteessttiinngg iiss

oofftteenn ssaaccrriiffiicceedd iinn ffaavvoorr ooff mmeeeettiinngg ddeeaaddlliinneess.. AApppplliiccaattiioonnss rreelleeaasseedd wwiitthh bbuuggss aanndd

ddeeffeeccttss ccoouulldd rreessuulltt iinn tthhee lloossss ooff ccuussttoommeerr ttrruusstt aanndd ppootteennttiiaall pprrooffiitt..

TThhee aannsswweerr ttoo tthhiiss pprroobblleemm iiss aauuttoommaatteedd tteessttiinngg.. AAlltthhoouugghh mmaannyy ttoooollss eexxiisstt ffoorr

aassppeeccttss ssuucchh aass llooaadd aanndd sseeccuurriittyy tteessttiinngg oorr lliinnkk aanndd HHTTMMLL vvaalliiddaattoorrss,, aauuttoommaatteedd

ffuunnccttiioonnaall tteessttiinngg iiss lliimmiitteedd.. EExxiissttiinngg ttoooollss aarree ccaappttuurree//rreeppllaayy ttoooollss oorr tteesstt ccaassee

ffrraammeewwoorrkkss wwhhiicchh aarree bbootthh nnoott ffuullllyy aauuttoommaatteedd.. EEmmppllooyyiinngg uusseerr sseessssiioonn ddaattaa iinn

tteessttiinngg hhaass bbeeeenn ssuuggggeesstteedd aanndd pprroovveedd ttoo bbee eeffffeeccttiivvee.. HHoowweevveerr,, iiff tthhee ssttrruuccttuurree ooff

tthhee wweebb aapppplliiccaattiioonn oorr tthhee ffoorrmmaatt ooff tthhee rreeqquueessttss hhaass bbeeeenn aalltteerreedd,, tthhee pprreevviioouussllyy

rreeccoorrddeedd sseessssiioonn ddaattaa wwoouulldd bbee ooff nnoo uussee aanndd wwoouulldd ffaaiill iiff rruunn aass aa tteesstt ssuuiittee..

TThhiiss pprroojjeecctt aatttteemmppttss ttoo ffiinndd aa ssoolluuttiioonn tthhaatt wwoouulldd mmaakkee aauuttoommaatteedd rreeggrreessssiioonn tteessttiinngg

ooff wweebb aapppplliiccaattiioonnss ppoossssiibbllee.. TThhee tteecchhnniiqquuee rreellaayyss oonn uussiinngg sseessssiioonn ddaattaa ffoorr tteessttiinngg

bbuutt ffiinnddss aa ssoolluuttiioonn ttoo tthhee pprroobblleemm ooff tthhee aaffffeecctt ooff wweebb aapppplliiccaattiioonn mmooddiiffiiccaattiioonnss oonn

tthheeiirr uusseeffuullnneessss bbyy aauuttoommaattiiccaallllyy aaddjjuussttiinngg tthhee llooggggeedd ddaattaa aaccccoorrddiinngg ttoo tthhee cchhaannggeess..

LLooccaattiinngg tthhee cchhaannggeess wwiillll bbee ddoonnee bbyy sseemmii wwhhiittee bbooxx aannaallyyssiiss aanndd aauuttoommaatteedd ffoorrmm

ffiilllliinngg aanndd ssuubbmmiissssiioonn.. TThhee ssoolluuttiioonn sshhoouulldd bbee aass ggeenneerriicc aanndd aauuttoommaatteedd aass ppoossssiibbllee..

TThhee pprroojjeecctt pprroovveedd bbyy pprraaccttiiccee tthhaatt tthhiiss tteecchhnniiqquuee iiss mmoosstt uusseeffuull wwiitthh aapppplliiccaattiioonnss

wwhheerree tthhee cchhaannggeess aarree mmoossttllyy ttoo ffoorrmm ffiieellddss aanndd ssttrruuccttuurree.. HHoowweevveerr,, iiff ffiillee nnaammeess aarree

cchhaannggeedd oorr ppaaggeess aarree ddeelleetteedd tthhee aammoouunntt ooff rreeuusseedd oolldd ddaattaa ddeeccrreeaasseess

pprrooppoorrttiioonnaallllyy ttoo tthhee cchhaannggeess mmaaddee.. TThhee rreessuullttss aaccccoommpplliisshheedd bbyy tthhiiss ttooooll ppooiinntt ttoo aa

nneeww ddiirreeccttiioonn iinn aauuttoommaattiioonn ooff tteessttiinngg tthhaatt ccoouulldd lleeaadd ttoo ffaasstteerr aanndd eeffffoorrttlleessss qquuaalliittyy

aassssuurraannccee..

 III

TTaabbllee ooff CCoonntteennttss

1 Introduction 1

1.1 Objective 2
1.2 Project Definition 3
1.3 Road Map 3

2 Background 4

2.1. Web Quality Assurance and Testing 4
2.2. Functionality Testing Importance 5
2.3. Capture/Replay Tools 6
2.4. Test Script Frameworks 6
2.5. Structural / White Box Analysis 7

2.5.1. Definition and Criteria 7
2.5.2. Related Work 8
2.5.3. Ricca and Tonella's Approach 8
2.5.4. Conclusion 9

2.6. Web Spiders 9
2.7. Form Filling 11
2.8. User Session Data 12

2.8.1. Definition and Uses 12
2.8.2. Issues 12
2.8.3. Related Work 12

3 Specification and Design 14

3.1. General Approach and Scope 14

3.1.1. General Approach 14
3.1.2. Scope 14

3.2. Analyzing the Modified Web Application 14
3.2.1. Main Concerns 14
3.2.2. Approach 14
3.2.3. JSpider 15
3.2.4. Form Filling 16

3.3. Constructing Test Cases from the Analysis 16
3.3.1. Approach 16
3.3.2. Test Case Generation 16

3.4. Converting User Session Data 17
3.4.1. General Assumptions 17
3.4.2. Matching Sessions to Cases 17

3.5. User Interface 20
3.6. Data and Attributes 21
3.7. General Architecture 22

3.7.1. System Architecture 22
3.7.2. Tools and Techniques 22
3.7.3. Development Methodology 23

4 Implementation 24

4.1. Overview 24
4.2. JSpider 25

4.2.1. Objective 25
4.2.2. Analysis 25
4.2.3. Modifications 26

4.3. Constructor 27
4.3.1. The Process 27
4.3.2. Main Methods and Classes 28

 IV

4.4. UploadSessions 29
4.4.1. The Process 29
4.4.2. Parsing Session Files 29
4.4.3. Main Methods and Classes 29

4.5. Converter 29
4.5.1. Pre Processing 30
4.5.2. Rewriting URLs 31
4.5.3. Adjusting Sequences 31
4.5.4. Main Classes and Methods 31

4.6. Database 33
4.6.1. Database Tables 33
4.6.2. Classes and Methods 33

4.7. User Interface 34

5 Testing 35

5.1. Test Strategy 35

5.1.1. JSpider Testing 35
5.1.2. Testing of the System as a Whole 35

5.2. Results and Analysis 35

6 Evaluation 36

6.1. Aim 36
6.2. Approach 36
6.3. Variables and Metrics 37
6.4. Recording Session Data 37

6.4.1. Set Up of the Web Application 37
6.4.2. Logging of Requests 38

6.5. Modification of the Web Application 38
6.6. Execution and Results 38
6.7. Analysis and Conclusion 40

7 Future Work 42

8 Conclusion 43

8.1. Achievements and Interpretation of Results 43
8.2. Extensions and Enhancements 43
8.3. Discussion 44

9 References 45

10 Glossary 47

11 Appendix A 48

11.1. ER-Diagrams 48

11.1.1. Test Case Data ER-Diagram 48
11.1.2. Session Data ER-Diagram 48

11.2. Table Attribute Descriptions 49
11.2.1. JSpider Tables 49
11.2.2. New Tables 49

12 Appendix B 52

12.1. Log File Standard Schema 52
12.2. Code Listings and Information 52

 V

13 Appendix C 53

13.1. Testing Outcomes 53

14 Appendix D 55

15 Appendix E 56

16 Appendix F 61

16.1. System Directory Structure 61
16.2. Code Listings and Information 61

 VI

LLiisstt ooff FFiigguurreess aanndd TTaabblleess

1 Tables

Table 1: handling different input types in forms 26
Table 2: Shop Application Information 37
Table 3: modification Strategy for web application 38
Table 4: Execution Times of Uploader and Converter based on Number of Sessions 39
Table 5: Execution Times of JSpider and Constructor based on Application Size 39
Table 6: Number of Session Requests Reused in the New Log File 39

2 Figures

Figure 1: Web Application Lifecycle and its Effect on the Usefulness of Session Data 2
Figure 2: Typical Web Application Structure 5
Figure 3: Sample ReWeb Output 9
Figure 4: Simple Form Example 11
Figure 5: comparison of the effectiveness of different white box and session data techniques 13
Figure 6: JSpider Structure 15
Figure 7: Graph Structure of a Web Application Showing Consructed Paths 16
Figure 8: URL Before and After Web Application was Modified 17
Figure 9: State Chart of a Web Application before and after Modifications 18
Figure 10: Sequence Adjusting – dealing with a deleted page 18
Figure 11: Sequence Adjusting – dealing with request added between two previously
consecutive requests

19

Figure 12: Sequence Adjusting – dealing with a deleted link where no sequence of requests can
be found to connect the two

19

Figure 13: Screen Layout of User Interface 20
Figure 14: Interaction between the System and Data 21
Figure 15: General Architecture of the System 22
Figure 16: Waterfall Model 23
Figure 17: Internal Structure of the System 24
Figure 18: Internal View on the way the Structure is Stored 25
Figure 19: The Way Reference Table is Used to Create Test Cases 27
Figure 20: The way Constructed Test Cases are Stored 28
Figure 21: ID Mapping between Test Case and Session URLs 30
Figure 22: Implementation of URL Rewriting 31
Figure 23: Database Tables 33
Figure 24: User Interface 34
Figure 25: User Interface – Error Message 34
Figure 26: Online Book Shop 37
Figure 27: Relationship between Execution Time and Number of Sessions for the Uploader and
Converter

40

Figure 28: Relationship between Execution Times and Application Size for JSpider and
Constructor

40

Figure 29: Reused Session Requests 41
Figure 30: Relationship between Changes Made and Sessions Reused 41

Chapter 1: Introduction

 1

11 IInnttrroodduuccttiioonn

User behavior while visiting a web application is the best representation of its most

common use. Therefore, logging user's actions and using them later for testing would

result in a very effective and almost effortless way of testing and insuring web

application quality. However, web applications change rapidly and if those changes

affect the structure of requests, the recorded data becomes invalid. Finding a way to

automatically adjust this data to those changes would solve the problem and result in

a step forward for automation of web application testing.

The importance of web applications has been growing in recent years. Nowadays

they are widely used for businesses, scientific and medical purposes such as

diagnostic based expert systems and for government organizations. Many legacy

systems have been linked to a web front end to take advantage of functionalities

provided by the web. E-banking, e-billing, online stock exchange and other critical

systems raise the demand for more reliable and bug free web systems.

The challenge here is greater for several reasons; Usage of web systems is

unpredictable and can change drastically from one day to the next and hits can rise

from several hundreds to several thousands if the website for example was caught by

a search engine. Web applications change more frequently in the form of incremental

changes over short periods of time. Also, they are usually composed of multiple

intermingled languages. Finally, web applications have complex multi tiered

architectures.

Web application testing and verification is a relatively new field. Existing testing tools

mostly cover navigation and configuration testing, usability testing, security and

performance testing, link checking tools and HTML validators. However, with the

escalating amount of interactive web applications, that expect input from the user and

produce output, the demand for functional testing tools has risen. Existing functional

testing tools can be grouped into capture/ replay tools and frameworks and wizards

to create and run test cases.

A new direction in web testing is to use previously recorded user session data for

regression testing. Session data is the set of actions a user executes from entering a

web application until leaving it. This data is in the form of a sequence of URLs with

Chapter 1: Introduction

 2

their related field-value pairs if any. This data can be recorded easily by minor

modifications to the application's code or by enabling the log option on the server.

The advantage of using session data in testing is that since it represents authentic

user behavior it would be more realistic and more likely to expose bugs. Usually after

a system goes online, all the hidden defects that were not caught during the testing

period would be detected and reported either by users complaints or on the servers

logs. Therefore, if this can be duplicated during testing it could result in a more

effective test process. However, whenever the web application is modified in a way

that affects its structure and input parameters large parts of this session data become

useless.

Figure 1: Web Application Lifecycle and its Effect on the Usefulness of Session Data

With every release of a new version of a certain web application, any data collected

prior to the release date becomes invalid (figure 1).

1.1 Objective

The objective is to find a time saving, cost effective way of performing regression

testing of web applications with minimal user intervention. The solution should be as

generic as possible and independent of any web architecture technology. It should

Version 1

Version 2

Version 3

Version 4

Web app in production
and user sessions are

logged

Previously logged
Session data can fail if
used for testing at
these points since the
application changed

Chapter 1: Introduction

 3

make use of user session data as it has been proved to be effective in error detection

[1,2].

1.2 Project Definition

 The proposed project is a user session based fully automated regression testing tool

for web applications. This tool would be used every time a new version of a web

application is released to automatically produce valid session data that can be used

to test the web application using existing user session data that has been recorded

over the lifetime of the web application. Organizations that change their web

applications frequently and already use some technology to record user interactions

will benefit from it in achieving thorough regression testing with minimal effort.

The approach followed by this tool would be divided into two main steps. The first

step would be assessing the new website to construct all possible test cases. This is

needed to discover changes in the structure and the name-value pairs. The second

step is to iterate through all the previously recorded sessions and rewrite them in the

appropriate format by comparing them to the result of the analysis of the web

application in step one.

1.3 Road Map

This document is divided into the following sections:

� Background gives a detailed review of related research papers and existing tools

and techniques.

� Design and Specification describes this tools approach and design.

� Implementation gives a comprehensive explanation of the way the design was

implemented

� Evaluation explains the evaluation strategy and the obtained results.

� Future work suggests how this tool can be expanded and enhanced in the future.

� Conclusion sums up what has been achieved and discovered by this project.

� There is also a glossary of term and appendices of code and design details and an

index to facilitate use of this document.

Chapter 2: Background

 4

22 BBaacckkggrroouunndd

Testing is the most important analytical quality assurance method [3]. Although

awareness of software testing importance is growing, it is usually the first

development step to get sacrificed or reduced whenever a system is behind schedule.

Exposing and fixing bugs becomes more expensive as the development lifecycle

goes on. Moreover, a system with a large number of defects will lose the users trust

and cause them to shift to another product resulting in a loss of potential economical

profit and customer trust [4].

The obvious solution to this problem is to introduce automation to the testing process

to save time and resources and still make it possible to produce high quality software.

2.1 Web Quality Assurance and Testing

Web development in general and web testing is going through an evolution similar to

the one traditional software has gone through in the past. Web application testing is

still a young and fragmented market. The fact that web applications differ from

traditional ones has to be studied and dealt with to adjust traditional testing

techniques taking into account those differences.

A definition of quality aspects of a web application can lead to a better understanding

of what to target in the testing process. The main aspects are:

� Structural Quality: The website should be well connected for easy navigation and

all external and internal links should be working [4].

� Content: HTML code should be valid and content matches what is expected [4].

� Timeliness: a web application changes rapidly. The change has to be identified

and highlighted and tested [4].

� Accuracy and Consistency: content should be consistent over time and data

should be accurate [4].

� Response Time and Latency: Server response times to user's requests should

be within the accepted limits for that particular application [4].

� Performance: performance should be acceptable under different usage loads [4].

� Security: with the expanding amount of applications such as e-commerce sites

and e-banking, security has become a major issue.

Chapter 2: Background

 5

� Underlying complex architecture: Testing with elements of the architecture such

as web servers, application servers and database server in mind are necessary

[1].

� Usability: a site needs to be easy to use and accessible to different types of

users.

Many tools exist that address some of these concerns automatically [5, 6]. Structural

quality can be insured by using Link Checkers and web crawlers. Content can be

checked with HTML Validators. Response time and performance can be tested by

performance and navigation testing tools. Special tools exist for security and usability

testing. WEBXact [7] for example examines broken links as well as compliance with

accessibility guidelines. Architecture can be tested by configuration testing tools.

2.2 Functionality Testing Importance

Pages of a web application can be classified to static and dynamic pages [8]. For

websites consisting only of static pages the use of the previously mentioned tools

would be sufficient to insure quality. However, with the dominating amount of

electronic businesses and other online applications most applications have large

dynamic content. Figure 2 shows the typical structure of a dynamic request. The

application server has to do some processing and possibly query the data base in

order to create the appropriate response. This calls for a focus on functional testing.

Figure 2: Typical Web Application Structure [2]

Unfortunately not a lot of tools exist for that domain and most of the existing tools are

either capture replay tools or test script frameworks and executers. When it comes to

automated testing, we are often faced with the "fragile Test" [9] problem that could

Chapter 2: Background

 6

result in the failure or ineffectiveness of the tool. Behavior, Interface, Data and

Context Sensitivity have to be taken into account. Behavior sensitivity is the change

in a system's behavior in case it was modified. Naturally every recorded test case

affected by the change will fail. Interface sensitivity is a concern when the test tool

runs through the system's interface rather than directly communicating with the

program itself. Data sensitivity is the state of the system before running the tests

which has to be reset every time to its initial state to insure that the tests don't fail.

Context sensitivity deals with changes in the environment such as servers, printers

and other factors that might affect testing.

2.3 Capture/Replay Tools

Capture replay tools provide a way of testing websites with dynamic content. Using

the tool, the test engineer goes through the website recording various testing

scenarios as needed. The tests can later be replayed for regression testing. However,

since the test scenarios are recorded from a user's manual actions, the resulting test

suit would not be thorough and high coverage might not be achieved. Also, changes

in the structure of the web application would make the recorded test suit fail to run

and make it necessary to rerecord all or part of the test scenario.

[9] Takes a closer look at using record and replay for regression testing. Behavior

sensitivity was avoided by freezing the system during the testing phase. Interface

sensitivity was avoided by building the tool into the applications code instead of

externally. Data sensitivity was avoided by getting a snap shot of the system before

running the tests and then resetting it every time the test needs to be rerun.

A lot of parallels can be drawn between the concept of capture/replay and the use of

session data in testing; studying what aspects affect the test and how they have been

addressed can give an insight on how to deal with the same problems in this project.

2.4 Test Script Frameworks

Another group of available tools aids in the creation and run of test scripts. These

tools provide a set of functions to help simplify this process. One example is HttpUnit,

it emulates the relevant portions of browser behaviour, including form submission,

JavaScript, basic http authentication, cookies and automatic page redirection. It

allows java test code to examine returned results [10]. Apache JMeter is a 100%

Chapter 2: Background

 7

pure Java desktop application designed to load test functional behaviour and

measure performance [11]. Another tool is SimpleTest like HttpUnit and Jmeter it is a

framework of classes that can be used to simulate a browser with methods such as

get and post request or click link, set field value…etc they also have methods to

validate the response by looking for certain text [12].

Although using these tools might not be ideal when it comes to regression testing,

they open up a whole new world of possibilities. The methods offered by these tools

can be used to create a tool that can run automatically and without user intervention

provided that the test cases and data can be also generated automatically using

different kind of tools or techniques. An application to this could be writing a generic

script using one of these tools that reads a file of session data and executes the

requests it contains. The script will be independent from implementation and would

not be affected by the change in code. Only session data will need to be updated and

this would be covered by the proposed tool.

2.5 Structural / White Box Analysis

2.5.1 Definition and Criteria

Structural analysis is examining the code to understand the behavior of the

application. This analysis can then be used to create test suites that would cover

certain paths. White box testing criteria for web applications can be defined based on

what is used in traditional software as follows [13]:

� Page testing: every page in the site is visited at least once in some test case.

� Hyperlink testing: every hyperlink from every page in the site is traversed at least

once.

� Definition-use testing: all navigation paths from every definition of a variable to

every use of it, forming a data dependence, is exercised.

� All-uses testing: at least one navigation path from every definition of a variable to

every use of it, forming a data dependence, is exercised.

� All-paths testing: every path in the site is traversed in some test case at least

once.

For the propose of this project we need to use the All-paths testing criteria as the

objective is to validate paths in a certain session therefore we need to know every

valid path. However, this criteria is impractical since there are infinite paths in a site

Chapter 2: Background

 8

unless we add some constrains. A restriction of only considering independent paths

can be used.

2.5.2 Related Work

Two aspects of generating graphs of web sites were discussed by [14]: first,

generating graphs of dynamic pages with varying data values i.e. identifying two

variants of the same dynamically created page with varying content based on user

input. Since we are not running the test data and validating the result of our

execution, there is no need to take this into account. All we are interested in is

whether a certain page is called from another certain page when we attempt to verify

the validity of a sequence of calls in one of the old existing sessions. Second,

Developing appropriate modeling techniques for web sites with complex frame

structure.

A research project at the University of Delaware made an ambitious attempt at

studying the possibility of creating an "automatic test case generator that would take

in source code as input and create feasible test cases". The idea relayed on white-

box analyses of source code with the ability to recognize different scripting languages

to create test cases [15]. However no details were given about the outcomes.

2.5.3 Ricca and Tonella's Approach

In Ricca and Tonella's Analyses and Testing of Web Applications [13], automatic

support for analyses and testing of web applications was proposed. Two tools where

developed for this purpose. ReWeb which downloads a web application and creates

a UML graph of the relationships between its different parts representing web pages

as nodes and links as edges between the nodes. Special cases such as frames and

forms are covered by this tool. Figure 3 shows part of the constructed model of a web

application.

The second tool is TestWeb which uses the graph produced by ReWeb to generate

test suites. One of the limitations though is that the whole process is semi-automatic

with user interventions required at several points. Most noticeably, the user has to

provide the set of required fields and their values for every form encountered by each

of the tools. Also, there is no released version of either tool on the net or source code

that can be used and modified to integrate any of those tools functionalities in a

different project.

Chapter 2: Background

 9

Figure 3: Sample ReWeb Output[13]

In their Building a Tool for the Analyses and Testing of Web Applications: Problems

and Solutions [16] more details about those tools are given. ReWeb consists of a

spider, analyzer and viewer. A structural white box technique is used to determine

data dependence when constructing the test suite. The parser recognizes HTML and

Javascript. The viewer displays the constructed graph representation of the web site.

This graph not only shows the structure but also displays in different colors which

parts where modified, added or deleted in different point in time.

2.5.4 Conclusion

This puts light on an interesting approach to the problem we have. A tool like ReWeb

can be used to discover the structure of a web application. If TestWeb is used

afterwards to create a test suit, this test suit can be compared to the old session data

we have to discover where the adjustments need to be made. The problem is that

this tool is not fully automated and not open source so that amendments can be

made. Moreover, the tools were not put on the public domain. However this gave

reason to examine open source web spiders and crawlers to try to find one that could

be modified and customized for this project’s needs.

2.6 Web Spiders

The aim of the analysis of the web application has to be clear and focused on

through out development. It is tempting to attempt to turn it into an automated test

generation tool. Although it has the potential to fulfill that with some expansions, the

sole purpose for it is to provide a way of validating old session data and showing in

what way it should be changed to be valid again.

Chapter 2: Background

 10

One interesting tool is MOMspider [17]. A web robot created to act as a maintenance

tool. It traverses a web application periodically to uncover any problems. Although it

only looks for broken links and expiring web pages and there is no mention of it

handling links with parameters (forms..etc) , the technique of spidering through links

and collecting data is similar to what needs to be done in this project to explore a

web application's structure.

 [18] Describes a method for robust multilingual parsing of multi language programs

and applies it to parsing ASPs. Parsing is the way to understanding and analyzing

web systems as a necessary step for automating the testing process and possibly

maintenance and modification.

 [19] Attempts to find a solution for automated testing of web applications with

dynamic content. Examining client side scripts and automated form submission.

WebSPHINX [20,21] is a customizable spider with a GUI interface. The project also

provides a class library that can be used to implement spiders in java. The only

problem is that form handling isn't covered by the provided classes. However, since it

is an open source project changes and amendments can be done to cover any

missing requirements. The spider would have to be built from scratch though and it

could turn out to be time consuming and would shift attention from the main goal of

this project.

Jspider [22] is another open source crawler that has the advantage of an event

dispatcher, plugins and most importantly the option to store the result of the spidering

into a database. However, documentation is lacking with the developers guide not

being available online. On the other hand the user manual is thoroughly descriptive

and examples of different configurations and sample pugins also exist.

Jspider supports cookies, user agent headers, redirects and all other HTTP

standards as defined by the RFC 2616 [23]. It also is configured to be a “well

behaving” web robot obeying the instructions of the webmaster in robot.txt. However,

it has no facilities to handle forms neither automatically or manually. This feature has

to be added before being able to use this tool.

Chapter 2: Background

 11

2.7 Form Filling

Currently available crawlers only traverse hyperlinks ignoring forms and more

importantly the large amount of content hidden behind them [8].

In Ricca and Tonella’s ReWeb [13, 16] form field values were simply requested from

the user. After an initial analysis the user has to go through forms one by one on the

graph providing the set of fields together with their values.

Generally speaking, for every page with a form a number of distinct successive

states exist. Even when all possible input values are known (checkboxes, radio

buttons..etc), it is impossible for an automated tool to determine which of those

values are sufficient to cover those states. On the other hand it is impractical to use

all possible values. Even a simple form like the one on figure 4 will result in a large

number of possible inputs since there are 36 different ways to fill up the form.

Figure 4: Simple Form Example

VeriWeb [19] goes a step further by introducing the smart-profiles concept.

SmartProfiles "represent sets of attribute-value pairs that are used to automatically

populate forms" [19]. These are pre-entered by the user once before running and

used whenever a form is encountered. Their strength lies in the fact that they are

independent of the site's structure.

The concept of using pre-saved values from a database to automatically fill forms

could be the ideal solution.

Chapter 2: Background

 12

2.8 User Session Data

2.8.1 Definition and Uses

User session data is the set of user actions performed on a certain web application

from entering the site until leaving it. It can be logged by minor configuration changes

to the server or less transparently by adding snippets of code to the application itself.

Many websites already have some form of logging. The reason for this varies and

could be one or a combination of the following:

� A certain user's actions when visiting a website can be used to customize it

according to his/her needs and preferences (e.g. Amazon).

� Monitoring requests can give information about traffic on the website during

different times of day.

� Detecting defects by examining errors recorded on the log.

2.8.2 Issues

One issue that needs to be resolved is resetting the state of the application to the

original state it was in when the requests were actually made to insure that the

results would be the same. This could be hard in practice since applications don't

usually keep a backup of their databases before each release. However this can be

ignored since repeating the sessions can be just as beneficial in testing without them

yielding the same results.

2.8.3 Related Work

In [1] the use of session data in testing was proposed with the focus on fault

detection. A comparison between different techniques was made to prove its

effectiveness. An e-commerce site with realistic scripting, webpage and database

query faults seeded into it was used by people who were made to behave like typical

users by giving them a multi-step assignment and providing an incentive for them to

take the task seriously.

The following five testing techniques were applied thereafter:

� An implementation of Ricca and Tonella's white box technique with the

assumption of one input value for each field encountered.

� An implementation of Ricca and Tonella's technique with boundary values.

� User sessions repeated as test cases.

� Creating new test cases from mixing different user session.

Chapter 2: Background

 13

� A hybrid technique that uses the test cases from the first technique but fills out

the field values from session data.

Figure 5: comparison of the effectiveness of different white box and session data techniques [1]

The table in figure 5 shows the result of this experiment. The second technique (WB-

2) provided the greatest fault detection power and coverage while session data

techniques (US-1, US-2) performed better than the first technique (WB-1) but not as

good as the second. The hybrid technique (HYB) with the largest number of cases

didn't provide extra detection or coverage. However, it was suggested the replaying

user sessions as they were recorded could've performed better and given the highest

fault detection percentage if the number of sessions was larger. Since sessions

collected for this study were simulated rather than authentic, it is fair to say that

session data would perform better. Considering the low effort of gathering those test

cases and the minimal user intervention needed, the results are impressive.

Further analyses of the results showed that the faults discovered by white box

techniques and user session techniques were different. This leads to the conclusion

that the two techniques are complementary.

In [2] the problem of web application state was further studied. Repeating the whole

experiment with the state saved and reset before re-running the test cases didn't

result in significant differences in results. However, there are special cases were this

wouldn't be valid.

The only other study found that deals with session data was [24] which focuses on

the analyses of user session data for the purpose of enhancing software

development and maintenance tools. Concept analysis and common subsequence

analysis were used to understand usage patterns of web applications. As a

demonstration of the effectiveness of this type of analyses, it was applied for

automatic test generation.

Chapter 3: Specification and Design

 14

 33 SSppeecciiffiiccaattiioonn aanndd DDeessiiggnn

3.1 General Approach and Scope

3.1.1 General Approach

Putting the goal of this tool in mind the following steps have to be achieved to reach

the desired result:

• Analyze the modified web application in order to identify the change.

• Compare the result of the analyses to the recorded session data and adjust

accordingly to restore its validity.

The tool should be generic and independent of the web applications architecture and

technologies used. Also, it should simulate white box analysis by examining the

applications structure but doing it through the web server's responses rather than the

code itself.

3.1.2 Scope

The class of web applications considered is defined as following:

• Most scripting languages are included: ASP, PHP, JSP as well as HTML.

• Applications with dynamic content whether it is temporal (news pages), client

dependent (Amazon) or input dependent (Forms) are all included.

3.2 Analyzing the Modified Web Application

3.2.1 Main Concerns

The main concern in this step is to be able to include dynamic pages in this analysis

with minimal user intervention. This should be achieved by a mechanism to

automatically fill and submit forms.

3.2.2 Approach

a web crawler that has the ability to handle forms and store the result of the analysis

in some sort of reusable format will be used.

We are faced with two possibilities:

• Building a crawler using one of the available frameworks and helping classes

such as webSPHINX.

Chapter 3: Specification and Design

 15

• Using one of the available open source crawlers and adding to its

functionalities as needed.

Customizing an available tool would insure that the basic functionalities are working

properly and avoid wasting time and effort into something already done and

established. There are a number of tools that can be used but Jspider is our choice

of tool for the following reasons:

• It is highly flexible and expandable.

• Extensive information about the result of the analysis can be configured to

be saved in a database.

• An event dispatcher is used and plug-ins are supported.

On the other hand, support and documentation are somewhat lacking. However, this

can be overcome by manually assessing the code to understand how it works and by

using the available user manual.

3.2.3 JSpider

 JSpider is a highly flexible, configurable web robot engine implemented entirely in

Java. An over view of its main components is given in figure 6.

Figure 6: JSpider Structure [25]

The main functionalities are carried out in the core. The design is based on making

every piece of work carried out by Jspider into a task. Fetching a web page, parsing

a web page, deciding whether a page should be fetched or not or parsed or not are

all made into tasks and added to the scheduler.

Chapter 3: Specification and Design

 16

Therefore, we need to modify the parsing task executer in order to expand its

functionalities to include forms.

3.2.4 Form Filling

To keep the process automated, a pre-filled database will be used to find the

appropriate value. Also, fields with a limited number of options such as menus,

checkboxes and radio buttons can be handled automatically.

3.3 Constructing Test Cases from the Analysis

3.3.1 Approach

The aim of the analysis of the web application and construction of test cases is to

provide a way of validating the old session data. It is tempting to attempt to turn it into

an automated test generation tool since it has the potential to fulfill that with some

expansions. However, the goal is simple, given a sequence of requests, the tool

needs to determine whether it's valid or not. Therefore, the chosen criteria should be

All independent paths coverage.

3.3.2 Test Case Generation

Figure 7 shows a graph representing the structure of a web application. Nodes

represent pages and edges represent links.

Figure 7: Graph Structure of a Web Application Showing Consructed Paths

3

7 8

11

4

9 10

1

2

5

6

Chapter 3: Specification and Design

 17

Only independent paths are considered. In the first path (1, 2, 5, 6, 2) the loop is only

traversed once. The third path (3, 8) starts from node 3 rather than node 1 since the

sequence (1, 3) was already covered by the second path (1, 3, 7, 11). This is possible

in web applications since they can be entered from any point by making the desired

request. The same case is faced in path (4, 10) and path (1, 4, 9, 8).

3.4 Converting User Session Data

3.4.1 General Assumptions

The only assumption made is that if a URL for a page changes, it will be considered

as a new page. This is because to discover such cases elaborate string matching

techniques would be needed that could even lead to faulty results since two pages

can have similar URLs while being completely different.

3.4.2 Matching Sessions to Cases

Two basic tasks have to be accomplished:

• Adjusting any invalid requests.

• Adjusting invalid sequences of requests

3.4.2.1 Adjusting invalid requests

Figure 8 shows two URL requests the first representing a request from an old

session. The second is the same request but from the result of the analysis.

Figure 8: URL Before and After Web Application was Modified

The tool should examine both and remove any fields in 1 no longer present in 2, in

this case phone. It should also add any new fields in 2 to 1 (address) resulting in the

following request which is both valid and has realistic values:

www.test.com/register.html?name=nadia&email=nadia@yahoo.com&address=test&s

ubmit=submit

www.test.com/register.html?name=nadia&email=nadia@yahoo.com&pho

ne=077777777&submit=submit

www.test.com/register.html?name=test&email=test&address=test&su

bmit=submit

Chapter 3: Specification and Design

 18

3.4.2.1 Adjusting Invalid Sequences

The second part deals with validating the sequence of requests. Figure 9 shows the

state chart of a system before and after it was modified. While a call from the

command page to the edit page was valid in the previous version of the application, it

is no longer valid in the new version. The call has to go through the list page first. If a

session contained that sequence it should be adjusted and a request to the list page

should be added in between.

Figure 9: State Chart of a Web Application before and after Modifications

Three classes of changes to the sequence should be considered; a page could be

deleted from the web application or a new page or sequence of pages could be

added between two previously consecutive pages or a link to a page could be simply

deleted from another page.

In the first case (figure 10) page 5 was dropped in the newer version. The solution

should be to delete it from the sequence and link the previous request to the next

providing the link is valid.

Figure 10: Sequence Adjusting – dealing with a deleted page

1 2 3 4 5 6 7

Chapter 3: Specification and Design

 19

The second case is when, as in the example above (figure 11), new pages were

added between two requests in the previous version. The link should be broken and

the gap between the two requests filled with the appropriate subsequence derived

from the test cases.

Figure 11: Sequence Adjusting – dealing with request added between two previously

consecutive requests

The third and final case is when a page is no longer accessible from another page

but is still valid and could be accessed in an alternative way. The difference between

this case and the previous case is that no valid sequence could be found to link the

two requests. For example (figure 12) the link to page 6 was deleted from page 5 but

page 6 and the following sequence of requests is still valid. Here the original

sequence will be split into two new sequences.

Figure 12: Sequence Adjusting – dealing with a deleted link where no sequence of requests can

be found to connect the two

1 2 3 4 5 6 7

1 2 3 4 5 6 7

1 2 3 4 5 6 7

9 8

Chapter 3: Specification and Design

 20

3.5 User Interface

The question of whether or not to have a user interface can be argued on both ways.

Since all the components can be run from the command line, it might be easier to

create a batch file. However, it is better to keep each function completely

independent in order to avoid the need to restart the whole process if a later function

failed. Also, this would give the user of the system flexibility to rerun any certain part

as needed. However, we can’t expect the user to learn and remember all the

commands and enter them separately. In conclusion, the best approach would be to

have a user interface with a button for each function and an option to run all functions

together.

Figure 13: Screen Layout of User Interface

The outline of the interface's appearance is given in figure 13.

Function buttons are provided for each component such as analyzer and converter.

Input file dialogs are provided for every component that needs an input file to run.

Run all Functions option is provided for convenient running of the whole tool.

Function1

Function4 Function2

Run All Functions Option

Input file when needed Browse

Function3

Name of Tool and Logo

Chapter 3: Specification and Design

 21

3.6 Data and Attributes

Data will be collected about sessions, test cases and field-value pairs. Figure 14

shows how the system interacts with each type of collected data.

Figure 14: Interaction between the System and Data

Sessions are the data collected over the lifetime of the application that needs to be

modified.

Test cases are requests constructed from the analysis and used as a reference for

the conversion.

Field-value pairs are collected from the sessions and other sources and used to fill

forms.

The structure of the attributes collected for the first two is similar but needs to be kept

separately for semantic and implementation reasons. Attributes are: URLs,

case/session number and step number. For field-value pairs we need to collect field

names and values.

A detailed ER-Diagram that was created using the concepts in [26, 27] and attribute

descriptions can be found in Appendix A.

System Sessions

Test

Cases

Field

Values

Chapter 3: Specification and Design

 22

3.7 General Architecture

3.7.1 System Architecture

The system consists of three tiers: user interface, application components and the

database. Figure 15 shows a general platform independent model of the system.

Figure 15: General Architecture of the System

3.7.2 Tools and Techniques

3.7.2.1 Programming Language and Database

Components of the tool will be written in Java and the database is MySql for the

following reasons:

• JSpider which is the tool adapted and used in the system is in Java and uses

MySql. Since code changes to it will naturally be in Java it is better to make

the whole system uniform for smoother integration.

• Having worked on Java many times before I have a good foundation that

would make implementation faster and avoid unnecessary waste of time in

learning.

• Since Java is the dominating programming language and has a good future it

would be beneficial to get a deeper understanding of it.

3.7.2.2 Requirements for Running the Tool

To try and test a tool it should be used on a web application on a local server. The

server used for this is Apache Tomcat. Although not part of the implementation, it is

User

interface

Constructor

Database

Analyzer Converter

Resources

Processes

GUI

Chapter 3: Specification and Design

 23

still necessary to have web applications hosted locally to simulate conditions for

which the tool will be used.

• Apache Tomcat has a configurable logging facility that can be used to collect

session data to work with.

• Having used it before, I have a good understanding of its abilities and

functionalities.

3.7.3 Development Methodology

A mix between the waterfall model and what can be classified as a modular approach.

The waterfall model is used in general except for the part concerning implementation.

3.7.3.1 The Waterfall Model

Advantages of the waterfall model (figure 16) are [28]:

• Progress can be tracked easily due to clear development stages.

• Deliverables can be easily identified.

Figure 16: Waterfall Model [29]

Disadvantages are all related to project management and large scale projects. In

conclusion, the waterfall model is suitable for small project with a small team of

developers (in this case one).

3.7.3.2 Modular Development

The system is divided into functions. Each function is developed into a component

and tested separately.

Chapter 4: Implementation

 24

44 IImmpplleemmeennttaattiioonn

4.1 Overview

The internal structure of the system is shown in figure 17. Components are run from

the user interface. Each component has a certain function and functions are

implemented to be completely independent and each component can be run

separately. Component query the database as needed.

Figure 17: Internal Structure of the System

UploadSessions uploads the sessions into the sessions' database table and the

field-value pairs to the form filling table.

JSpider is the modified version of the web crawler. It analyzes the new version

of the web application and stores the result of the analysis in the database.

Constructor examines the result of the analysis in the data base and produces a

set of test cases based on an all independent paths testing criteria. These test

cases are saved then to the test cases table in the database.

Converter uses the sessions and test cases tables to rewrite the sessions and

save them back to the sessions' table.

U
s
e
r
in
te
rf
a
c
e

JSpider

Form
Filling

UploadSessions

Constructor

Converter

Jspider

Tables

Sessions

Tables

Test Cases

Tables

Chapter 4: Implementation

 25

4.2 JSpider

 4.2.1 Objective

As was mentioned earlier, we need to modify JSpider to introduce a form exploring

capability to it resulting in a new version.

4.2.2 Analysis

Due to lack of a class diagram or developer support for this tool the first step to

identify where to make the changes is to analyze the code and understand the

internal workings of the tool.

The way parsing of a page is done in JSpider is as follows:

• When a resource is discovered it is scheduled for parsing using

InterpreteHtmlTask.

• When InterpreteHtmlTasks is executed, the resource is examined line by

line and every line will then be passed to the FindUrls class.

• FindUrls looks for patterns associated with links such as “herf=”, if a pattern

is found it is added scheduled again for fetching and parsing.

Figure 18: Internal View on the way the Structure is Stored

2

3 4

1

Chapter 4: Implementation

 26

Figure 18 shows the way the website structure is stored into the data base. A row in

jspider_resource (arrow 1) stores a URL together with other related info not shown

here and gives it a unique ID. Arrow 2 and 3 show the relationship between

Jspider_resource_reference and jspider_resource. A row in jspider_resource_

reference (arrow 4) represents a reference between two pages i.e. page with ID 1

(login.html) has a reference or a link to page with ID 2 (cal1.jsp).

4.2.3 Modifications

4.2.3.1 General Modifications to the Process

The process needs to be modified in the following way:

• Before passing a line to FindUrls, a check is performed to determine

whether it contains a form by searching for the keyword “action=”.

• If the keyword was found, the whole form block will be passed instead of

just the line. The end of the form will be determined by the keyword “</form>”

• In FindUrls, each input field is extracted and passed to the extractField

method.

• extractField will extract the field name and find the appropriate value, either

by querying the database or in case of field types with limited choices randomly

selecting a value.

• Each field-value is then appended to the URL.

• After all fields are appended the URL will be treated like any other URL.

4.2.3.2 Form Filling

Table 1 shows how different input types are handled by the program. Radio buttons,

checkboxes and select inputs are all selected randomly. Textarea is always set to

‘test’ to save space and shorten the URL since no validations are usually performed

on it. The default type is text if field type isn’t specified.

Field Type Handling Mechanisim

text & number Get value from database or default or ‘test’/ any number

Radio Select random

Checkbox Set randomly to checked or unchecked

Select Select random

Password Get from database

Hidden Default value

Textarea ‘test’

Reset Ignore

Submit
If more than one submit button (e.g. add, remove) select
random

Table 1: handling different input types in forms

Chapter 4: Implementation

 27

4.2.3.3 Main Methods

JSpider methods affected by enhancements:

FindURLs this method parses a line of code and looks for URLs. It was changed to

parse a form element and look for input fields.

Main added methods:

extractField This method is called from FindURLs. One input field is passed to it

delimited by ‘<input’ and ‘input>’. It detirmines the type of the input field and returns

it’s name and value based on the guidelines in table 1.

countOccour This method is called from extractField. It takes an input field of type

select as an argument and returns the number of options. This is used to select a

value randomly.

getValue This method is called from extractField. It takes the name of a field as an

argument and returns the field’s value stored in the table jspider_form_filling.

4.3 Constructor

4.3.1 The Process

The test case constructor will examine the jspider_resource_reference table and

construct all independent paths. Test cases are then stored in the jspider_test_cases

table.

Figure 19: The Way Reference Table is Used to Create Test Cases

1

2

Chapter 4: Implementation

 28

A flag field (arrow 1) to indicate when a referrer-referee row was covered had to be

added to jspider_resource_reference to insure the paths generated are independent.

Figure 19 shows the tables after the component was run. Resources referencing

themselves (arrow 2) are completely ignored to avoid infinite loops.

Figure 20: The way Constructed Test Cases are Stored

Figure 20 shows part of test case 1 that demonstrates the way it is stored. The order

of steps is maintained in step_num (arrow 2) and the URLs (arrow 3) executed for

each step are referenced here by their unique ID which is linked back to

jspider_resource as mentioned in section 4.2.2. All steps are associated to a certain

test case through the case_num (arrow1).

4.3.2 Main Methods and Classes

TestCase This class keeps track of anything related to the currently processed test

case.

incrementCaseNum This method increments case number whenever a new test

case is being handled.

incrementStepNum This method increments step number when ever a new step

needs to be added.

findFirstNotCovered This method is part of the ResourceReferenceDB class. It is

called by the construct program. It finds the first row in that hasn’t been covered yet

in jspider_resource_reference (i.e. flag covered is set to 0 or false).

1

3

2

Chapter 4: Implementation

 29

4.4 UploadSessions

4.4.1 The Process

4.4.1.1 Pre-Processing

To make the upload of sessions generic and adaptable to any format of log file, an

assumption was made that users of the tool will convert their log files to a standard

format. This can be easily done by a script or small program that extracts requests

from a session file and rewrites it using the format given by this tool. An XML

Schema was developed and validated using an online validater [30]. A copy of the

schema and information about its validation can be found in Appendix B.

4.4.1.2 Uploading Sessions

UploadSessions parses the session files given as arguments when running the

component and does the following:

� Extracts URLs and saves them in the table converter_session_urls.

� Extracts filed-value pairs from each URL and saves them to the table

jspider_form_filling.

� Stores information about the sequence of requests and to which session

they belong in the table converter_sessions in the same structure used for

storing test cases.

4.4.2 Parsing Session Files

SAX and DOM are used to parse the session file since it is in XML. The program

parses the XML file and returns a DOM document. The DOM document is queried

later using xpath [31] to find nodes representing requests and their related

parameters. Code examples in [32] where used to write the code.

4.4.3 Main Methods and Classes

Session This class keeps track of anything related to the currently processed

session.

incrementSessionNum This method increments session number whenever a new

session is being handled.

SessionDB This class is used to communicate with the database tables

converter_sessions and converter_session_urls.

4.5 Converter

The converter has to be the last step run on the system. Two steps have to be

performed to achieve its function:

Chapter 4: Implementation

 30

• Rewriting URLs in a valid format using jspider_resource and

converter_session_urls.

• Adjusting invalid sequences using tables jspider_test_cases and

converter_sessions.

4.5.1 Pre Processing

Figure 21: ID Mapping between Test Case and Session URLs

The number of test case URLs will be considerably less than the number of session

URLs since test cases are all possible request formats and sessions are all requests

collected over a period of time. In other words, a number of session URLs can be

associated to one test case URL. It would save processing time to retrieve all test

case URLs and have them ready in a table instead of re-querying the database

several times for the same URL.

Another issue to consider is that URL IDs for sessions and test cases are not

synchronized. This is done in this way to keep different components independent and

the sequence of running the Constructor and Converter irrelevant. Figure 21

illustrates an example: while the URL with ID 3 (arrow 1) is the cal1.jsp?date=prev

page in test cases, in sessions it is cal1.jsp?date=next while cal1.jsp?date=prev has

ID 2 (arrow 2) .

1

2

Chapter 4: Implementation

 31

4.5.2 Rewriting URLs

The easiest and safest way is to rewrite the values of fields in the matching test case

URL to keep manipulation of strings to a minimum and avoid errors. Urls are

matched based on the part without the parameters. Figure 22 demonstrates how this

is implemented.

Figure 22: Implementation of URL Rewriting

4.5.3 Adjusting Sequences

Validating and adjusting sequences of session requests is done in the following steps:

• The first request in the session is validated (i.e. checked if it still exists) and

if valid added to the final valid sequence.

• Every pair of consecutive session requests will be validated against the

pairs in the jspider_reference_resource table.

• If the pair is valid the request’s IDs will be added to the final valid sequence.

• If it’s not valid the second request in the pair is dropped if it is not valid

anymore (i.e. doesn’t exist) and the process is repeated.

• If the second request is valid, a gap filler has to be found to connect the two

requests.

4.5.4 Main Classes and Methods

The converter consists of the following classes:

MatchingUtil This class handles any functions related to preparation for the

converter processes.

www.test.com/reg.html?
name= salah & email= salah@yahoo.com & phone=077777777 & submit=submit

Old URL

New URL

www.test.com/reg.html?name=test&email=test&address=test&submit=submit

www.test.com/reg.html?name=salah&email=salah@yahoo.com&address=t

est&submit=submit

Resulting URL

Chapter 4: Implementation

 32

• getCorrepondingID This method is used in the mapping process. It takes

a session URL as an argument and returns the ID of the matching test case

URL.

• stripUrl This method takes a URL as an argument and returns the URL

stripped of it’s parameters (field-value pairs).

URLConstructor This class handles rewriting of URLs in the correct format.

• rewriteUrl this method takes two URLs as arguments one session URL

and one test case URL and returns a new URL that has all the fields in the

test case URL with the values from the session URL.

URLExtractor This class handles any functions related to referencing test case

URLs.

• fillURLs This method returns a vector of all test case URLs. This is done

to save processing time since the list of test case URLs have to be traversed

every time a match for a session URL is needed.

• getURL This method takes an ID as an argument and returns the

corresponding test case URL from the vector produced from fillURLs.

URLAdjuster This class uses URLConstructor and URLExtractor and MatchingUtil to

go through all session URLs and rewrite them in a valid format that corresponds with

the changes done to the web application.

TestCaseSeqConstructor This class handles test cases in the process of adjusting

sequences.

• execute This method is run from the class constructer. It creates a list of

a string representation of all available test case sequences in the database.

• findGapFiller This method takes two request IDs and returns a valid

sequence that would link the two requests.

SequenceAdjuster This class handles the validation and adjustment of session

requests sequences.

• validateUrlId This method takes a session Id and checks whether or not it

is still valid by comparing its value to the last valid ID. It returns 1 if the URL is

valid and 0 if it’s not.

Chapter 4: Implementation

 33

It uses the following method from the ResourceReferenceDB class that handles

interactions with the jspider_resource_reference table:

• validateSequence This method takes two session IDs as input and

checks if the pair is valid by looking it up in jspider_resource_reference.It

returns 1 if the sequence exists and 0 if it doesn’t.

SessionPrinter This class prints the sequences produced by SequenceAdjuster into

a file using URLs in place of the IDs.

4.6 Database

4.6.1 Database Tables

Figure 23 shows all the tables in the database. Tables referenced by arrow 1 are

session tables. Arrow 2 points at the pre-existing JSpider tables and arrow 3 and at

the Form Filling table arrow 4 at test case tables.

Figure 23: Database Tables

Appendix A has descriptions of new and modified tables’ fields.

4.6.2 Classes and Methods

DBI This class handles establishing and safely closing the connection to the

database.

FormFillingDB This class handles any interactions with the table jspider_form_filling.

ResourceDB This class handles interactions with jspider_resource. Methods include

getURL by ID and getAllURLs.

ResourceReferenceDB This class handles interactions with jspider_resource

_reference. Methods include findFirstNotCovered, getByReferer and

getNumOfReferenced for a specified page. It also initializes the table when running

the constructor by setting the flag covered to zero for all rows.

1

3

4

2

Chapter 4: Implementation

 34

ResourceReferenceRow This class defines the structure of a row in

jspider_resource_reference. It is used when the whole row needs to be passed back

as a return value from a method.

SessionDB This class handles any interactions with converter_sessions and

converter_session_urls. Methods include create which creates a row in

converter_sessions, createSessionUrl, updateSession and getNextSession which

takes a session number as an argument and returns the next session number. It also

initializes the two tables if a flag that is passed to the constructor is set to 1.

TestCaseDB This class handles any interactions with jspider_test_cases. Methods

include create and initialize.

4.7 User Interface

A simple user interface was created using Java swing with the help of tutorials in [33].

Figure 24 shows the user interface for running the tool. UploadSessions needs the

session file as an input. If no file was entered into the input box (arrow 1) an error

message would appear for the user (figure 25). Run all will run the components in

the following order: uploadSessions, JSpider, Constructor and finally the converter.

Figure 24: User Interface

Figure 25: User Interface – Error Message

Chapter 5: Testing

 35

55 TTeessttiinngg

5.1 Test Strategy

The tool has to be tested thoroughly to insure that all its functionalities are working

properly.

5.1.1 JSpider Testing

5.1.1.1 Regression and Technical Testing

JSpider can be configured to run a technical and functional test suite that makes sure

that the modifications did not affect any part of the system.

For functional regression testing the spider will be run on a well-known resource

http://j-spider.sourceforge.net so that results can be automatically compared to what

is expected. JUnit test results can be then generated and verified.

5.1.1.2 Added Functionality Testing

To test the added functionality small sites with 2-3 pages were spidered. These sites

were chosen for having all the different input types currently handled by the spider.

Both scenario and negative testing approaches were used.

5.1.2 Testing the System as a Whole

The system was tested as a whole on a simple calendar application provided with

Apache Tomcat server as an example. The resulting file was manually examined

and compared to the expected results.

5.2 Results and Analysis

Testing JSpider's ability to handle forms was successful. A copy of the resulting set

of URLs can be found in Appendix C.

Running the tool on an application was successful. Some cases that had

characteristics not handled by this project produced errors. Pages that have more

than one set of input parameters or cases where HTML forms code was written using

file writers within the code could not be successfully handled. This points to the

direction of future enhancements that can be done.

Chapter 6: Evaluation

 36

66 EEvvaalluuaattiioonn

6.1 Aim

The evaluation of the tool should try to measure its effectiveness in terms of the

percentage of user session data that was reused in comparison to the amount of

change that was done to the web application. Naturally, if most of the old session

data was discarded the usefulness of the tool is reduced. The effectiveness of the

produced test data in defect detection is irrelevant since an assumption was made

that it is indeed effective based on previous studies [1,2].

Another variable that should be considered is time saving. If the tool takes a

considerably long time to run, its value is also decreased. However, the alternative is

to create test cases manually which would take longer and require more resources

and effort and wouldn't provide the same level of coverage and error detection as

mentioned previously in the background section.

6.2 Approach

Andrew MacInnes from the BBC new media team has kindly attended a number of

presentations during the curse of this project. A demonstration of the tool was

conducted on the 26th of August to get real feedback and suggestions on how to

improve this tool. His comments showed an interest in what the tool can achieve and

he kindly offered an invitation to visit the BBC and try to adapt the tool to the

development environment their and test its effectiveness.

To conduct the evaluation the following will be done:

� A web application will be logged and user session data will be collected.

� Modifications will be done to the web application.

� The tool will be run to adjust the recorded session data according to the

changes.

� Data will be collected from the results to determine the amount of requests

and sequences reused.

� The original web application will be changed several times with the amount

of change increasing gradually. Running the tool and analyzing the results

will be repeated.

� Results will be analyzed to determine the range where the use of the tool is

most effective.

Chapter 6: Evaluation

 37

6.3 Variables and Metrics

The different versions of the web application that will be evaluated constitute the

independent variables. The dependent variables are usefulness of tool and time.

Usefulness of tool will be measured by the ratio of session requests used to changes

to the code. Changes to the code will be estimated based on the number of changes

made; deletions, additions and modifications will be all counted. Changed file names

will be considered as new files.

Time will be measured by the relationship between amount session data to run time

and the relationship between web application size and run time.

6.4 Recording Session Data

6.4.1 Set Up of the Web Application

An online book shop (figure 26) was used as the web application employed for the

evaluation. It was provided as an open source application by [34]. Table 2 provides

information about the size of the application.

Number of files 30

Lines of code 8413

Number of database tables 7

Table 2: Book Shop Application Information

Only user functionalities of the web application were considered. The book shop

operates similar to any commercial web site. It provides the customer with the ability

to register, login, search, browse, purchase books and use a shopping cart.

Figure 26: Online Book Shop

Chapter 6: Evaluation

 38

6.4.2 Logging of Requests

The site was set up on an Apache Tomcat server and users were asked to explore

and use it while having a logging tool enabled. Emphasis wasn't put on the type of

use and how realistic it is since the aim is not to measure session data effectiveness.

Sessions with an average of 35 requests were collected.

A tool that records user requests was used [35]. A description of this tool and more

information can be found in Appendix D. A program was written to convert the

recorded data into the format specified for this tool. The program name is

FormatSessionFile.java and can be found in Appendix B. The resulting session log

can be found in Appendix E.

6.5 Modification of the Web Application

Two volunteers were asked to modify the web application several times with an

increasing percentage of change each time. This was done to insure that changes

aren't biased to make the tool more affective.

The Types of changes made were as follows:

� Structure: The way pages were linked together was changed.

� Forms: fields were added or deleted and names of fields were changed.

� Pages were deleted and others were added.

� File names were changed.

This has been done six times by incrementing changes every time. Table 3 displays

how the changes will be done.

Version Change (%)
Modified
Pages

Added
pages

Deleted
Pages

File name
changes

V1 10% 3 1 0 0
V2 20% 6 2 1 1
V3 30% 9 3 2 2
V4 40% 12 4 2 3
V5 50% 14 5 3 4
V6 60% 16 6 3 4

Table 3: modification Strategy for web application

6.6 Execution and Results

SessionUploader and converter will be evaluated based on session data size.

JSpider and constructer will be evaluated based on application size.

Chapter 6: Evaluation

 39

Num of
Sessions

Uploading
Time (secs)

Converting
Time (secs)

1 4.506 7.406
3 10.325 12.322
10 17.635 20.005
20 33.918 37.103
30 47.028 42.338
40 61.369 65.901

Table 4: Execution Times of Uploader and Converter based on Number of Sessions

Table 4 shows execution times for sessionUploader and converter with varying

number of sessions. We can see that the time in seconds goes up when the number

of sessions is increased. However, the rise decreases in proportion with the rising

number of sessions.

Application

Size
JSpider

Time (secs)
Constructor
Time (secs)

Small 3,314 1,001

Medium Small 31,194 26,368
Medium 35,543 30,201
Large 182,462 76,339

Table 5: Execution Times of JSpider and Constructor based on Application Size

Table 5 shows execution times for JSpider and the constructer on different

application sizes. Medium small and medium sized web applications produced similar

times. The large application took considerably long to be spidered but didn't take as

long to construct paths.

Application
Version

Used
Session
Requests

Used
Session

Requests(%)

V1 50 100%

V2 46 92%
V3 41 82%

V4 36 72%
V5 29 58%
V6 29 58%

Table 6: Number of Session Requests Reused in the New Log File

Table 6 shows the number of session requests reused to produce the new log file.

After running sessionUploader the number of unique requests was 50. The results

are somewhat unclear although changes in the code went up to 60% for the sixth

version, the percentage of is reused data is still high. For the final two versions the

percentage didn't change although the two versions differ by 10%. However, they

both have the same number of deleted pages and file name changes. Also, the

number of reused sessions fell by 5 from version 3 and version 4 although the

changes in deleted pages and file name changes only increased by one.

Chapter 6: Evaluation

 40

6.7 Analysis and Conclusion

From Figure 27 we can see that the running time of both the uploader and the

converter in proportionately related to the number of sessions processed. As can be

seen the slop of both lines representing the uploader and converter increases after

the point of ten sessions. This is probably because of start up and initialization which

makes smaller session similar in the time they consume.

0

10

20

30

40

50

60

70

1 3 10 20 30 40

Num ofSessions

T
im

e
 (
S
e
c
s
)

Uploading Time

(secs)

Converting Time

(secs)

Figure 27: Relationship between Execution Time and Number of Sessions for the Uploader and

Converter

Figure 28 shows the relationship between application size and Jspider and

constructor execution times. The slop increases dramatically because the difference

in size between a medium and a large application is big. However, it is worth noticing

that the difference in execution time between medium small and medium applications

is hardly noticeable. Deeper analysis of all applications used showed that the

complexity in which pages of an application are linked and the number of dynamic

pages and forms has greater affect on the time Jspider and the constructer take to

execute.

0

20

40

60

80

100

120

140

160

180

200

Small Medium

Small

Medium Large

Application Size

T
im

e
 (
s
e
c
s
)

JSpider Time (secs)

Constructor Time

(secs)

Figure 28: Relationship between Execution Times and Application Size for JSpider and Constructor

Figure 29 shows the number of session requests used for each of the modified

versions of the application. Further analysis showed that changes in the code and

form fields does not affect the number of session requests reused. This can be seen

Chapter 6: Evaluation

 41

by comparing the last two versions where changes to the whole application were

increased by 10% but the percentage of requests reused stayed the same. However,

the number in deleted pages and pages with changed file names was the same in

both versions.

If a page was deleted or its name changed, all of it's occurrences with different

parameter in the session log will be discarded. The percentage of discarded session

requests can't be predicted because it depends on the number of times a certain

request appears in the log file.

Used Session Requests

0

10

20

30

40

50

60

V1 V2 V3 V4 V5 V6

Version

U
s
e
d
 R
E
q
u
e
s
ts

Used Session

Requests

Figure 29: Reused Session Requests

The graph was reproduced (figure 30) only taking into account the changes that

affect the number of session requests reused. The two lines are symmetric; when

changes were 0% reused sessions were 100%. However this is not always valid

since the number of occurrences of an eliminated page also affects the outcome.

0

20

40

60

80

100

120

1 2 3 4 5 6

Application Versions

p
e
rc
e
n
ta
g
e

Used Session

Requests

changes

Figure 30: Relationship between Changes Made and Sessions Reused

In conclusion the tool's effectiveness can be hugely increased by adding functionality

to recognized pages with changed names. However, deleted pages can naturally not

be avoided.

Chapter 7: Future Work

 42

77 FFuuttuurree WWoorrkk

This tool can be enhanced and expanded in the following way:

� Form filling can be extended to cover more complex field types such as files

and buttons.

� The rule for choosing values can be changed from one value to boundary

values or all values found in session requests. However this could result in

repetitive paths that don't enhance coverage. A technique has be developed

to identify values that could lead to higher coverage and only include them.

A possible way of doing this can be by examining the path in sessions and

checking if an input value would expose a previously unexercised path.

� For new fields the way values are generated can be enhanced to be more

realistic.

� URLs with different possible sets of parameters can be considered and

dealt with.

� A tool to turn the resulting log file into a test script can be developed.

Expected results would have to be entered manually by the test engineer.

The analyzing component (JSpider) has the potential to be expanded into a stand

alone automatic test generator if the above mentioned enhancements were added.

However, for it to be truly practical and valuable in generating test suites, analysis of

the code and servlets behind the HTML front and client side scripts such as javascrit

have to be done to provide sufficient coverage and high error detection.

Also, the same technique can be applied to other fields. Instead of session data a

similar approach can be used for adjusting and rewriting test case or maintaining and

updating test scripts automatically. However, test scripts usually have a test oracle or

expected results to be checked within their code. The problem that should be

considered then is how to adjust the test oracle/expected results. Usually an added

field to a form wouldn't result in a completely different expected outcome but there

are many cases where this is true. A solution has to be thought out and implemented.

This can be a big challenge since it is hard if not impossible to automatically predict

expected results.

Chapter 8: Conclusion

 43

88 CCoonncclluussiioonn

8.1 Achievements and Interpretation of Results

This project attempted to find a fully automated approach to regression testing of web

application by making use of the history of logged real user requests previously

recorded since the last release. The approach was producing new session data by

adjusting the old log files. The adjustments are done based on an analysis of the new

version of the web application that recognizes any changes affecting the way pages

interact with each other or the structure of forms.

Analysis of the application after it was modified was done by adapting an existing

web crawler. Enhancements were made to handle forms and construct all

independent paths from the result of the analysis. The resulting component was able

to analyze web application successfully.

One of the main challenges was automated form completion and submission. The

employed solution was relaying on values extracted from the old session data and on

default values and random choices when the set of options is limited (e.g.

checkboxes and lists). By testing several websites that contained forms with various

input types, this solution proved to be successful in providing input that resulted in

successful submission. Being able to submit the form and get the expected response

is sufficient for the aim of this project since only the structure of the application needs

to be discovered. Producing accurate inputs that would return realistic responses

would be needed if the aim was actual testing.

The tool was able to intelligently reconstruct test sequences and reformat requests

producing a new set of test data that can be used to produce test scripts.

The design and implementation were systematically created to make the tool as

generic and independent of the fast changing web technologies as possible.

8.2 Extensions and Enhancements

In the analysis process the tool can be extended for a more thorough exploration of

possible paths that might not have been discovered by the used inputs. Currently the

strategy is to use one value for each field but expanding this to a number of values

Chapter 8: Conclusion

 44

carefully selected from the old sessions could result in better coverage of more

complex applications. Also, enhancements can be made to the way values are

chosen for new fields. The current system is flexible in allowing the test engineer to

add manually add values to the database table used to fetch values. However, an

automated approach would be more beneficial and in line with the objective of this

project. Analysis of labels which usually hold some information for a real-life user can

be a possible solution [8].

Rewriting of URLs and adjusting of sequences can be enhanced by making the tool

able to distinguish changed file names and differentiate between requests with the

same URL but different parameter sets.

8.3 Discussion

The idea of rewriting data used for testing when it becomes invalid instead of

discarding it and reproducing new data can be applied to other types of files. Test

script, test suites amongst other things can be handled in the same way. However,

as with session data running the test will insure that the system's old functionalities

are still running correctly but coverage of completely new functionalities has to be

tested separately. Moreover, the approach in general can probably be applied to

testing of traditional software by analyzing input and output parameters. However,

thorough research needs to be done to identify concerns and issues.

The developed regression tool provides an effortless, time-saving way of testing web

applications. However, it should be combined with other forms of traditional testing to

insure that the new application is bug free. Although it provides authentic testing of

the system that is more likely to expose defects caused by the new modifications, the

coverage for parts hugely affected by the changes is not as thorough. This is

because the amount of test data for these is not as huge and varied since no

matching cases exist.

In today's highly competitive environment, user's trust is the most valuable

commodity. Making sure a system can still provide them with the functions they

usually use and relay on after it has been changed or enhanced will help maintain

their trust and loyalty. The strength and importance of this approach is in its ability to

provide this.

Chapter 9: References

 45

99 RReeffeerreenncceess

[1]
S. Karre S. Elbaum and G. Rothermel. Improving web application testing with user session
data. In Proceedings of the International Conference on Software Engineering, pages 49–59,
May 2003.

[2] S. Karre S. Elbaum and G. Rothermel. Leveraging User Session Data to Improve Web
Application Testing. November 2003.

[3]
J. Viega and J. McManus. THE IMPORTANCE OF SOFTWARE TESTING.

http://www.cutter.com/research/2000/crb000111.html. January 2000.

[4]
E. Miller . WebSite Testing. 2005.

http://www.soft.com/eValid/Technology/White.Papers/website.testing.html

[5]
R.Hower. Web Site Test Tools and Site Management Tools.

http://www.softwareqatest.com/qatweb1.html.

[6] Software Testing and Test Tools Resources. http://www.aptest.com/resources.html

[7] WebXACT. http://webxact.watchfire.com/

[8] S. Raghavan and H. Garcia-Molina. Crawling the Hidden Web. In Proceedings of the 27th
International Conference on Very Large Data Bases, Pages: 129 - 138 . 2001.

[9] G. Meszaros. Agile Regression Testing Using Record & Playback

[10] HttpUnit - http://httpunit.sourceforge.net/index.html

[11] Jmeter - http://jakarta.apache.org/jmeter/index.html

[12] SimpleTest - http://www.lastcraft.com/simple_test.php

[13] F. Ricca and P. Tonella. “Analysis and Testing of Web Applications.” In IEEE, pp. 25-34.
2001.

[14]
B. Jonsson. ASTEC project: Automated Testing.

http://user.it.uu.se/~bengt/ASTEC/Planning00/testing-01-03-01/

[15]
L. Pollock. Web Testing Project.

http://www.cra.org/Activities/craw/dmp/awards/2001/mcglade/final_paper.htm

[16]

F. Ricca and P. Tonella. Building a Tool for the Analysis and Testing of Web

Applications: Problems and Solutions. Proc. of TACAS'2001, Tools and Algorithms for the

Construction and Analysis of Systems, held as part of the Joint European Conferences on

Theory and Practice of Software, ETAPS'2001, LNCS 2031 pp 373-388.

April , 2001.

[17]
R. T. Fielding. Maintaining Distributed Hypertext Infostructures: Welcome to MOMspider's
Web. Presented at the First International World-Wide Web Conference (WWW94) in Geneva,
Switzerland, May.

[18] N. Synytskyy, J. R. Cordy and T. R. Dean .Robust Multilingual Parsing Using Island
Grammars.

[19] M. Benedikt, J. Freire and P. Godefroid, VeriWeb: Automatically Testing Dynamic Web Sites

[20]

Robert C. Miller and K. Bharat. SPHINX: A Framework for Creating Personal, Site-Specific
Web Crawlers. Appeared in Proceedings of the Seventh International World Wide Web
Conference (WWW7), Brisbane, Australia, April 1998. Printed in Computer Network and
ISDN Systems v.30, pp. 119-130, 1998. Brisbane, Australia, April 1998.

[21] WebSPHINX - http://www.cs.cmu.edu/~rcm/websphinx/

Chapter 9: References

 46

[22] JSpider, http://j-spider.sourceforge.net

[23] RFC 2616 - http://www.w3.org/Protocols/rfc2616/rfc2616.html

[24] S. Sampath, A. L. Souter, L. Pollock. Towards Defining and Exploiting Similarities in Web
Application Use Cases through User Session Analysis.

[25] Jspider User Manual - http://j-spider.sourceforge.net/doc/index.html.

[26]
Entity Relationship Modeling Technique

http://sysdev.ucdavis.edu/WEBADM/document/td_entityrel-guidelines.htm

[27] Entity-Relationship Diagrams (ERD) - http://www.umsl.edu/~sauter/analysis/er/er_intro.html

[28]
The Standard Waterfall Model for Systems Development

http://asdwww.larc.nasa.gov/barkstrom/public/The_Standard_Waterfall_Model_For_Systems
_Development.htm

[29] Vcustomer - http://www.vcustomer.com/quality-software.htm

[30] XSD Schema Validator - http://apps.gotdotnet.com/xmltools/xsdvalidator/

[31] XPath Tutorial - http://www.w3schools.com/xpath/default.asp

[32] The Java Developers Almanac 1.4 - javaalmanac.com

[33] Creating a GUI with JFC/Swing - http://java.sun.com/docs/books/tutorial/uiswing/

[34] GotoCode - http://www.gotocode.com/

[35] Badboy! - http://www.badboy.com.au/

Chapter 9: Glossary

 47

1100 GGlloossssaarryy

WWhhiittee bbooxx A testing technique where test data is selected based on the

tester's knowledge of the system. The data is chosen to

excises different paths in the code satisfying a certain criteria.

The results are compared to the behavior expected from the

program.

BBllaacckk bbooxx A testing technique where the user has no knowledge of the

internal workings of the program. The tester only knows the

input and what the expected output should be

IInnddeeppeennddeenntt ppaatthh A path through a graph that has an edge not in any other

path

EERR--DDiiaaggrraamm Entity-relationship diagram

RReeggrreessssiioonn TTeessttiinngg Tests executed after an application has been modified to

insure that it retains its validity and that the changes have no

conflict with the rest of the system.

FFuunnccttiioonnaall TTeessttiinngg Testing whether the application achieves the functionality for

which it was designed and created.

WWeebb SSppiiddeerrss Programs that visit web sites and go through their pages to

read and record information. Usually used in search engines.

Also known as crawlers and robots.

WWaatteerrffaallll ddeevveellooppmmeenntt

mmooddeell

A linear development method where development phases are

completed sequentially without overlapping.

DDyynnaammiicc ppaaggeess Pages that are created during run-time based on the input of

a user or temporal variables like time of day.

UUsseerr SSeessssiioonn DDaattaa A user's actions and requests to a web server from entering a

certain web application until leaving it.

Chapter 11: Appendix A

 48

1111 AAppppeennddiixx AA

11.1 ER-Diagrams

11.1.1 Test Case Data ER-Diagram

This diagram shows the relationship between test cases and resources. A resource

is any part of the web application typically a web page. The relationship is one to

many; a resource can appear as part of many test cases. A resource can reference

or be referenced by many other resources.

Figure A1: ER-Diagram for Test Cases and Resources

11.1.2 Session Data ER-Diagram

This diagram shows the relationship between sessions and requests. A request is the

URL sent to the web server by the user. The relationship is one to many; a request

can appear as part of many sessions.

Figure A2: ER-Diagram for Sessions and Requests

Session

Steps

IDs

Requests

ID

URL

Contains

isPartOf

Test Case

Steps

IDs

Resource

ID

URL

Contains

isPartOf

References/

isReferencedBy

Chapter 11: Appendix A

 49

11.2 Table Attribute Descriptions

11.2.1 JSpider Tables

Tables jspider_resource and jspider_resource_reference are the main JSpider tables

used in different components of the RegTest system. Jspider__resource_reference

was modified by adding the field used that keeps track of whether or not the row was

used when constructing test cases to keep generated paths independent.

Figure A3: jspider_resource

Figure A4: jspider_resource_reference

11.2.2 New Tables

11.2.1.1 Session URLs

Table converter_session_urls table stores all unique URLs found in session data.

Field used is used to keep track of which requests were used and which were

completely invalid for the purpose of the evaluation. Field ID is the primary key.

Chapter 11: Appendix A

 50

Figure A5: converter_session_urls

11.2.1.2 Sessions

Table converter_sessions stores the structure of sessions extracted during the

UploadSessions process. One session identified by a number has many steps and

each step corresponds to a certain request referenced by its ID. The primary key is a

compound key consisting of session_num and step_num.

Figure A6: converter_sessions

11.2.1.3 Test Cases

Table jspider_test_cases stores the structure of test cases constructed by running

the constructer. One test case identified by a number has many steps and each step

corresponds to a certain URL referenced by its ID. The primary key is a compound

key consisting of case_num and step_num.

Figure A7: jspider_test_cases

Chapter 11: Appendix A

 51

11.2.1.4 Form Fields

Table jspider_form_filling stores fields and their values extracted from session files

or entered by the user. Field name is the primary key.

Figure A8: jspider_form_filling

Chapter 12: Appendix B

 52

1122 AAppppeennddiixx BB

12.1 Log File Standard Schema

Figure B1: log-file-schema.xml

12.2 Schema Validation

The created XML schema was validated using an online tool. A session file was then

validated against the schema to test if the defined format matches what is required.

Figure B2 shows the result of the validation.

Figure B2: Validating the Schema

xsd Schema File

xml Session File

Validation result

Chapter 13: Appendix C

 53

1133 AAppppeennddiixx CC

13.1 Testing Outcomes

http://localhost:8080/jsp-examples/cal/login.html

http://localhost:8080/jsp-examples/cal/cal1.jsp?

name=nadia&email=nadia207%40yahoo.com&action=submit

http://localhost:8080/jsp-examples/cal/cal1.jsp?date=prev

http://localhost:8080/jsp-examples/cal/cal1.jsp?date=next

http://localhost:8080/jsp-examples/cal/cal2.jsp?time=8am

http://localhost:8080/jsp-examples/cal/cal2.jsp?time=9am

http://localhost:8080/jsp-examples/cal/cal2.jsp?time=10am

http://localhost:8080/jsp-examples/cal/cal2.jsp?time=11am

http://localhost:8080/jsp-examples/cal/cal2.jsp?time=12pm

http://localhost:8080/jsp-examples/cal/cal2.jsp?time=1pm

http://localhost:8080/jsp-examples/cal/cal2.jsp?time=2pm

http://localhost:8080/jsp-examples/cal/cal2.jsp?time=3pm

http://localhost:8080/jsp-examples/cal/cal2.jsp?time=4pm

http://localhost:8080/jsp-examples/cal/cal2.jsp?time=5pm

http://localhost:8080/jsp-examples/cal/cal2.jsp?time=6pm

http://localhost:8080/jsp-examples/cal/cal2.jsp?time=7pm

http://localhost:8080/jsp-examples/cal/cal1.jsp?

http://localhost:8080/jsp-examples/cal/cal1.jsp?

date=current&time=8am&description=meeting&submit

http://localhost:8080/jsp-examples/cal/cal1.jsp?

date=current&time=9am&description=meeting&submit

http://localhost:8080/jsp-examples/cal/cal1.jsp?

date=current&time=10am&description=meeting&submit

http://localhost:8080/jsp-examples/cal/cal1.jsp?

date=current&time=11am&description=meeting&submit

http://localhost:8080/jsp-examples/cal/cal1.jsp?

date=current&time=12pm&description=meeting&submit

http://localhost:8080/jsp-examples/cal/cal1.jsp?

date=current&time=1pm&description=meeting&submit

http://localhost:8080/jsp-examples/cal/cal1.jsp?

date=current&time=2pm&description=meeting&submit

http://localhost:8080/jsp-examples/cal/cal1.jsp?

date=current&time=3pm&description=meeting&submit

http://localhost:8080/jsp-examples/cal/cal1.jsp?

date=current&time=4pm&description=meeting&submit

Chapter 13: Appendix C

 54

http://localhost:8080/jsp-examples/cal/cal1.jsp?

date=current&time=5pm&description=meeting&submit

http://localhost:8080/jsp-examples/cal/cal1.jsp?

date=current&time=6pm&description=meeting&submit

http://localhost:8080/jsp-examples/cal/cal1.jsp?

date=current&time=7pm&description=meeting&submit

Chapter 14: Appendix D

 55

1144 AAppppeennddiixx DD

A tool called Badboy! was used to generate user session files. Users were asked to

use it when browsing the application instead of using a browser.

Badboy! is an easy to use free tool for recording user interactions with a website.

However, it is not designed to add a logging feature to a web application. It is rather

used as a capture/replay tool. For the purpose of this project it can be used to

produce user session files since the users are volunteers so the way the access the

application can be controlled.

Figure D1 shows the interface for this tool.

Figure D1: Badboy! interface (Recording Tool)

Chapter 15: Appendix E

 56

1155 AAppppeennddiixx EE
<Logfile>
 <Session>
 <SessionNum>1</SessionNum>

 <Step>http://localhost/bookshop/Default.jsp</Step>

 <Step>http://localhost/bookshop/Books.jsp?category_id=2&name=java</Step>

 <Step>http://localhost/bookshop/Login.jsp?ret_page=/bookshop/ShoppingCart.jsp</Step>

 <Step>http://localhost/bookshop/ShoppingCart.jsp</Step>

 <Step>http://localhost/bookshop/Login.jsp?FormName=Login&Login=nadia&Password=plath

&FormAction=login&ret_page=/bookshop/ShoppingCart.jsp</Step>
 <Step>http://localhost/bookshop/Registration.jsp</Step>

 <Step>http://localhost/bookshop/Registration.jsp?member_login=nadia&member_password

=nadia&member_password2=nadia&first_name=nadia&last_name=saad&email=nadia@ya
hoo.com&address=london&phone=999&card_type_id=1&card_number=22222222&FormN
ame=Reg&FormAction=insert</Step>

 <Step>http://localhost/bookshop/Default.jsp</Step>

 <Step>http://localhost/bookshop/Books.jsp?category_id=3&name=html</Step>

 <Step>http://localhost/bookshop/BookDetail.jsp?category_id=3&name=html&item_id=20</S

tep>
 <Step>http://localhost/bookshop/Login.jsp?querystring=category_id=3&name=html&pricemi

n=&pricemax=&author=&item_id=20&&ret_page=/bookshop/BookDetail.jsp</Step>
 <Step>http://localhost/bookshop/Login.jsp?FormName=Login&Login=nadia&Password=nadia

&FormAction=login&ret_page=/bookshop/BookDetail.jsp&querystring=category_id=3&na
me=html&pricemin=&pricemax=&author=&item_id=20&</Step>

 <Step>http://localhost/bookshop/BookDetail.jsp?category_id=3&name=html&item_id=20</S

tep>
 <Step>http://localhost/bookshop/BookDetail.jsp?rating=3&FormName=Rating&FormAction=

update&item_id=20&rating_count=0&Trn_item_id=20&PK_item_id=20</Step>
 <Step>http://localhost/bookshop/BookDetail.jsp?item_id=20</Step>

 <Step>http://localhost/bookshop/BookDetail.jsp?quantity=1&FormName=Order&FormAction

=insert&item_id=20</Step>
 <Step>http://localhost/bookshop/ShoppingCart.jsp</Step>

 <Step>http://localhost/bookshop/ShoppingCartRecord.jsp?order_id=1</Step>

 <Step>http://localhost/bookshop/ShoppingCartRecord.jsp?quantity=2&FormName=Shopping

CartRecord&FormAction=update&order_id=1&member_id=3&PK_order_id=1</Step>
 <Step>http://localhost/bookshop/ShoppingCart.jsp</Step>

 <Step>http://localhost/bookshop/MyInfo.jsp</Step>

 <Step>http://localhost/bookshop/MyInfo.jsp?member_password=nadia&name=nadia&last_n

ame=saad&email=nadia@yahoo.com&address=london&phone=777&card_type_id=1&card
_number=22222222&FormName=Form&FormAction=update&member_id=3&PK_member_
id=3</Step>

 <Step>http://localhost/bookshop/ShoppingCart.jsp</Step>

 <Step>http://localhost/bookshop/Default.jsp</Step>

 <Step>http://localhost/bookshop/Books.jsp?category_id=2</Step>

 <Step>http://localhost/bookshop/AdvSearch.jsp</Step>

 <Step>http://localhost/bookshop/Books.jsp?name=java&author=mark</Step>

 <Step>http://localhost/bookshop/Books.jsp?name=java</Step>

 <Step>http://localhost/bookshop/BookDetail.jsp?name=java&item_id=14</Step>

 <Step>http://localhost/bookshop/ShoppingCart.jsp</Step>

 </Session>

 <Session>
 <SessionNum>2</SessionNum>

 <Step>http://localhost/bookshop/Default.jsp</Step>

 <Step>http://localhost/bookshop/Login.jsp</Step>

 <Step>http://localhost/bookshop/Login.jsp?FormName=Login&FormAction=logout</Step>

 <Step>http://localhost/bookshop/Login.jsp?FormName=Login&Login=nadia&Password=nadia

&FormAction=login</Step>
 <Step>http://localhost/bookshop/ShoppingCart.jsp</Step>

 <Step>http://localhost/bookshop/Default.jsp</Step>

 <Step>http://localhost/bookshop/BookDetail.jsp?item_id=22</Step>

 <Step>http://localhost/bookshop/BookDetail.jsp?rating=2&FormName=Rating&FormAction=

update&item_id=22&rating_count=0&Trn_item_id=22&PK_item_id=22</Step>
 <Step>http://localhost/bookshop/BookDetail.jsp?item_id=22</Step>

Chapter 15: Appendix E

 57

 <Step>http://localhost/bookshop/BookDetail.jsp?quantity=1&FormName=Order&FormAction

=insert&item_id=22</Step>
 <Step>http://localhost/bookshop/ShoppingCart.jsp</Step>

 <Step>http://localhost/bookshop/ShoppingCartRecord.jsp?order_id=2</Step>

 <Step>http://localhost/bookshop/ShoppingCartRecord.jsp?quantity=4&FormName=Shopping

CartRecord&FormAction=update&order_id=2&member_id=3&PK_order_id=2</Step>
 <Step>http://localhost/bookshop/ShoppingCart.jsp</Step>

 <Step>http://localhost/bookshop/MyInfo.jsp</Step>

 <Step>http://localhost/bookshop/MyInfo.jsp?member_password=nadia&name=nadia&last_n

ame=saad&email=nadia@yahoo.com&address=london&phone=777¬es=test&card_type
_id=1&card_number=22222222&FormName=Form&FormAction=update&member_id=3&P
K_member_id=3</Step>

 <Step>http://localhost/bookshop/ShoppingCart.jsp</Step>

 <Step>http://localhost/bookshop/ShoppingCart.jsp</Step>

 <Step>http://localhost/bookshop/Default.jsp</Step>

 <Step>http://localhost/bookshop/Books.jsp?category_id=2</Step>

 <Step>http://localhost/bookshop/BookDetail.jsp?category_id=2&item_id=10</Step>

 <Step>http://localhost/bookshop/BookDetail.jsp?rating=3&FormName=Rating&FormAction=

update&item_id=10&rating_count=0&Trn_item_id=10&PK_item_id=10</Step>
 <Step>http://localhost/bookshop/BookDetail.jsp?item_id=10</Step>

 <Step>http://localhost/bookshop/BookDetail.jsp?quantity=3&FormName=Order&FormAction

=insert&item_id=10</Step>
 <Step>http://localhost/bookshop/ShoppingCart.jsp</Step>

 <Step>http://localhost/bookshop/MyInfo.jsp</Step>

 <Step>http://localhost/bookshop/MyInfo.jsp?member_password=nadia&name=nadia&last_n

ame=saad&email=nadia@yahoo.com&address=london&phone=4343¬es=test&card_typ
e_id=1&card_number=22222222&FormName=Form&FormAction=update&member_id=3&
PK_member_id=3</Step>

 <Step>http://localhost/bookshop/ShoppingCart.jsp</Step>

 <Step>http://localhost/bookshop/Default.jsp</Step>

 <Step>http://localhost/bookshop/BookDetail.jsp?item_id=10</Step>

 <Step>http://localhost/bookshop/Default.jsp</Step>

 <Step>http://localhost/bookshop/AdvSearch.jsp</Step>

 <Step>http://localhost/bookshop/Books.jsp?pricemin=3&pricemax=10</Step>

 <Step>http://localhost/bookshop/AdvSearch.jsp</Step>

 <Step>http://localhost/bookshop/Books.jsp?pricemin=5&pricemax=50</Step>

 <Step>http://localhost/bookshop/Books.jsp?category_id=2&name=server</Step>

 <Step>http://localhost/bookshop/Books.jsp?category_id=1&name=server</Step>

 <Step>http://localhost/bookshop/BookDetail.jsp?category_id=1&name=server&item_id=14<

/Step>
 </Session>

 <Session>
 <SessionNum>3</SessionNum>

 <Step>http://localhost/bookshop/Default.jsp</Step>

 <Step>http://localhost/bookshop/Registration.jsp</Step>

 <Step>http://localhost/bookshop/Registration.jsp?FormName=Reg&FormAction=cancel</Step

>
 <Step>http://localhost/bookshop/Default.jsp</Step>

 <Step>http://localhost/bookshop/BookDetail.jsp?item_id=22</Step>

 <Step>http://localhost/bookshop/BookDetail.jsp?rating=4&FormName=Rating&FormAction=

update&item_id=22&rating_count=1&Trn_item_id=22&PK_item_id=22</Step>
 <Step>http://localhost/bookshop/BookDetail.jsp?item_id=22</Step>

 <Step>http://localhost/bookshop/BookDetail.jsp?item_id=22</Step>

 <Step>http://localhost/bookshop/Default.jsp</Step>

 <Step>http://localhost/bookshop/ShoppingCart.jsp</Step>

 <Step>http://localhost/bookshop/ShoppingCartRecord.jsp?order_id=3</Step>

 <Step>http://localhost/bookshop/ShoppingCart.jsp</Step>

 <Step>http://localhost/bookshop/ShoppingCart.jsp</Step>

 <Step>http://localhost/bookshop/Registration.jsp</Step>

 <Step>http://localhost/bookshop/Registration.jsp?FormName=Reg&FormAction=insert</Step

>
 <Step>http://localhost/bookshop/Default.jsp</Step>

 <Step>http://localhost/bookshop/BookDetail.jsp?item_id=22</Step>

 <Step>http://localhost/bookshop/BookDetail.jsp?quantity=5&FormName=Order&FormAction

=insert&item_id=22</Step>
 <Step>http://localhost/bookshop/ShoppingCart.jsp</Step>

Chapter 15: Appendix E

 58

 <Step>http://localhost/bookshop/ShoppingCartRecord.jsp?order_id=4</Step>

 <Step>http://localhost/bookshop/ShoppingCartRecord.jsp?quantity=0&FormName=Shopping

CartRecord&FormAction=delete&order_id=4&member_id=3&PK_order_id=4</Step>
 <Step>http://localhost/bookshop/ShoppingCart.jsp</Step>

 <Step>http://localhost/bookshop/ShoppingCartRecord.jsp?order_id=1</Step>

 <Step>http://localhost/bookshop/ShoppingCartRecord.jsp?quantity=0&FormName=Shopping

CartRecord&FormAction=update&order_id=1&member_id=3&PK_order_id=1</Step>
 <Step>http://localhost/bookshop/ShoppingCart.jsp</Step>

 <Step>http://localhost/bookshop/ShoppingCartRecord.jsp?order_id=1</Step>

 <Step>http://localhost/bookshop/Default.jsp</Step>

 <Step>http://localhost/bookshop/Registration.jsp</Step>

 <Step>http://localhost/bookshop/Default.jsp</Step>

 <Step>http://localhost/bookshop/ShoppingCart.jsp</Step>

 <Step>http://localhost/bookshop/Login.jsp</Step>

 <Step>http://localhost/bookshop/Login.jsp?FormName=Login&FormAction=logout</Step>

 <Step>http://localhost/bookshop/Registration.jsp</Step>

 <Step>http://localhost/bookshop/Default.jsp</Step>

 <Step>http://localhost/bookshop/Default.jsp</Step>

 <Step>http://localhost/bookshop/Login.jsp</Step>

 <Step>http://localhost/bookshop/Login.jsp?FormName=Login&Login=nadia&Password=nadia

&FormAction=login</Step>
 </Session>

 <Session>
 <SessionNum>4</SessionNum>

 <Step>http://localhost/bookshop/Default.jsp</Step>

 <Step>http://localhost/bookshop/Login.jsp</Step>

 <Step>http://localhost/bookshop/Login.jsp?FormName=Login&FormAction=logout</Step>

 <Step>http://localhost/bookshop/Login.jsp?FormName=Login&Login=nadia&Password=nadia

&FormAction=login</Step>
 <Step>http://localhost/bookshop/ShoppingCart.jsp</Step>

 <Step>http://localhost/bookshop/ShoppingCartRecord.jsp?order_id=1</Step>

 <Step>http://localhost/bookshop/Default.jsp</Step>

 <Step>http://localhost/bookshop/BookDetail.jsp?item_id=22</Step>

 <Step>http://localhost/bookshop/BookDetail.jsp?quantity=1&FormName=Order&FormAction

=insert&item_id=22</Step>
 <Step>http://localhost/bookshop/ShoppingCart.jsp</Step>

 </Session>

 <Session>
 <SessionNum>5</SessionNum>

 <Step>http://localhost/bookshop/Default.jsp</Step>

 <Step>http://localhost/bookshop/AdminMenu.jsp</Step>

 <Step>http://localhost/bookshop/Login.jsp?ret_page=/bookshop/AdminMenu.jsp</Step>

 <Step>http://localhost/bookshop/Login.jsp?FormName=Login&Login=admin&Password=admi

n&FormAction=login&ret_page=/bookshop/AdminMenu.jsp</Step>
 <Step>http://localhost/bookshop/AdminMenu.jsp</Step>

 <Step>http://localhost/bookshop/CategoriesGrid.jsp</Step>

 <Step>http://localhost/bookshop/CategoriesRecord.jsp?category_id=1</Step>

 <Step>http://localhost/bookshop/Default.jsp</Step>

 <Step>http://localhost/bookshop/AdminMenu.jsp</Step>

 <Step>http://localhost/bookshop/EditorialCatGrid.jsp</Step>

 </Session>

<Session>
 <SessionNum>6</SessionNum>

 <Step>http://localhost/bookshop/Default.jsp</Step>

 <Step>http://localhost/bookshop/ShoppingCart.jsp</Step>

 <Step>http://localhost/bookshop/Login.jsp</Step>

 <Step>http://localhost/bookshop/Default.jsp</Step>

 <Step>http://localhost/bookshop/Books.jsp?category_id=2</Step>

 <Step>http://localhost/bookshop/BookDetail.jsp?category_id=2&item_id=10</Step>

 <Step>http://localhost/bookshop/BookDetail.jsp?quantity=1&FormName=Order&FormAction

=insert&item_id=10</Step>
 <Step>http://localhost/bookshop/ShoppingCart.jsp</Step>

Chapter 15: Appendix E

 59

 <Step>http://localhost/bookshop/MyInfo.jsp</Step>

 <Step>http://localhost/bookshop/MyInfo.jsp?member_password=nadia&name=nadia&last_n

ame=saad&email=nadia@yahoo.com&address=london&phone=4343¬es=test&card_typ
e_id=1&card_number=22222222&FormName=Form&FormAction=update&member_id=3&
PK_member_id=3</Step>

 <Step>http://localhost/bookshop/ShoppingCart.jsp</Step>

 <Step>http://localhost/bookshop/Default.jsp</Step>

 <Step>http://localhost/bookshop/AdvSearch.jsp</Step>

 <Step>http://localhost/bookshop/Books.jsp</Step>

 <Step>http://localhost/bookshop/BookDetail.jsp?item_id=21</Step>

 </Session>

 <Session>
 <SessionNum>7</SessionNum>

 <Step>http://localhost/bookshop/Default.jsp</Step>

 <Step>http://localhost/bookshop/BookDetail.jsp?item_id=1</Step>

 <Step>http://localhost/bookshop/BookDetail.jsp?quantity=1&FormName=Order&FormAction

=insert&item_id=1</Step>
 <Step>http://localhost/bookshop/ShoppingCart.jsp</Step>

 <Step>http://localhost/bookshop/Login.jsp</Step>

 <Step>http://localhost/bookshop/Login.jsp?FormName=Login&FormAction=logout</Step>

 <Step>http://localhost/bookshop/Default.jsp</Step>

 <Step>http://localhost/bookshop/BookDetail.jsp?item_id=2</Step>

 <Step>http://localhost/bookshop/Login.jsp?querystring=item_id=2&&ret_page=/bookshop/

BookDetail.jsp</Step>
 <Step>http://localhost/bookshop/Registration.jsp</Step>

 <Step>http://localhost/bookshop/Registration.jsp?member_login=n&member_password=n&

member_password2=n&first_name=n&last_name=n&email=n&FormName=Reg&FormActi
on=insert</Step>

 <Step>http://localhost/bookshop/Default.jsp</Step>

 <Step>http://localhost/bookshop/Books.jsp?category_id=2</Step>

 <Step>http://localhost/bookshop/BookDetail.jsp?category_id=2&item_id=4</Step>

 <Step>http://localhost/bookshop/Login.jsp?querystring=category_id=2&name=&pricemin=&

pricemax=&author=&item_id=4&&ret_page=/bookshop/BookDetail.jsp</Step>
 <Step>http://localhost/bookshop/Login.jsp?FormName=Login&Login=n&Password=n&FormA

ction=login&ret_page=/bookshop/BookDetail.jsp&querystring=category_id=2&name=&pri
cemin=&pricemax=&author=&item_id=4&</Step>

 <Step>http://localhost/bookshop/BookDetail.jsp?category_id=2&item_id=4</Step>

 <Step>http://localhost/bookshop/BookDetail.jsp?quantity=1&FormName=Order&FormAction

=insert&item_id=4</Step>
 <Step>http://localhost/bookshop/ShoppingCart.jsp</Step>

 <Step>http://localhost/bookshop/ShoppingCartRecord.jsp?order_id=8</Step>

 <Step>http://localhost/bookshop/ShoppingCartRecord.jsp?quantity=1&FormName=Shopping

CartRecord&FormAction=update&order_id=8&member_id=4&PK_order_id=8</Step>
 <Step>http://localhost/bookshop/ShoppingCart.jsp</Step>

 </Session>

 <Session>

 <SessionNum>8</SessionNum>

 <Step>http://localhost/bookshop/Default.jsp</Step>

 <Step>http://localhost/bookshop/AdminMenu.jsp</Step>

 <Step>http://localhost/bookshop/Login.jsp?ret_page=/bookshop/AdminMenu.jsp</Step>

 <Step>http://localhost/bookshop/Login.jsp?FormName=Login&Login=admin&Password=admi

n&FormAction=login&ret_page=/bookshop/AdminMenu.jsp</Step>
 <Step>http://localhost/bookshop/AdminMenu.jsp</Step>

 <Step>http://localhost/bookshop/ShoppingCart.jsp</Step>

 <Step>http://localhost/bookshop/MyInfo.jsp</Step>

 <Step>http://localhost/bookshop/ShoppingCart.jsp</Step>

 <Step>http://localhost/bookshop/Registration.jsp</Step>

 <Step>http://localhost/bookshop/Registration.jsp?member_login=new&member_password=

new&member_password2=new&first_name=new&last_name=new&email=new@yahoo.co
m&FormName=Reg&FormAction=insert</Step>

 <Step>http://localhost/bookshop/Default.jsp</Step>

 <Step>http://localhost/bookshop/AdminMenu.jsp</Step>

 <Step>http://localhost/bookshop/EditorialCatGrid.jsp</Step>

 <Step>http://localhost/bookshop/AdminMenu.jsp</Step>

 <Step>http://localhost/bookshop/CardTypesGrid.jsp</Step>

Chapter 15: Appendix E

 60

 <Step>http://localhost/bookshop/CardTypesRecord.jsp?card_type_id=1</Step>

 </Session>

 <Session>
 <SessionNum>9</SessionNum>

 <Step>http://localhost/bookshop/Default.jsp</Step>

 <Step>http://localhost/bookshop/BookDetail.jsp?item_id=1</Step>

 <Step>http://localhost/bookshop/BookDetail.jsp?quantity=0&FormName=Order&FormAction

=insert&item_id=1</Step>
 <Step>http://localhost/bookshop/ShoppingCart.jsp</Step>

 <Step>http://localhost/bookshop/ShoppingCartRecord.jsp?order_id=9</Step>

 <Step>http://localhost/bookshop/ShoppingCartRecord.jsp?quantity=0&FormName=Shopping

CartRecord&FormAction=delete&order_id=9&member_id=1&PK_order_id=9</Step>
 <Step>http://localhost/bookshop/ShoppingCart.jsp</Step>

 <Step>http://localhost/bookshop/Registration.jsp</Step>

 <Step>http://localhost/bookshop/Default.jsp</Step>

 <Step>http://localhost/bookshop/Books.jsp?category_id=4</Step>

 <Step>http://localhost/bookshop/Login.jsp</Step>

 <Step>http://localhost/bookshop/AdminMenu.jsp</Step>

 <Step>http://localhost/bookshop/Login.jsp</Step>

 <Step>http://localhost/bookshop/Login.jsp?FormName=Login&FormAction=logout</Step>

 <Step>http://localhost/bookshop/AdminMenu.jsp</Step>

 <Step>http://localhost/bookshop/Login.jsp?ret_page=/bookshop/AdminMenu.jsp</Step>

 <Step>http://localhost/bookshop/Login.jsp?FormName=Login&FormAction=login&ret_page=

/bookshop/AdminMenu.jsp</Step>
 </Session>

 </Logfile>

Chapter 16: Appendix F

 61

1166 AAppppeennddiixx FF

16.1 System Directory Structure

Figure B1: directory Structure of System

Each directory has all the files related to the component with the same name. The

common directory contains all classes that are used by all components such as

classes that access database tables.

16.2 Code Listings and Information

File Name Lines of Code

TestCasesDB.java 96

DBI.java 91

FormFillingDB.java 101

ResourceDB.java 94

ResourceReferenceDB.java 216

ResourceReferenceRow.java 68

SessionsDB.java 272

TestCase.java 69

construct.java 79

URLExtractor.java 59

MatchingUtil.java 71

SequenceAdjuster.java 108

Session.java 69

TestCaseSeqConstructor.java 102

URLAdjuster.java 72

URLConstructor.java 63

uploadSessions.java 102

SessionPrinter.java 85

Converter.java 45

InterpreteHTMLTask.java 5 lines added

URLFinder.java 340 lines added

formatSessionFile.java 118

RegTestApplication.java 270

net

Java

coding

jspider construct converter common

