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Abstract 
 
 

Metaheuristic search techniques are the preferred method for automatically generating good 
quality test data for structural testing. However these techniques fail in the presence of flag 
variables because they turn them into a random search. A testability transformation has been 
developed to address the problem caused by loop assigned flags in particular, as they have 
not been included in other solutions to the flag problem. The transformations convert 
predicates containing loop assigned flags into flag free equivalents, while preserving test data 
adequacy. 
 
Previous work has shown the effectiveness of the transformations when used in conjunction 
with a genetic algorithm to generate test data. However, no research has been done to 
investigate the extend by which the transformation increase the size of a program. 
 
The tool developed as part of this project is used to evaluate the transformations with respect 
to any increase in size, measured in lines of code. In total five ‘real world’ programs 
containing loop assigned flags were transformed by the tool. The paper presents empirical 
data showing that the increase in size is not highly statistically significant. The paper also 
presents an empirical study, showing that the ability of the tool to detect loop assigned flags in 
‘real world’ code is around 94 percent. 
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1.0 Project Definition  
 
 

1.1. Introduction  
 
Evolutionary Algorithms in the past have been proven to successfully find solutions to 
software problems. They have shown to be more efficient than traditional testing methods, 
especially when used as a search tool to find adequate test cases that exercise a particular 
system or branch of code as desired [19, 21].  
 
However, an evolutionary algorithm performs very badly in certain circumstances, especially 
when dealing with flag variables [3]. Considering the nature of an evolutionary approach is to 
incrementally find a best solution, it fails for flag variables because there is no measure of 
how close a test input came to causing an assignment to a flag. In such a case the outcome 
of a fitness evaluation, which is part of any evolutionary algorithm [4], fails to guide the 
algorithm towards desired test cases because the fitness criteria becomes irrelevant. Usually 
the fitness of a test input can be measured on an ordinal scale where it is possible to 
distinguish test cases according to their performance. With flag variables there are no such 
criteria as there are only two options, true or false. 
 
A particular problem are flag variables that have an assignment within a loop, but get used 
outside the body of a loop. These variables can turn an evolutionary search algorithm into a 
random search. In order to overcome this problem Harman et al. [3] developed a flag 
replacement algorithm based on testability transformations.  
 
The algorithm can have different implementations. Depending on which, it will either produce 
a rough guidance towards desired test data which exercises a target branch, or a smooth 
landscape towards a desired global optimum, i.e. most effective search for the desired test 
data. By implementing the latter version of the algorithm, this projects aims to solve the loop 
assigned flag problem and hence optimise the evolutionary test case generation method. 
 
 

1.2. Scope 
 
The automotive company DaimlerChrysler use an evolutionary testing process for the 
embedded systems in their cars. The implementation described in this paper is tailored 
towards applications used as part of their testing process. Ultimately the aim is to ‘prepare’ 
source code for the Genetic and Evolutionary Algorithm Toolbox [3] used by DaimlerChrysler.  
 
To remove loop assigned flags, the program requires an Abstract Syntax Tree (AST) 
representation of the source code in the XML file format. Currently this can only generated for 
C files, but the transformation can potentially be applied to other programming languages, 
providing they are structured in the same AST. The program also restricts itself to removing 
loop assigned flags only, thus, in order to produce a fully testable version of a C program, it 
has to be used in combination with a side effect removal tool, coupled with a transformation 
program for non-loop assigned flags. 
 
 

1.3. Aims & Objectives 
 
The key aim is to implement the transformation algorithm for loop assigned flags. The 
outcome will be a complete, easy to use application, which takes an XML file as input and will 
output a flag free transformed program, suitable for test case generation. The XML will be 
generated by a third party application (ANSIC.exe ) which takes a C file as parameter and 
outputs an AST version.  
 
A crucial part of the implementation will be the design of a local fitness function, its output 
incrementing a fitness variable. The implementation of the local fitness function will decide 
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whether the most effective transformation, with a smooth search landscape towards a global 
optimum, can be achieved.  
 
An assignment to a flag depends on the preceding predicate, hence the fitness function will 
have to evaluate the condition of this predicate. Therefore, for each predicate leading to an 
assignment, a fitness function with the expressions and structure of the predicate passed as 
arguments will be created. 
 
Once the AST has been transformed into a flag free representation, it can be converted back 
into a C file by using the xml.exe  application. It is then ready to be used by testing tools. 
 
The objectives are as follows: 
 
Implementation of the transformation algorithm:  

• Create a DOM parser (in java) 
• Load an AST representation of C source code, stored in an XML file 
• Insert the counter and fitness variables, both initialized to 0, into the DOM tree 
• Bush & blossom conditionals leading to an assignment to a flag by parsing the DOM 

tree, and inserting, if necessary, an ‘else’ part 
• Increment the counter variable before every predicate leading to an assignment to a 

flag 
• Increment the fitness variable by one if the current loop cycle avoided a negative 

assignment to flag, else by the return value from a local fitness function 
• Replace any predicate use of the flag with counter==fitness  
• Marshal the AST back to an XML file  

 
Implementation of an extension to the transformation algorithm:  

• Identify function calls that return a loop assigned flag 
• Apply the existing transformation rules to such functions, as well as transforming their 

return value 
• Insert a helper variable which stores the return value from those functions and 

enables a flag to maintain its original state 
• Replace any predicate use of the flag with helperVariable == 0   

 
Analyze how much bigger the transformation will make the program: 

• Use Lines of Code (LOC) as a measurement – suitable in this case because 
comments are discarded in the AST 

 
Integrate the application with both third party tools: 

• Package all three applications into a jar file so it can be run from the command line on 
any machine with a JVM. 
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2.0 Literature Review 
 
 

2.1. Functional & Structural Testing 
 
Software testing can generally be categorized into functional and structural testing. Functional 
testing is also termed as black box testing because the source code is hidden from the tester. 
The purpose of black box testing is to analyse whether a system behaves as expected and 
follows the functional requirements. Due to the inability to determine the percentage of code 
coverage achieved by a test input, it is not the most suitable approach for error detection 
because ‘bugs’ can go undetected. Equally, this makes it difficult to decide whether a program 
has been sufficiently tested. 
 
An advantage of black box testing is that test cases can be re-used, e.g. for regression 
testing, because they have been generated independently of any implementation. Tools such 
as ‘Decision Table’ exist for black box testing.  
   
Unlike functional testing, structural testing involves detecting errors in the implementation of a 
system, meaning the source code is available to the tester. Hence it is known as white box 
testing. Typically developers use structural testing to identify run time errors, memory leaks, 
or code bottlenecks [28]. The research and implementation completed during this project aims 
to improve white box testing only.  
 
The necessity of the entire source code being available to the tester makes structural testing 
more expensive because testing can only begin after the completion of the software 
development cycle. Black box testing does not require the entire system to be complete and 
testing can sometimes begin while development is still ongoing. Normally a combination of 
both black and white box testing is used in software development, with black box testing often 
preceding white box testing. 
 
Since the purpose of white box testing is to exercise a particular part or path of a program, the 
challenge for a tester is to find test cases that cover that path. This however is an extremely 
time consuming and thus expensive task. In order to automate this search task, a number of 
different techniques have been developed.  
 
void main(int x) 
{ 
     … 
     if(x > 3) 
     { 
          /*target branch to execute*/ 
     } 
     … 
}  

 
Figure 1: Example of a target branch. This branch will only be ex ecuted by test cases      
that lead to x being greater than 3 
 
The search for adequate test data is conducted within a search landscape. This landscape is 
made up from possible test cases and contains local maximums and minimums as well as a 
global maximum and minimum. The goal of any test data generation algorithm is to find this 
global maximum as it represents desired test cases. One option would be to use a random 
search for finding this optimum, but they have been proven to perform badly in the past 
because often program parts cannot be reached by chance.  
 



Kiran Lakhotia   MSc Individual Project Report September 2005 

 4 

void main(int x) 
{ 
     … 
     if(x==0) 
     { 
          /*target branch to execute*/ 
     } 
     … 
}  

 
Figure 2: This example shows a branch which is unlikely to be re ached by chance 
because the input domain of values leading to an execution of the t arget is just one 
number. The entire input domain ranges from -32767 to 32767 
 
 

2.2. Metaheuristic Search Techniques 
 
The majority of the work attempting to automate structural testing has focused on 
metaheuristic search techniques as a solution to the problem of finding adequate test cases. 
By definition those techniques “begin with only an approximate method of solving a problem 
within the context of some goal, and then use feedback from the effects of the solution to 
improve its own performance.” [36], thus making them well suited to tackle search space 
problems. 
 
Metaheuristic searches require solutions, i.e. test cases, to be encoded in a way which allows 
the search to manipulate them and order them according to better or worse solutions [17]. 
This ordering is crucial to any search technique because it effectively guides the search 
towards a desired test case. For structural testing the goal is a specific branch of a program 
and the solution is a test case leading to an execution of that branch.   
 
The two most popular metaheuristic search techniques used for automated white box testing 
are simulated annealing and genetic algorithms [25]. This paper only considers genetic 
algorithms used for structural testing. 
 
 

2.3. Evolutionary Testing 
 
Evolutionary algorithms are based on simulating evolution of nature and the concept “survival 
of the fittest” [3]. In terms of testing, evolutionary algorithms are applied to find the ‘fittest’ test 
case: one that represents a global optimum in the search landscape. One particular type of 
evolutionary algorithms are genetic algorithms. These use methods for 
reproduction/recombination, mutation and fitness evaluation.  
 
Genetic algorithms encode their solutions into a sequence of components. Often this is done 
as a binary string, each bit representing a single chromosome. To begin, an initial population 
of individuals is created randomly. The size of the population usually remains constant and its 
individuals are replaced during the process of running the genetic algorithm. 
 
Each individual in the population, also known as the genotype from the analogy to nature’s 
evolution, gets assigned a fitness value, which is used to rank it within the population. This 
value is computed via a fitness function, which forms the backbone to any genetic algorithm. 
A robust fitness function distinguishes a genetic algorithm from a random search and 
determines the level of performance of a genetic algorithm. 
 
A number of different ways exist for ranking the individuals, for example linear ranking or 
tournament selection [17]. Depending on the selection process, usually the fitter individuals 
are used to form new ‘parents’ and by recombination create new ‘offspring’. Again, different 
techniques such as ‘two point’ crossover exist for this process. Once new offspring have been 
formed they are mutated at random, for example by flipping a bit in the binary sequence. 
Consequently the genetic algorithm is run again with the newly created population and its 
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individuals are evaluated via a fitness function. This process continues until either a stop 
condition or the desired solution is reached. 
 
The fitness functions calculate the distance of a test case from a desired branch or point in a 
program. The closer a test case gets to a target branch, the fitter it is considered to be.  To 
illustrate this, consider a solution to be defined as an input x having the value 100. A test case 
with the value 60 would have a distance of 40 from the solution, whereas a test case with 
value 80 would only be 20 from the solution, therefore the latter is regarded as fitter. 
However uses of special variables, such as flags, make it impossible to calculate a correct 
distance.  
 

 
 
Figure 3: A 2D representation of a fitness landscape, demonstr ating local optima (A, 
C), as well as a global optimum B. The white spot is the current  test case, whereas the 
black spot shows the optimal solution 
 
 

2.4. Flags 
 
Flag variables are usually of type Boolean and can have either true or false as their value. A 
flag can also be of type ‘int’, in which case the values true and false are represented by 1 and 
0 respectively. C programs, the source code language dealt with in this project, do not have a 
Boolean data type and instead use the ‘int’ representation for flags. 
 
Because it is impossible to calculate the distance of a test case from being true or false, there 
is no way of assigning correct fitness values to individuals. As a result, the search landscape 
gets transformed into a two-plateau landscape, with one single unfit plateau and one single 
super-fit plateau, representing the two states of the flag. 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Figure 4: Worst case search landscape, produced by flag variable s used in predicates 

 

Maximum 
Fitness Score  

Fitness 

Test case that caused the 
desired branch to execute 

Value of test case 
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The presence of flags deteriorates a guided search into a random search because the 
resulting search landscape does not offer any guidance to the genetic algorithm. This makes 
finding a test case that corresponds to the global optimum like finding a ‘needle in a 
haystack’.  
 
Because flags can only have two states they are commonly used in embedded systems 
where it is often required to capture system state information about an event or the system. 
Furthermore, the input domain for one value of a flag is typically very small, making it unlikely 
to be reached by a test input [3]. 
 
Since evolutionary testing has previously proven to generate good quality test data for 
programs without flags [14, 15, 19], the aim has been to transform programs containing flags 
into flag-free equivalents for testing. This approach is also known as a ‘testability 
transformation’ [3].  
 
A testability transformation differs from traditional transformations because it does not 
preserve functional equivalence, yet guarantees a branch will be executed under the same 
initial conditions in the non-transformed program. It is not designed to be an exact copy of the 
original source, but to aid testing tools to find adequate test data for the original program. 
After completion, the transformed program is of no further use. 
 
For flags such a transformation is achieved by applying an amorphous slicing technique, 
which substitutes the use of the flag with a flag free expression. An algorithm developed by 
Harman et al. [3] retains the state of the flag, and only replaces its use.  
 
static void pvaloct(long val)  
{ 
 char sp ;  
 unsigned long lval;     
 sp = SP; 
 if (val < 0) { 
  lval = -val; 
  sign = 1; 
 } else { 
  lval = val; 
  sign = 0; 
 } 
   
 if (!long_flag) 
  lval &= 0x0000ffff; 
        if (short_flag) 
  lval &= 0x000000ff; 
 
        while (lval) { 
  ch = (lval % 8) + '0'; 
  _asm push _ch _endasm;  
                lval = lval / 8; 
 } 
 
 if (sign) { 
  ch = '-'; 
  _asm push _ch _endasm; 
 } 
 ... 
}  

static void pvaloct(long val)  
{ 
 char sp ;  
 unsigned long lval;     
 sp = SP; 
 if (val < 0) { 
  lval = -val; 
  sign = 1; 
 } else { 
  lval = val; 
  sign = 0; 
 } 
   
 if (!long_flag) 
  lval &= 0x0000ffff; 
        if (short_flag) 
  lval &= 0x000000ff; 
 
        while (lval) { 
  ch = (lval % 8) + '0'; 
  _asm push _ch _endasm;  
                lval = lval / 8; 
 } 
 
 if (val < 0) { 
  ch = '-'; 
  _asm push _ch _endasm; 
 } 
 ... 
}  

 
Figure 5: The left hand column shows the flag ‘sign’ being used in a pr edicate. The 
right hand column is a transformed version where the use of the flag has been 
replaced by the expression leading to the assignment of the flag  
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2.4.1. Loop Assigned Flags 
 
The transformation described above for ‘normal’ flags fails for loop assigned flags. They are 
variables that have an assignment within a loop, but get used outside the body of a loop. 
 
An assignment to a flag usually depends on a predicate preceding the assignment. If such an 
assignment occurs within a loop, the predicate itself might depend on some loop condition 
(e.g. how many times the body of a loop is executed). Such interdependency rules out the 
amorphous slicing technique, hence another transformation algorithm is needed to deal with 
loop assigned flags. 
 
void f(char a[ELEMENTCOUNT]) 
{ 
     int i; 
     int flag = 1; 
     … 
     for(i=0;i<ELEMENTCOUNT;i++) 
     { 
          … 
          if(a[i]==0) 
          { 
             flag = 0; 
          } 
          … 
     } 
     if(flag) 
     { 
         /*target branch*/ 
     } 
     … 
}  
 
Figure 6: This example illustrates a loop assigned flag and how its  assignment 
depends on variable loop variable ‘i’  
 
As with the algorithm to transform conventional flags, the transformation of loop assigned 
flags retains the original value of the flag variable. This ensures any other program part such 
as functions, which might reference the flag, are still executed correctly.  
 
The structure of the transformation algorithm is to simulate the flags’ use and state. 
Introducing two new variables - counter and fitness - into the program achieves this. 
 
The counter is used as a count for loop iterations, whereas the fitness variable is used to 
assign a fitness score to a test case. Depending on whether an assignment to a flag occurs 
during a loop iteration, and based on the type of assignment, the value of the fitness variable 
is incremented. Finally the predicate use of a flag is replaced by the statement 
if(counter==fitness) .  
 
The working of the algorithm is best explained by an example. Consider the case where a flag 
has the value true when entering the loop and there is some condition inside the loop, which 
leads to an assignment of false to the flag. If every iteration of the loop avoids an assignment 
of false to the flag, the fitness variable is incremented by 1 during each iteration. In effect this 
counts the number of times the body of the loop is executed without leading to a negative 
assignment to the flag. When exiting the loop, counter and fitness will be equal, thus 
representing the initial value of true for the flag. 
 
If however there was to be an assignment of false to the flag, the fitness variable would not be 
incremented during that particular iteration, hence the statement if(counter==fitness)  
would evaluate to false, again representing the state of the flag correctly. Another example 
would be where the flag is set to false when entering the loop and some condition exists 
where the flag is set to true within the body of the loop. In this case, when an assignment of 
true to a flag occurs, the fitness variable is simply assigned the value of counter.  
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In this way the fitness of a test input can be evaluated with respect to the fitness variable 
providing a measure for the genetic algorithm of how close a test case came to changing the 
value of a flag, for example from true to false. 
  
 

2.5. Local fitness function 
 
A more sophisticated implementation of the transformation algorithm is to increment the 
fitness variable with a local fitness function. An assignment of false to a flag is usually 
regarded as ‘bad’, because it represents ‘falseness’ of some condition. Thus, a test case that 
avoids a negative assignment to a flag should receive a higher fitness score than one that 
sets the flag to false. A test case avoiding an assignment of true to a flag should equally 
receive a lower fitness score.  
 
The algorithm achieves this by ‘punishing’ a test case that leads to an assignment of false to 
a flag by assigning it a value of less than 1. The exact value depends on the local fitness 
function. It also rewards test cases for every iteration that avoid setting the flag to false by 
incrementing the fitness variable with the highest possible fitness score: a value of 1. If the 
flag is false when entering the loop, any test case that avoids an assignment of true to a flag, 
also gets ‘punished’ by a local fitness function.  
 
Making use of a local fitness function not only enables the genetic algorithm to backtrack to 
the point where a false assignment could have been avoided, but also has a positive effect on 
the fitness landscape. Non-implementation of such a function produces a coarse grained 
landscape which does not offer unambiguous guidance towards the global optimum because 
it contains small plateaus where a genetic algorithm may still get ‘trapped’. With the use of a 
fitness function however, the algorithm is able to produce a much smoother path towards the 
global optimum because it takes into account any failed positive or any negative assignments 
to a flag. 
 
This yields a better performance of the genetic algorithm, as can be seen by results published 
by Harman et al. [3]. 
 
 

 
Worst case landscape 

No guidance towards global 
optimum 

Coarse grained landscape 
with some guidance towards 

global optimum 

Smooth landscape with 
ubiquitous guidance towards 

the global optimum 
 
Figure 7: The flag landscape [3] 
 
In order to increment the fitness variable correctly and provide a meaningful distance 
measure for the genetic algorithm, any conditionals that lead to an assignment of a flag need 
to be ‘bushed and blossomed’. This means converting any if  statement into a corresponding 
if{}else{}  statement. As a result, one branch of the conditional represents a flag having 
the value true, and the other represents the case where a flag has the value false. 
 
After the transformation, slicing can be applied with respect to the predicate use of the flag 
variable to produce a specialised fitness function for a particular branch. It also improves the 
performance of the algorithm since evolutionary testing requires repeated execution of the 
program. Hence a smaller program improves the overall execution time.  
 

2.5.1. Distance Calculations 
 



Kiran Lakhotia   MSc Individual Project Report September 2005 

 9 

Structural testing commonly uses control flow graphs (CFG) as a starting point. CFGs are 
statistical representations of a program, showing every possible flow path. They are created 
from a set of nodes and corresponding edges. A node is a program statement, an assignment 
for example, while an edge is a connection between two nodes. Some nodes, for example 
those representing decision statements in a program, can have multiple edges.  
 
Decision statements are if  statements or while  loops. They are also known as branching 
nodes because the program can follow different edges, depending on the evaluation outcome 
of the node. 
 
1.void main(int z) 
2.{ 
3.     int x; 
4.     x = -1; 
5.     if(x==z) 
6.     { 
7.      /*target branch to execute*/ 
8.     } 
9.     else 
10.         x = 0; 
11. 
12.}  

   

Figure 8: A CFG for the program in the left column, with line numbers  used to identify 
nodes  
 
Such nodes are often the target point of a testing system because they decide what branch 
coverage a test input achieves. Figure 8 illustrates this: if the test cases used are all greater 
than 0, the left branch of node 5 will never be executed. 
 
If a decision node precedes a point of interest in a program, the genetic algorithm calculates 
the distance from the point a test input reaches to the target node. As previously explained, 
genetic algorithms assign a fitness value to a test input based on this distance measure. 
Consider the case where the target node is in the true branch of a loop assigned flag 
predicate. After applying the transformation for loop assigned flags, the conditional looks like 
if(counter==fitness) . In order for the genetic algorithm to be able to calculate the 
correct distance for test inputs, it is paramount that the value of fitness adequately represents 
how close a test input came to executing the target branch. This means that the distance 
calculations used within the transformation do not refer to the predicate node using the flag, 
but instead calculate the distance of a test input from the node leading to an assignment of a 
flag. The methods used for this calculation are taken from Tracey’s objective functions [23], 
and depending on the structure of the predicate are evaluated as follows: 

1 

12 

3 

4 

5 

7 10 
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Relational Predicate Formula for Local Fitness Function 

 
a==b 
a!=b 
a>b 
a>=b 
a<b 
a<=b 
!a 

if abs(a-b)==0 then 0 else abs(a-b) + K 
if abs(a-b)!=0 then 0 else K 
if b-a > 0 then 0 else (b-a) + K 
if b-a >= 0 then 0 else (b-a) + K 
if a-b > 0 then 0 else (a-b) + K 
if a-b >= 0 then 0 else (a-b) + K 
converted to a==0 => if abs(a-0)==0 then 0 else abs(a) + K 

 
Figure 9: An adaptation of Tracey’s objective functions for relati onal predicates. K 
refers to a non-negative failure constant [17] 
 
 
2.6. Previous Work 

 
Previous work has found solutions to the flag problem; however none of these approaches 
work for loop assigned flags. The paper by Harman [3] is the first to offer a testability 
transformation to tackle this problem.  
 
 

2.7. Conclusion 
 
This chapter has discussed evolutionary testing and its associated problems, focusing on 
flags. It briefly described existing techniques for removing ‘normal’ flags and discussed in 
detail a testability transformation for loop assigned flags. 
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3.0 Design 
 
 

3.1 Data Binding 
 
In order to transform parts of the AST, research was done to find the best way of manipulating 
an XML document. A number of data binding tools for XML such as the freeware Castor or 
shareware Liquid Technologies are available. They use an XML schema to unmarshal the 
XML document into classes, as well as marshal them back into XML files. These classes can 
be constructed for a number of different programming languages.  
 
An alternative approach is to use the Document Object Model (DOM). DOM represents 
structured documents, i.e. XML files, in a tree form as an object oriented model in memory. 
This makes it best suited for ASTs because they are already represented as a tree. A further 
benefit is that DOM is platform and language independent [31]. It also provides an easy to 
use programming interface. 
 
DOM uses nodes to represent the XML data. Nodes can be of different type, e.g. element 
nodes, text nodes etc. Attributes are also regarded as nodes and appended as node lists to 
an element. 
 
Because DOM keeps the entire tree structure in memory, it can easily be traversed 
programmatically, both upwards and downwards. It also enables a programmer to keep track 
of the current position within a document, which is crucial for modifying the tree. 
 
Yet another alternative to using DOM would be SAX: an event driven API to parse XML 
documents. Unlike DOM it does not load the entire tree structure into memory, but instead 
uses ‘callback’ functions for the start and end elements of an XML document. It is then up to 
the programmer to handle those ‘callbacks’. Attributes and node types are passed as 
arguments to those functions.  
 
During the progress of the project it became clear that the transformations did not require 
exclusive use of DOM or SAX, but instead a combination of both could be used to achieve 
different tasks. Most elements for example, have an ID attribute. When creating new 
elements, in order to set their ID attribute correctly, the entire document needs to be parsed to 
find the maximum element ID. For this task it is better to use SAX, which always parses the 
entire document. To achieve the same with DOM, recursive functions have to be used, which 
can be expensive on the system stack. However, when inserting or replacing nodes in a tree, 
SAX is not the best choice because it is hard to keep track of the current position within the 
document. 
 
public void startElement(String uri, String localNa me,String qName, 
Attributes attributes) throws SAXException  
{ 

levelFromRoot++; 
 switch(mAction) 
  { 
   … 
  case IS_LOOP_ASSIGNED: 
    isLoopAssigned(qName,attributes,true); 
   break; 
   case GET_MAX_EXPR_ID: 
    String exprID = attributes.getValue(‘id’); 
    … 
  } 
} 
 
Figure 10: An example of using the SAX starElement callback funct ion 
 
 

3.2 Extension to Existing Transformation Algorithm 
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This section addresses a problem neither of the existing transformations currently tackles: a 
flag which gets assigned a value via a function, which in turn returns a loop assigned flag. 
 
The extension is only relevant to C programs, because it assumes that flags are of type ‘int’ 
rather than Boolean. Since this project relies on the ANSIC.exe  tool to achieve the testability 
transformations, which only works for C files, this was not considered to be a problem.  
 
void main() 
{ 
  int flag = 1; 
  int a[] = {1,2,0,3}; 
  flag = example(a); 
  if(flag) 
  { 
    /*target branch*/ 
  } 
}  

int example(int a[]) 
{ 
  int i=0; 
  int flagFunc = 1; 
  for(int i=0;i<5;i++) 
  { 
     if(a[i] != 0) 
        flagFunc = 0; 
  } 
  return flagFunc; 
}  

 
Figure 11: An example of a function returning a loop assigned flag, wh ich is 
consequently being used in the left hand column 
 
The extension aims to apply the existing transformation algorithm to the function containing 
the loop assigned flag. Only the last part of this transformation where the predicate use of the 
flag is replaced with counter==fitness  differs, because it now returns the absolute value 
of the difference between counter and fitness. The predicate if(flag)  in the program 
making the function call, is replaced with if(flag==0) . As a consequence, the fitness 
landscape is now computed as the distance a flag has from 0. A special case exists where a 
function does not return the flag directly, but instead uses the flag in a branching node to 
return either 1 or 0. 
 
void main() 
{ 
  int flag = 1; 
  int a[] = {1,2,0,3}; 
  flag = example(a); 
  if(flag) 
  { 
    /*target branch*/ 
  } 
}  

 
 

int example(int a[]) 
{ 
  int i=0; 
  int flagFunc = 1; 
  for(int i=0;i<5;i++) 
  { 
     if(a[i] != 0) 
        flagFunc = 0; 
  } 
  if(flagFunc) 
    return 1; 
  else 
    return 0; 
 
} 

Figure 12: An example where the existing transformation for loop assigned flags 
suffices for functions returning loop assigned flags  
 
In this case no modifications to the flag being assigned the return value of such a function is 
necessary, because the branching node will have been replaced by 
if(counter==fitness)  by the existing transformation for loop assigned flags. This means 
that the fitness landscape still provides a smooth guidance towards the global optima, where 
a flag has a desired value, but is computed in the function body with respect to the flag in the 
function, rather than flag getting assigned via a function call.  
 
 

3.2.1 Transformation of Functions Returning a Loop Assigned Flag  
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Step 1 applies the existing transformation for loop assigned flags to the function returning a 
flag.  
 
In Step 2 the return value of the function is substituted by the absolute difference between 
counter and fitness abs(counter-fitness) . In the case of a flag being true, this 
expression will return 0, else it will return a number greater than 0. This is due to the existing 
transformation ensuring counter==fitness  represents the correct state of the flag.  
 
The transformation at this stage has effectively transformed the return value of the function 
from a flag to an integer. In the program, the flag being assigned this return value is hence 
also converted into an integer variable. Due to the potential effect on the execution of other 
parts of the program, care was taken to restore the state of the original flag. Another helper 
variable ‘returnValue’ is introduced to the program in Step 3 as instrumentation to achieve 
this.  
 
Step 4 assigns ‘returnValue’ the value of the flag, so the flag can be reset to its intended 
value, i.e. either 0 or 1 in Step 5. To do so, the value of the flag has to be checked. If it is 0, it 
means the function has evaluated to true, hence the flag can be set to 1. If flag has a non-
zero value, it means the function evaluated to false and flag is assigned the value 0. 
 
Step 6 replaces the predicate use of the flag with if(returnValue==0) .  
 
void main() 
{ 
  int flag = 1; 
  
  int returnValue = 0; 
 
  int a[] = {1,2,0,3}; 
  flag = example(a); 
 
   
  returnValue = flag; 
   
 
   
  flag=(flag==0)? 1:0; 
   
   
   
  if(returnValue==0) 
  { 
    /*target branch*/ 
  } 
} 
 

int example(int a[]) 
{ 
  int i=0; 
  int flagFunc = 1; 
  int counter = 0; 
  double fitness = 0.0; 
  for(int i=0;i<5;i++) 
  { 
     if(a[i] != 0) 
     { 
       flagFunc = 0; 
       fitness += local(a[i],0); 
     } 
     else 
       fitness += 1; 
  } 
 
  return abs(counter – fitness); 
 
} 
 
local(int a,int b) 
{ 
    /// 
} 

 
Figure 13: Example of how the extension algorithm is applied to Figure 12 to transform 
the return value of the function and subsequent use of the function a ssigned flag 
 
 
 
 
 

Step 1 

Step 2 

Step 3 

Step 4 

Step 5 

Step 6 
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The transformation also applies to functions returning a loop assigned flag and whose return 
value is used directly inside a predicate (Figure 14). In this case Step 3 – 5 can be ignored. 
 
void main() 
{ 
  if(example(a)) 
  { 
    /*target branch*/ 
  } 
} 

void main() 
{ 
  if(example(a)==0) 
  { 
    /*target branch*/ 
  } 
} 

 
Figure 14: Shows how the predicate containing a function which returns  a loop 
assigned flag can be transformed 
 
The extension does not preserve the semantics of the original program. A more generic 
transformation could have been applied, assigning the return value of the function directly to 
the ‘returnValue’ variable and then using ‘returnValue’ to reset the state of the flag. This would 
avoid changing the data type of a flag to a real number. Similarly the transformation could be 
extended for non-C programs by converting the return type of the function from Boolean to 
‘int’. This is easily done in an AST representation of a program. However it is beyond the 
scope of the project because the implementation is based on C programs. 
 
 

3.3 Algorithm 
 
This section describes in detail the rules implemented to successfully transform loop assigned 
flags. The examples presented previously are very simplified and not relevant to ‘real world’ 
programs containing loop assigned flags. To name but a few, loop assigned flags can occur 
inside nested loops, a loop assigned flag can be used as a predicate for an assignment to 
another loop assigned flag, and flags can have multiple assignments of different types and 
their use may be spread throughout a program. Hence the transformation presented by 
Harman et al. [3] was taken as a basis to construct a program that could handle different C 
files of varying complexity. 
 
 

3.3.1 Preconditions 
 
One of the most important design decisions was how to identify flags in a program. This is 
particularly difficult in C programs because the lack of a Boolean data type. For example the 
statement if(x==0)  could be interpreted as an integer variable having the value 0 or, as a 
flag x being false. The only way to determine if x was a flag or a real number is to analyse the 
entire program and all the assignments to x. Yet even this is not sufficient to say with absolute 
certainty that x is of one type or another. Pointers for example can cause indirect assignments 
to a variable.  
  
 int x = 1; 
 int* a = &x; 
  *a = 5; 
 
Similarly function calls that pass parameters by reference would have to be analyzed. 
Especially for large applications this is an infeasible approach. Therefore the use of flags 
within predicates had to be restricted to certain syntax.  
 
This project defines a flag as a variable of type ‘int’ which only ever takes on the two values, 0 
or 1. Often user defined values are used to indicate two states of a flag, e.g. a variable of type 
‘int’ could be assigned SET_ON and SET_OFF, where SET_ON and SET_OFF are defined 
as being 3 and 4 respectively. Variables used in this way are not considered to be flags for 
the scope of this project, because they bear more resemblance to enumeration type 
variables. 
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Experience has shown that flags are most commonly used in a predicate having the form 
if(flag)  or if(flag && ....) . For the scope of this project, only variables following this 
predicate syntax are considered to be flags and thus transformed.  
 
void main(void) 
{ 
 ... 
 do{ 
    progress = 0; 
    for(i=0; i<lemp->nstate; i++){ 
  for(cfp=lemp->sorted[i]->cfp; cfp; cfp=cfp->next) { 
     if( cfp->status==COMPLETE ) continue; 
     for(plp=cfp->fplp; plp; plp=plp->next){ 
   if(sorted[i]->cfp) 
                            change = 0; 
    
     } 
     if( change ){ 
      plp->cfp->status = INCOMPLETE; 
        progress = 1; 
     } 
                   else 
                      progress = 0; 
     cfp->status = COMPLETE; 
  } 
    } 
 }while( progress ); 
} 
 
Figure 15: Example of a loop assigned flag (progress, assigned i n the outer for loop) 
being used in a predicate of a while loop 
 
A special case of a loop assigned flag is where the flag is initialized to false and has only an 
assignment of false inside a loop. If a test case avoids this assignment, the predicate 
if(counter==fitness)  would evaluate to true, thus amounting to a wrong representation 
of the state of the flag. In this case, initializing the fitness to a different value to counter would 
solve the problem, yet there is no need for the transformation to deal with this scenario 
explicitly. If a test case is to execute the branch where if(!flag)  evaluates to true, the 
genetic algorithm will use the guidance provided by the fitness and counter variables to find 
test cases that set the flag to false inside the loop.  
 
Clearly the same applies for a flag being initialized to true and having only an assignment of 
true within a loop. 
 
The relevance of such a scenario is unknown and has not been researched. However it is 
theoretically possible for such code to occur and has thus been included for completeness. 
 
 
3.3.2 Rules  

 
For each flag there will be a counter and fitness variable. The naming of these variables is as 
follows: counterFLAGNAME and fitnessFLAGNAME. These variables will be used as an 
instrumentation to compute the fitness landscape [3]. In case a flag is assigned values in two 
or more different loops, the variables will be used cumulative in every loop-body containing an 
assignment to flag without being reset to 0. This allows the transformation to carry the state of 
a flag from one loop to another. If, for example, the while  loop in Figure 16 avoids setting the 
flag to true, the predicate use of the flag would be wrong if counter and fitness would have 
been reset after the for  loop.  
 



Kiran Lakhotia   MSc Individual Project Report September 2005 

 16 

void main(void) 
{ 
  ... 
  for (i = 0; (i < 10); i ++) 
  { 
    counterFLAG ++; 
    if ((i == 3)) 
    { 
      flag = 0; 
      fitnessFLAG += local1(i, 3); 
    } 
    else 
    { 
      fitnessFLAG += 1; 
    } 
  } 
  while ((i < 20)) 
  { 
    counterFLAG ++; 
    i ++; 
    if ((i == 22)) 
    { 
      flag = 1; 
      fitnessFLAG = counterFLAG; 
    } 
    else 
    { 
      ... 
    } 
  } 
  if ((counterFLAG == fitnessFLAG)) 
  { 
    ... 
  } 
  ... 
}  
 
Figure 16: Example how counter and fitness are used cumulative 
 
 

3.3.3 The Local Fitness Function 
 
This project assumes that all flag assignments are preceded by a predicate, which cannot be 
inline. Therefore the return value of the fitness function needs to be based on the predicate 
leading to those assignments. This program distinguishes between two types of predicates - 
simple and complex. 
 
Simple Predicates 
Simple predicates only contain three parameters - a variable or constant followed by a 
comparison operator, e.g. ‘==’, and followed by another variable or constant. In this case a 
formula from Figure 9 corresponding to the structure of the predicate is applied to compute 
the initial fitness value. As the maximum fitness score of an iteration, e.g. for avoiding a 
negative assignment, is 1, the return value of the fitness function needs to be normalized 
between 0 and 1. Obviously the value 1 can never be returned by the function as this would 
mean the flag had either been set to true, or avoided a negative assignment. 
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Complex Predicates 
Complex predicates contain one or more Boolean ‘AND’ or ‘OR’ operators. In simple 
conditionals, if the expression evaluates to true, the ‘true’ branch of the predicate is executed. 
The ‘AND’ operator requires both, the expressions on the left as well as right hand side to be 
true for the ‘true’ branch to be executed. The ‘OR’ operator only requires either one of the two 
sides (or both) to be true.  
 
For complex conditionals the fitness function needs to compute a fitness score for each side 
of a Boolean operator with respect to a test case, according to one of the formulas in Figure 
9. Since only one score can be returned, the function then needs to decide which score to 
return. If two expressions are linked by an ‘AND’ operator, the lower of the two fitness scores 
is returned. If they are linked by an ‘OR’ operator the higher of the two scores is returned. 
 
In the AST, Boolean operators are ordered with the furthest right operator outside of any 
brackets, being at the top level. By applying the rules described above for each Boolean 
operator inside a predicate, the function will eventually return a fitness score based on the top 
level Boolean.  
 
Failure Constant 
The objective functions from Figure 9 use a failure constant, which is always added to the 
fitness score if an expression does not evaluate to 0. The purpose of this constant is best 
explained in the following example. 
 
if(x == 3) 
  flag = 1;  
 
After the transformation, the local fitness function uses the parameters from the predicate to 
compute how close a test case came to setting the flag to true. A fitness value of 1 is the best 
case, leading to a true assignment, while a return value of 0 indicates the worst case, i.e. the 
furthest distance a test case can have of changing the state of the flag.  
 
Applying the objective functions from Figure 9 to this example results in 0 only when x is 
equal to 3. Due to the computation of the return value for the fitness function, 0 yields a return 
value of 1. Of course if x was 3, the fitness function would not be executed. For all other 
cases, e.g. x being 2, a failure constant would be added to the absolute difference between 2 
and 3 to further punish incorrect test data. This value was arbitrarily chosen to be 0.5, as this 
represents a mediocre fitness. 
 
The local fitness function is created as an AST and always appended at the end of the 
existing AST for the program.  
 
 

3.3.4 Different Case Studies 
 
This section details how the algorithm deals with various types of flag assignments, illustrating 
the different behaviour of the algorithm for each case. 
 
Case 1 
The first case where flag is true when entering a loop and consequently gets assigned false in 
the body of the loop is straightforward to implement.  
 
Firstly the counter variable for the flag is incremented at the start of the loop. This is identical 
for all cases and therefore will not be mentioned again hereafter. 
 
The second step is to bush and blossom the conditional leading to the assignment of the flag. 
If a predicate already contains an ‘else’ part, the algorithm checks whether the flag 
assignment occurs in the if  or the else  part of the predicate. Depending on which, the 
fitness variable is incremented by a local fitness function in the branch containing the negative 
assignment. The other branch increments the fitness by 1, the same as counter. 
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Case 2 
The second case requires a slightly more complicated implementation of the algorithm. In the 
branch of a predicate containing the positive assignment to a flag, fitness gets assigned the 
value of counter. The branch avoiding the assignment needs to do two things. 
 
One, it needs to check the state of the flag, i.e. if it has already been set to true during an 
iteration. This is done with if(counter==fitness) . If this evaluates to true, the fitness is 
incremented by 1, so when exiting the loop, the statement counter==fitness  is true too.  
 
Two, in case a test input avoided setting the flag to true, the fitness is incremented by a local 
fitness function to provide ubiquitous guidance for the genetic algorithm. 
      ... 
      counterFLAG ++; 
      if ((i == 2)) 
      { 
        flag = 1; 
        fitnessFLAG = counterFLAG; 
      } 
      else 
      { 
        if ((counterFLAG == fitnessFLAG)) 
        { 
          fitnessFLAG += 1; 
        } 
        else 
        { 
          fitnessFLAG += local1(i, 2); 
        } 
      } 
      ...  
 
Figure 17: Illustrating how a positive assignment to a flag is transformed. If setting the 
flag to true is avoided by an iteration, the program needs to check if the f lag has been 
set to true by a previous iteration of the loop. 
 
Case 3 
A flag can have multiple assignments of different type, e.g. true to false or false to true. These 
assignments can all be inside one loop, or spread over different loops. One assumption this 
paper makes is that all flags are loop assigned. In case a flag is both, loop assigned as well 
as assigned outside any body of a loop, the outside assignment is ignored by the algorithm. If 
assignments to a flag are spread over different loops, the same rules as for Case 1 and 2 are 
applied for each assignment.  
 
The next case to consider is where a predicate contains an if{}elseif{}else{}  
statement, with two branches leading to an assignment to a flag and the third case avoiding 
an assignment. This is depicted in an AST as a simple if{}else{if{}else{}}  statement, 
with the else part containing another predicate. 
   
  if(i==3) 
    flag = 0; 
  else 
  { 
    if(i==2) 
     flag = 1; 
    else 
     i = 1; 
  } 
 
Figure 18: Source code representation of how elseif statements are ordered in the 
AST 
 
To transform an if{}elseif{}else{}  statement, a slight adaptation is necessary. The 
‘true’ branch of the predicate follows Case 2, and the ‘false’ part Case 1. However, the 
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predicate nested in the else  part now also needs to be transformed so it reflects the else  
part of the original code. 
 
Firstly the program needs to check the state of the flag. As in Case 2, this is done with 
if(counter==fitness) . Executing this predicate when a flag is set to true, i.e. flag was 
true when entering the loop, or has been set to true during a previous iteration, means that a 
test case successfully avoided setting the flag to false. Hence the fitness variable is 
incremented by 1. If the predicate evaluates to false, the flag is currently set to false and 
consequently the fitness variable is incremented by a local fitness function. The parameters 
for that function are taken from the predicate that contains the branch for setting flag to true. 
 
A loop can contain multiple predicates, each of which containing one or more assignments to 
a flag. For the transformation to work correctly in such an event, the counter variable needs to 
be incremented before each predicate leading to a flag assignment. As we can see from 
Figure 19, using counter purely as a count for the loop iterations would lead to an incorrect 
relationship between fitness and counter. Because if{}else{if{}else{}}  statements are 
represented as nested predicates, the algorithm applies this same rule, even though the loop 
only contains one ‘actual’ predicate.  
 
void main(void) 
{ 
  ... 
  for (i = 0; (i < 10); i ++) 
  { 
    counterFLAG ++; 
    if ((i == 3)) 
    { 
      flag = 0; 
      fitnessFLAG += local1(i, 3); 
    } 
    else 
    { 
      counterFLAG ++; 
      fitnessFLAG += 1; 
      if ((i == 2)) 
      { 
        flag = 1; 
        fitnessFLAG = counterFLAG; 
      } 
      else 
      { 
        i = 1; 
        if ((counterFLAG == fitnessFLAG)) 
        { 
          fitnessFLAG += 1; 
        } 
        else 
        { 
          fitnessFLAG += local2(i, 2); 
        } 
      }  
    } 
  } 
 ... 
} 
 
Figure 19: Illustrating how nested if{}else if{} predicates are transformed 
 
 
Case 4 
Of course flags can also be used inside predicates of a while  or do{}while()  loop.  There 
is no difference in how the transformation is applied to flags inside an if  predicate or inside 
predicates of a while  loop. It is also possible to use the counter and fitness variables related 
to one flag, as parameters for a local fitness function belonging to another flag. 
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... 
for(i=0; i<lemp->nstate; i++){ 
 for(cfp=lemp->sorted[i]->cfp; cfp; cfp=cfp->next){  
  if( cfp->status==COMPLETE ) continue; 
     for(plp=cfp->fplp; plp; plp=plp->next){ 
   if(sorted[i]->cfp) 
                         change = 0; 
    
     } 
   if ((counterCHANGE == fitnessCHANGE)) 
        { 
          plp->cfp->status = INCOMPLETE; 
          progress = 1; 
          fitnessPROGRESS = counterPROGRESS; 
        } 
        else 
        { 
          progress = 0; 
            fitnessPROGRESS+=local3(counterCHANGE,f itnessCHANGE); 
        } 
... 
 
Figure 20: Example of how a flag is used in a predicate leading t o an assignment of 
another loop assigned flag 
 
Case 5 
In the AST, switch  statements are represented by a ‘switchstatement’ element which 
encapsulates all the code. Each case is mapped to a ‘caselabel’ element as a child of the 
‘switchstatement’. However, the code for each case is not a child of the ‘caselabel’ but of the 
main ‘switchstatement’ element instead. If one case contains an assignment to a flag, all 
other cases need to increment the fitness variable in some form, because they avoid an 
assignment to flag.  The way switch  statements are depicted in an AST makes it difficult to 
keep track of the current case when walking up and down the tree. Therefore the 
transformation algorithm implemented converts a switch  statement into a corresponding 
if{}else{}  statement. The if{}else{}  block is then appended to the loop. The algorithm 
essentially groups together all cases avoiding an assignment to a flag, as well as all cases 
leading to an assignment. Converting the switch  into an if{}else{}  block has a number 
of advantages. 
 
If transforming the switch  statement directly, each case avoiding a positive assignment to a 
flag for example, would have to increment the fitness variable for the flag with a local fitness 
function, taking the ‘switch’ variable as well as the current case as arguments. As a result the 
size of the program would increase significantly because each case needs its own fitness 
function. When transforming the switch  into an if{}else{}  statement, only one, albeit 
slightly more complicated, fitness function is needed for all cases avoiding an assignment. 
 
Secondly, if a switch  contains multiple assignments to a flag, transforming it directly results 
in very complicated code, especially if there is a mix of positive and negative assignments to 
a flag. In an if{}else{}  statement, the logic of the transformation becomes a lot clearer 
and easier for people to understand.  
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    ...  
    counterFLAG ++; 
    switch (b) 
    { 
      case 2:; 
      case T:; 
      flag = 0; 
      break ; 
      case 5:; 
      T = 8; 
      break ; 
      default:; 
    } 
 
    if( (b != 2 && b != T) ) 
    { 
      if ((counterFLAG == fitnessFLAG)) 
      { 
        fitnessFLAG += local1(b, 2, b, T); 
      } 
      else 
      { 
        fitnessFLAG += 1; 
      }     
    } 
    else 
    { 
       if( (b==2 || b==T) ) 
       { 
           fitnessFLAG += local1(b, 2, b, T); 
       } 
    } 
    ... 
 
Figure 21: Switch statements containing a loop assigned flag are not transformed 
directly. Instead all the cases leading to a flag assignment a re represented in a 
corresponding if statement, with the else part representing all the cases avoiding an 
assignment to the flag. This statement block is then appended to the  loop body after 
the switch statement. 
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4.0 Implementation 
 
 
The implementation of the testability transformation is tailored towards the DaimlerChrysler 
testing system. DaimlerChrysler own a tool named ANSIC.exe  which takes a C file as input 
and outputs an AST representation in XML format. The structure of the XML is defined in the 
document type definition ‘ast.dtd ’. An AST is an abstract data structure and in this case 
represents the parsed C file. DaimlerChrysler also has a counterpart called xml.exe , which 
transforms it back into C source code. These two programs, coupled with the transformation 
algorithm, formed the starting point for this project.  
 
The tool developed in this project applies the transformations to the AST rather than the 
source code. This has a number of advantages as well as some disadvantages. Working with 
an abstract data structure makes the application independent of a specific source code 
language, and it could easily be adapted to handle java programs for example. Furthermore, 
tree-like structures are easier to manipulate because program statements are grouped 
together. By following XML syntax, the AST also adds some semantics to the source code, 
e.g. by using element attributes to relate different parts of a tree. Without an AST, the raw 
source code would just be a string of characters and it would be up to the application to 
interpret those correctly. 
 
A disadvantage is that the C files need to be pre-processed before they can be converted into 
an AST. ‘include ’ files, ‘#define ’ and comments for example cause problems for the 
ANSIC.exe  program. Another disadvantage is that the two parsers are owned by 
DaimlerChrysler and not commercially available. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 22: An overview of the system developed 
 
 
 
 
 
 
 

<?xml version=‘1.0’?>  
<!DOCTYPE ast SYSTEM ‘ast.dtd’> 
<ast > 
  <declaration name=‘main’ id=‘id4’ 
line=‘2’ file=‘_’ > 
    <function > 
      <return > 
        <declaration > 
          <basictype name=‘int’ /> 
        </declaration> 
      </return> 
    </function> 
    <statementblock >  

C FILE 

C FILE 

ANSIC.exe  

xml.exe  Flag Removal Tool  
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4.1 Class Overview  
 
Several classes have been implemented in order to realise the transformation algorithm. Two 
of these are used to integrate the third party applications, while the remaining perform the 
actual transformation. This section provides a brief overview of their functionality as well as an 
insight into how the design from Section 3 has been applied in the application. 
 
 

4.1.1. class MakeAST 
 
This class is used to create an XML file to hold the contents of the AST and a C file, which will 
contain the transformed program. This is achieved by executing the ANSIC.exe  and 
xml.exe  programs respectively. The name of the executable along with any parameters 
required, are passed as arguments to its ‘main’ function. 
 
The java Runtime  class is then used to start the execution of either program. Both the 
ANSIC.exe  and xml.exe  output the AST or source code line by line when run from the 
command line. Instead of writing this output to a window, it now gets captured by an instance 
of the FileBufferReader  class, created after the program has been invoked.  
 
Declaring this class as part of my package has the advantage that its ‘main’ method can be 
called directly from the FlagRemoval  class, without having to instantiate it first. 
 
 

4.1.2. class FileBufferReader 
 
The constructor of this class takes the buffer created by starting the ANSIC.exe  or xml.exe  
process, as well as the handle to the corresponding output file as arguments.  
 
The purpose of this class is to start a concurrent thread, which will gather the contents of the 
buffer and write it to a file. This is done reading line by line from the buffer and dumping it to 
the file via an instance of the java PrintWriter  class. 
 
 

4.1.3. class SaxParser 
 
As previously explained, a SAX parser traverses an XML file from top to bottom. For each 
start element, e.g. ‘<statementblock>’, the startElement  callback function is invoked. 
Equally, for each closing element, e.g. ‘</statementblock>’, the endElement  function is 
called. Empty elements, e.g. ‘<declaration />’ have both functions called straight after each 
other. Only the element names and its attributes are passed to these callbacks and it is left to 
the application to handle those events and keep track of the position within a document.  
 
Combining DOM and SAX in a project, where both refer to the same XML file is not always 
straightforward. For example, if a tree has been modified with DOM, it would have to be 
dumped back to an XML file, and a new SAXParser  class would have to be set up before 
being able to parse the modified tree. This is because SAX does not load a tree structure into 
memory, but accesses the XML file directly.  
 
To keep the start and end element callbacks as simple and legible as possible, no major code 
blocks were written into those functions. Instead a switch  block was used to delegate 
various function calls. The SAXParser  class contains a member variable called ‘mAction’ of 
type ‘int’. This member is initialised in the constructor whenever an instance of the parser is 
created, with the caller passing the required ‘action’ to the constructor. Because java does not 
support enumerations, a list of private static final short  variables was used to 
mimic enumerations. These represent different cases for the switch  block, e.g. 
‘FIND_FLAGS’.  
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Functions corresponding to each action case contain all the code for a specific event. Splitting 
the different tasks into cohesive functions makes the code easier to maintain. 
 
 

4.1.4. class FlagRemovalTool 
 
The ‘main’ function of this class provides the entry point for the application. It contains the 
bulk of the transformation algorithm and instantiates the other three classes as and when 
needed. Code, as well as functionality of this class is explained in more detail in the next 
section. 
 
After loading the XML file into memory and setting up the SAXParser  for the same file, the 
program proceeds to identify any loop assigned flags in the code via the ‘FindFlags() ’ 
function. Inside this function a new instance of the SAX parser is created. To identify flags the 
program first searches for any variables used inside predicates. As mentioned in Section 3, a 
predicate use of a flag has to follow certain syntax. The program is not able to distinguish a 
‘real’ flag, from an integer or other variable used as a flag. Since C does not have a special 
data type for flags, i.e. Boolean, this is not a problem. Furthermore, an integer used as a flag 
has the same effect on evolutionary testing as real flags do; therefore they also need to be 
transformed.  
 
if(flag) ... 

<conditionalstatement id=‘stat6’ > 
        <ref id=‘expr20’ name=‘flag’ idref=‘id2’ />  
... 
 

if(buff) ... 
<conditionalstatement id=‘stat6’ > 
        <ref id=‘expr20’ name=‘buff’ idref=‘id2’ />  
... 
 

Figure 23: Highlights the problem of distinguishing ‘real’ flags from other variables 
having a boolean use in predicates. The second line represents a char* (pointer to a 
char) where the conditional checks if the buffer is empty. The first predicate on the 
other hand contains a ‘real’ flag 
 
In the AST every variable is represented as a ‘ref’ element. The attributes of this element 
contain a unique element ID, the name of the variable, as well as the ID of the parent element 
containing the declaration of the variable. The declaration of a variable in general has two 
uses. Firstly, in the case of a flag it provides a reference point where to insert and perform the 
fitness and counter initialisation for a flag. Otherwise, their child elements contain the data 
type of the variable, which is needed for creating the fitness functions for example.  
 
If the use of a variable follows the syntax laid out in Section 3, it is represented in the AST as 
immediate child of the predicate or, in case of the predicate containing Boolean operators, as 
child of the operator. In any other case, if(variable > 3)  for example, the ‘ref’ element 
would be a child of an ‘operatorapplication’ element representing the ‘>’ symbol. 
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if(flag) ... 

<conditionalstatement id=‘stat6’ > 
        <ref id=‘expr20’ name=‘flag’ idref=‘id2’ />  
... 
 

if(flag > 0) ... 
<conditionalstatement id=‘stat6’ > 
  <operatorapplication id=‘expr20’ op=‘&gt;’>         
   <ref id=‘expr20’ name=‘flag’ idref=‘id2’ /> 
   <constant ...> 
  </operatorapplication> 
... 
 

Figure 24:  Shows how the program is able to distinguish between variables used as 
flags and expressions evaluating to true  or false  by examining the structure of the AST  
 
Thus the ‘FindFlags() ’ function needs to check that the parent of a ‘ref’ element is either a 
‘conditional’, ‘while’ loop or Boolean operator. The SAXParser  class is used to do exactly 
that. Furthermore it keeps track of a loop count, which later ensures any predicate use of a 
flag is outside the loop containing an assignment to the flag.  
 
If a matching ‘ref’ element has been found, the flag name taken from the ‘name’ attribute of 
the element, its element ID, as well as the current loop count is stored in an array, which in 
turn is appended to a vector. If this vector is not empty after parsing the file, i.e. a flag has 
been found, the program creates another instance of the SAXparser  to check if the flags are 
indeed loop assigned. The reason for creating this new instance is that once a predicate 
containing a flag has been found, the parser has passed at least one loop assignment of the 
flag in the document, and is unable to go backwards. The function performing this check uses 
the ‘forstatement’ and ‘whilestatement’ elements to keep track of a loop count. 
 
Every assignment to a variable is depicted as an ‘operatorapplication’ element in the AST, 
with the ‘op’ attribute equalling ‘=‘. If such an element is encountered and it is inside a loop 
(by checking loop count is greater than 0), the element is saved by using the DOM 
‘document.getElementById() ’ function. This is a good example of SAX and DOM being 
used in conjunction: the function checking that flags are loop assigned is called from the SAX 
parser, but uses DOM to perform the actual check.  
 
After a reference to the element has been created, the program loops through its children to 
see if a child matches a flag name stored earlier. If a match is found, and the current loop 
count is greater than the loop count stored previously with the flag information, it is 
considered to be a loop assigned flag.  
 
The information for each flag stored from the ‘FindFlags() ’ function is then copied into a 
new array. This array will eventually hold the name of the flag, the ID of the element declaring 
the flag, the type of assignment to the flag, i.e. negative or positive, the ID of the predicate 
leading to the assignment of the flag and the ID of the element representing the assignment 
operator.  
 
info[0] flag name 
info[1] id of the flag ref 
info[2] type of assignment to flag, e.g. positive o r negative 
info[3] id of conditional leading to assignment of flag 
info[4] id of operatorapplication assigning value t o flag 

 
Figure 25: The information stored for each flag which is consequentl y used to 
transform them 

 
The program uses the array shown in Figure 25 to indicate if a flag has been found by 
checking if the name (element at index 0) has been set. The program also needs to establish 
whether the assignment to the flag is positive or negative. In C this is represented as 1 and 0 
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respectively, but the keywords TRUE and FALSE (case insensitive) are also recognized by 
the application because they may have been declared as 1 or 0 respectively elsewhere. 
 
Real numbers are mapped to a ‘constant’ element in the AST. If such an element is found as 
a child of the ‘operatorapplication’ element mentioned above, its attributes are checked to 
detect a positive or negative assignment.  
 
The final step is to check that the assignment to a flag is preceded by a conditional because 
one is needed to compute a correct fitness function later. This is done by examining the 
parent of each parent from the ‘constant’ element upwards until a ‘conditionalstatement’ 
element is reached. Currently inline conditionals such as flag = (x>3)  are not supported.  
 
Once all the information about a loop assigned flag has been gathered, the array (Figure 25) 
containing this information is stored in a vector.  
 
Every flag assignment is treated independently. That is, for every assignment all the 
information needed to transform a flag will be stored. In some cases this means that duplicate 
data will be saved. In the example below the two flag assignments share the same conditional 
parent, flag name etc. Duplicating this information enables the program to detect which 
predicates have an assignment in both of their branches. 
 
if(i==3) 
    flag = 0; 
else 
    flag = 1; 
 
However, to ensure that only one counter and fitness variable is initialised in the AST, the 
program checks if a flag with the same name already exists in the flag vector. If not, the 
element ID declaring this flag is stored in a separate vector.  
 
Those two vectors now contain all the information needed to start transforming flags. The 
FlagRemoval  class contains one big recursive function which forms the backbone to the 
application. Like the SAXParser  class, it uses a switch  statement to decide what action to 
take. The parameters passed to it are a node as well as the action. Its main task is to traverse 
different parts of the tree starting from the node passed as an argument. This is achieved by 
recursively calling the child nodes of the starting node. Sometimes not all the children need to 
be traversed: thus return as well as stop conditions are used to terminate this process early. 
The full source code can be found in the appendix and just a few cases of this function will be 
highlighted within the next section. 
 
The function ‘checkBushBlossom() ’ loops through the flag vector and starts the 
transformation for each flag. As mentioned earlier, a flag can have multiple assignments, 
either in one loop or inside different loop bodies. Usually the counter variable for a flag gets 
incremented before each predicate leading to an assignment. 
 
A special case exists when both branches of a predicate contain an assignment to a flag. 
Even though they belong to the same predicate, they will be stored as two separate elements 
in the flag vector; therefore the program needs to check whether a flag assignment occurs in 
a predicate that is already preceded by a counter increment for this flag.  
 
An exception to this rule are nested if{}elseif{}else{}  statements (see Section 3, 
Figure 19). Since the element IDs of the predicates leading to an assignment as well as the 
flag names are amongst the information stored for each flag, this check is straightforward and 
a global flag (‘flagHandled’) is used to indicate either case.  
 
If the assignment is outside a switch  statement, the program calls the ‘NodeDetails() ’ 
function to see if the predicate leading to the assignment contains two branches. In the AST, 
a ‘conditionalstatement’ element can only have at most two ‘statementblock’ elements as 
children. The ‘statementblock’ element represents a source code block, encapsulated by curly 
brackets. After converting the source code, a predicate has the expression in the predicate as 
well as a ‘statementblock’ element for each branch as child nodes. Thus counting the 
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‘statementblock’ elements which are a direct child of the predicate indicates if it needs to be 
bushed and blossomed. If the count equals two, the predicate contains an else  part, else it 
only has one branch.  
 
The program simultaneously checks whether the ‘statementblock’ contains a flag assignment. 
This evaluation, coupled with the type of assignment, determines how the fitness variable 
needs to be incremented.  
 
If a flag assignment is found as a child of the first ‘statementblock’ element, the program also 
checks if the predicate has an assignment in the else  part, as this influences the fitness 
increment too. 
 
Every time an assignment to a flag is found, the program needs to parse the conditional 
leading to the assignment so a fitness function can be constructed and the ‘NodeDetails() ’ 
function is called, passing the node representing the conditional.  
 
The case ‘PARSE_CONDITIONAL’ considers two scenarios:  A simple conditional and a 
complex conditional (described in Section 3.3.3). It also needs to create the local fitness 
function with the correct arguments and make the function call passing the expression from 
the predicate to the function. Two vectors, one for the parameters (‘localParameters’) and one 
for the arguments (‘fitnessParameters’), are used to store the required information. Both 
vectors are of type ‘string’ and the ‘localParameters’ vector holds the element IDs of the 
elements used in the predicate, as well as the operator separating them. Conversely, the 
‘fitnessParameters’ vector stores the data type for each element in the predicate as well as 
the operators.  
 
The ‘GET_PARAMETERS’ case is used to populate the vectors. A predicate of the form 
if(flag)  is considered to be equivalent to the statement if(flag != 0)  and the latter 
version is stored in the vectors. If the predicate contains an operator such as ‘==‘ or ‘>=‘, the 
children of the operator form the two parameters to be passed to the fitness function.  
 
A special case for example is if(x + 1) . In the AST this has the same structure as if the ‘+’ 
sign was a comparison operator. Therefore, if the ‘op’ attribute of the ‘operatorapplication’ 
element is an arithmetic operator, the entire expression, i.e. (x + 1)  is passed to the fitness 
function, with the arguments being cast to be of type ‘double’.  
 
Casting an expression to be of type ‘double’ was done due to time constraints and ideally 
another case determining the data type returned by an arithmetic expression would have 
been included in the program.   
 
It is beyond the scope of this project to transform side effects, thus the program does not 
handle ‘throw’ statements and function calls inside predicates. Other side effects such as 
if(++x)  also need to be removed from the source code, else the transformation could cause 
problems by executing them twice, once inside the predicate and once when passed to the 
fitness function. 
 
Complex predicates contain a Boolean operator and are depicted as a binary tree in the AST. 
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if(flag &&x>1)  <conditionalstatement id=‘stat1’ > 

  <operatorapplication id=‘expr5’ op=‘&amp;&amp;’ >  
   <ref id=‘expr4’ name=‘flag’ idref=‘id2’ /> 
   <operatorapplication id=‘expr3’ op=‘&gt;’ > 
     <ref id=‘expr2’ name=‘x’ idref=‘id1’ /> 
     <constant id=‘expr1’ type=‘int’ value=‘1’ /> 
   </operatorapplication> 
  </operatorapplication> 
  <statementblock> 
   .... 
</conditionalstatement> 

 
Figure 26: Example of structure of predicates containing Boolean oper ators in the AST 
 
Storing the correct structure of such a predicate is important because the fitness function 
needs to be able to decide whether to return the fitness score evaluated for the left hand side 
of the Boolean operator or the score from the right hand side. Especially for predicates with 
multiple Boolean operators the function needs to know which operator has precedents over 
the others. Figure 26 shows how Boolean predicates are arranged in the AST. 
  

if((a[i]!=0&&c==2)||d>5) 

 

 
Figure 27: Complex predicate structures can be represented in a  binary tree. The tree 
representation is used to calculate the return value of the loca l fitness function 
 
The predicate expression is passed to the fitness function in sequence and the fitness score 
is computed based on that input sequence. Thus the parameters passed need to be in an 
order such that they reflect the tree structure of the predicate in the AST. 
 
To capture the structure of a binary tree unambiguously in string form, either a prefix or 
postfix expression can be used. For example the prefix expression for Figure 27 would look 
like ‘|| && a[i]!=0 c==2 d>5’. The program computes this expression for any complex predicate 
and stores it in a vector called ‘prefixExpr’. Each expression where a fitness score can be 
computed by using one of the functions from Figure 9 is grouped together and stored as one 
element in the vector. Each Boolean operator is stored as a separate element.  
 
As described in Section 3, the fitness function needs to return the fitness score for either the 
left or right hand side of a Boolean operator. In the example from Figure 27, the inferior of the 
two scores from a[i]!= 0  and c==2  would be compared against the score from d > 5 . The 
better score of the latter comparison would then be used to increment the fitness variable.  
 
Having the predicate expression in vector form makes it easy to choose between the 
minimum and maximum scores. Two functions, ‘getMin() ’ and ‘getMax() ’ are used to 
compare two values. The program loops through the vector and every time a Boolean 
operator is encountered it generates a function call to either of these two functions. The next 
element in the vector, a previously computed fitness score, is then added as parameter to that 
function. This process is repeated until the entire vector has been parsed.  
 
 
The result for the expression in Figure 27 would hence be:  

|| 

d > 5 && 

a[i]!= 0 
c == 2 
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return getMax(getMin(‘a[i] != 0’, ‘c==2’), ‘d > 5’) .  
 
The fitness function as well as the function call could have been created ‘on the fly’ without 
capturing the predicate in a vector first. However using a vector not only simplifies the task, 
but also avoids iterating the tree structure for the predicate twice, once for the parameters 
vector and once to order and compare the fitness scores.  
 
The ‘fitnessParameters’ vector holds the data type as well as operators and is used to create 
the argument list for the fitness function. The ‘arg’ string plus an appended index represent 
each argument. The operators are not passed between the two functions directly and are only 
used as part of the computation.  
 
The fitness function uses an array of type double to store all the fitness scores for each pair of 
arguments. The size of the array is deducted from the size of the ‘fitnessParameters’ vector. 
Stepping through the list of arguments, an objective function from Figure 9 is applied to each 
set of arguments depending on the operator linking them. The result of this computation is 
then stored in the array after being converted to an absolute value where necessary. Once all 
the fitness scores have been calculated, the program proceeds to choose the correct value to 
return from the array. 
 
The first step when transforming switch  statements is to capture the ‘switch’ variable and its 
data type. The structure of a switch  in the AST is similar to that of an if  statement. The 
predicate use of the variable is again the first child of the ‘switchstatement’ element, followed 
by a ‘statementblock’ element which encapsulates the body of the switch .  
 
Each ‘caselabel’ element has only the case declaration as child, not the code block for each 
case. Presumably this was done because an input can apply to multiple cases. However 
structuring the switch  statement in this way makes it hard to transform directly in DOM 
because it is difficult to keep track of the current position within the switch  block. As every 
code block is a direct child of the ‘switchstatement’ element, inserting the fitness variables at 
the correct positions, especially if the switch  contains multiple flag assignments, is very 
complex.  
 
The solution to this problem was to transform the entire switch statement into a corresponding 
if{}else{}  statement. Apart from the benefits mentioned in Section 3, the 
‘conditionalstatement’ structure is far easier to handle in DOM.  
 
When transforming a switch into an if{}  statement with regards to flags, only cases leading 
to an assignment need to be considered. Thus when only one flag assignment exists in a 
switch  statement, regardless of how big the switch  is, one if{}  statement with both 
branches suffices to increment the fitness variable correctly. As the predicate is appended to 
the loop and the switch  statement not transformed, only the fitness variable for a flag is of 
interest. Figure 28 illustrates this case with an example. 
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switch(x) 
{ 
   case ‘s’: 
   case ‘S’: 
      flag = 0; 
   break; 
   case ‘D’: 
      i = 5; 
   continue; 
   case ‘B’: 
      d = 9; 
   break; 
   default: i = -1; 
}  

if(x==’S’ || x==’S’) 
   fitness += local(‘s’,0,’S’,0); 
else 
   fitness += 1;  

 
Figure 28: A simple transformation from a switch to an if{} statement block. Every 
case leading to a flag assignment is mapped to one condition, unless m ultiple cases 
execute the same statements. In this case they are grouped t ogether in one conditional 
by a Boolean ‘OR’ operator 
 
 
for(...) 
{ 
   switch(x) 
   { 
      case ‘s’: 
      case ‘S’: 
         flag = 0; 
         fitness += (‘s’,0,’S’,0); 
      break; 
      case ‘D’: 
         i = 5; 
         fitness += 1; 
      continue; 
      case ‘B’: 
         d = 9; 
         fitness += 1; 
      break; 
      default: i = -1;fitness += 1; 
   } 
.... 
}  
 
Figure 29: highlights some of the problems that can occur when incr ementing the 
fitness directly inside the switch statement. For example, the use of a continue 
statement can potentially lead to a wrong evaluation of fitnes s when exiting the loop 
 
When different cases contain assignments of different type to a flag, the transformation 
follows slightly modified rules as those described in Section 3 and shown in Figure 19. 
 
Previously the branch avoiding an assignment of false to a flag would always ‘reward’ the test 
case by incrementing the fitness by 1, before ‘punishing’ it if it also avoided setting the flag to 
true. With the new transformation rules, which at the moment are only applied to switch  
statements, a test case always gets ‘punished’ for avoiding a ‘positive’ assignment to a flag. 
In theory this should speed up finding test cases that set a flag to true. 
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switch(x) 
{ 
   case ‘s’: 
   case ‘S’: 
      flag = 0; 
   break; 
   case ‘D’: 
      flag = 1; 
} 

if(x==’S’ || x==’S’) 
{ 
  fitness += local(); 
} 
else 
{ 
   if(x==’D’) 
    fitness = counter; 
   else 
   { 
      if(counter == fitness) 
      { 
         fitness += 1; 
      } 
      else 
         fitness += local(); 
   } 
} 

 
Figure 30: Demonstrates how the new rules affect the transform ation 
 
Switch  statements assigning to a flag as part of a default  statement require yet another 
variant of the transformation. In the previous example, only cases leading to an assignment to 
a flag had to be considered in the transformation. If a flag assignment occurs inside a default 
block, the exact the opposite is true. 
 
The program again uses SAX combined with calls to the DOM API to collect all the case 
statements avoiding an assignment to a flag. These are now grouped together by a Boolean 
‘AND’ operator inside a predicate. When a test case evaluates this expression to ‘false’, it is 
equivalent to executing the default  case of the switch . 
 
It is possible for a flag to be assigned as part of a case  statement and also have an 
assignment of the same type, e.g. false inside the default  case. Again all cases leading to 
one type of flag assignment need to be grouped together. The default  part is treated like 
another case and appended to the expressions in the predicate with a Boolean ‘OR’ operator. 
In essence the predicate thus evaluates all cases leading to the assignment or all cases 
avoided by the switch  predicate.  
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switch (b) 
    { 
      case 1: 
         flag = 0; 
      break ; 
      case 2: 
         T = 6; 
      break ; 
      default:flag = 1; 
    }  

if ((1 == b)) 
    { 
      fitnessFLAG += local1(1, b); 
    } 
    else 
    { 
      if (((b != 1) && (b != 2))) 
      { 
        fitnessFLAG = counterFLAG; 
      } 
      else 
      { 
        if ((counterFLAG == fitnessFLAG)) 
        { 
          fitnessFLAG += 1; 
        } 
        else 
        { 
          fitnessFLAG += local2(b, 1, b, 2); 
        } 
      } 
    }  

 
Figure 31: Example of how flags in the default label of a switch statement are 
transformed 
 
This chapter has provided an insight into how parts of the transformation were implemented in 
the program. A full explanation of all the functions and implementation details would have 
been beyond the scope of this report therefore, only sections which were considered to be of 
particular interest by the author were highlighted. The aim was to provide this information at 
an abstract level and as independent of the implementation language as possible. The full 
source code including code comments can be found in the appendix. 
 
   



Kiran Lakhotia   MSc Individual Project Report September 2005 

 33 

5.0 Testing 
 

 
As the final implementation is not intended to be a commercial product, testing was limited to 
ensuring the algorithm had been implemented correctly and that the program was capable of 
transforming a selection of ‘real world’ code. It was not the aim during testing to achieve a 
certain percentage of branch coverage or to detect every ‘bug’. In fact one of the toughest 
decisions in software testing is to determine when one has tested enough. Applying white box 
testing techniques for example, which require the use of CFG, would have been beyond the 
scope of this project and it was decided that no ‘formal’ testing was needed.  
 
The functionality of the program had been categorized into detecting flags and consequently 
transforming those flags. To achieve the transformations they were split into different stages, 
each stage represented by a ‘case’ from Section 3. After a stage had been completed, testing 
was done before progressing to the next stage. 
 
A number of very simple C programs were written to test each stage of the project. After 
testing for one stage had been completed, the test code was re-used in all following test runs 
to ensure any new functionality did not break an existing part of the transformation. Only once 
the entire application had been developed, ‘real world’ code was used to perform the final 
tests. 
 
For the first part of the implementation - detecting loop assigned flags, the emphasis was on 
placing flags inside a variety of nested loops and changing their use from occurring inside if  
predicates to while  predicates for example. The predicates were also changed in 
complexity, i.e. ranging from simple statement like if(flag)  to more advanced ones, 
containing Boolean operators, multiple flags as well as other variables such as arrays and 
pointers. 
 
The next major part of testing was to ensure the transformations created the correct function 
calls to the fitness functions, as well as the correct logic in those functions. The code for 
capturing the predicate structure as well as returning the correct fitness score is quite 
complicated and thus they were considered the most ‘vulnerable’ points where the application 
could break. Either by creating wrong prefix expressions or not being able to construct 
function calls from predicates leading to a flag assignment. The latter in particular needed 
more attention while testing because a predicate can contain very complex data types such 
as user defined structures or double pointers.  
 
An advantage of choosing to write simple C files for testing rather than use real code was that 
it was instantly obvious if the application behaved correctly. For example, when testing if the 
precedence of Boolean operators in a predicate is correctly evaluated in the fitness function, it 
is unhelpful if the application ‘breaks’ because it cannot handle a certain data structure inside 
the predicate.  
 
The program was implemented in JCreator Light for a number of reasons. Firstly, it is a 
freeware product and secondly, it is the only development environment for java available at 
university. A disadvantage of using the ‘Light’ version however is that it does not offer any 
debugging facilities. In general, development tools for java are not as good for debugging 
applications as Microsoft’s visual studio suite for example, and often one has to resort to 
‘ancient’ debugging practices such as print statements, because features such as step over or 
step into are not available.  
 
As mentioned in Section 1, the parser generating the AST does not accept include files, 
define  statements and comments. As a result every file has to be pre-processed before 
passing it to the ANSIC.exe  application. DaimlerChrysler have a tool inserting all the code 
from libraries into the source file, as well as converting #define  statements. However a 
working copy of this tool was unavailable for testing, so all the ‘real world’ code had to be 
treated manually. As this is a time consuming process it was decided to extract functions 
containing loop assigned flags into a temporary file, which was used to perform the 
transformation instead. The functions were already known, because all code later had to be 



Kiran Lakhotia   MSc Individual Project Report September 2005 

 34 

manually checked to evaluate if the application identified all loop assigned flags and 
transformed them correctly. After running the flag removal tool, the transformed functions 
were then re-inserted into the original source code. 
 
During the final testing it became apparent that a major challenge was to generate an AST 
with the parser from DaimlerChrysler, especially when used with open source code. The 
reason for this was that such code often includes libraries which were unavailable, or, so big 
that transforming them manually so they were suitable to be included directly into the code to 
transform was unfeasible. This was a particular problem for code instantiating user defined 
classes or structures and the use of pre-compiler directives like ‘#ifdef ’. Other problem 
syntax included ‘goto ’ statements as the label for these was not accepted by ANSIC.exe  
either. 
 
Pre-processor directives cause a particular problem because they need to be removed to 
convert the source code into an AST, but are also needed when testing code.  The only 
available approach to this problem was to take these directives out of the source code before 
the transformation and then re-insert them into the transformed C file. 
 
Similarly, if the AST for a part of a program could not be generated, the problem statements 
were stripped from the function providing this did not affect the transformation of the loop 
assigned flags. This was in effect ‘slicing’ the functions with the slicing criterion being the 
conditional leading to a flag assignment. 
 
Strictly speaking it was not slicing in the traditional sense, but rather a means to an end for 
generating the AST. Because no code is executed during the transformations or when 
converting source code to an AST and back again, it is possible to produce ‘wrong’ code in 
order to generate the AST. When transforming loop assigned flags, the only part of the source 
code that must not change when viewed as a string of characters, are the predicate 
expressions leading to a flag assignment. 
 
In very large applications it was found that especially ‘global’ flags often had assignments 
both inside a loop as well as outside the body of a loop. While this is not a problem as long as 
all assignments and uses are within one function, or one file, replacing all predicate uses of a 
flag over different functions with counter==fitness  might cause problems in the following 
scenario: 
 
Consider three functions, two - f1 and f2 within the same file and one - f3 in a different file. 
Further assume that f1 contains an assignment within a loop to a global flag, and the three 
functions are called in the following sequence: f1, f3, f2. Because the application developed 
can only transform one C file at a time, replacing all the predicates used in f1 and f2 results in 
a potentially wrong representation of the state of the flag. 
 
Unfortunately it was not possible to pack all the files of a program into one C file before 
transforming it, as the file would have been too big to handle for the home PC used for 
testing. For example, one program presented in Section 6 consists of 34 C files totalling 
260,590 lines of code. 
 
As a result it was decided in the case of global flags, only to transform flag uses following a 
loop assignment within the scope of a function. 
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6.0 Evaluation 
 
 
One of the objectives is to evaluate by what degree the testability transformations described 
in this paper improve evolutionary testing. The criterion of interest is the time taken and the 
ability to find appropriate test data that exercises a desired branch in a program. This 
evaluation will be based on the DaimlerChrysler testing system briefly described in Section 1 
and by Harman et al. [3]. Unfortunately it was not possible to arrange a visit to 
DaimlerChrylser in the time limit to use their testing system. This has been postponed to a 
later date thus outside the scope of this report.  
 
Due to the delay of evaluating the transformations on a live testing rig, a more academic 
evaluation was chosen. By evaluating the transformations in academic terms first, another 
dimension to the analysis is added, because it will show if the program is indeed suitable to 
be used in conjunction with real testing systems.  
 
Two key points were considered; firstly the ability of the program to detect loop assigned flags 
and; secondly to evaluate by how much the transformations increase the size of the 
transformed source code. Each transformed C file was evaluated with respect to those two 
points.  
 
When running a genetic algorithm on a program with the intention of finding test cases 
executing a specific branch, the problem points where it will get ‘trapped’ are identified in the 
process. For the evaluation of this project it was not known where in the code those points 
were, or indeed if any loop assigned flags existed. Identifying potential problem areas within a 
program as well as any loop assigned flags thus had to be done manually. 
 
‘Real world’ programs usually contain a number of C files. For each of these files all 
predicates were identified first and examined with respect to flags. Because the application 
developed also transforms flags used in while  loop conditions, all while  loops were 
included in the predicate count shown in Figure 32. 
 
Any predicate containing a flag (according to the definition from Section 3) was then manually 
checked to determine if the flag was loop assigned. This was done to be able to determine if 
the application recognised all loop assigned flags or if any had been missed. 
 
 

6.1. Detection and Transformation of Loop Assigned Flags 
 
The number of loop assigned flags identified using the above method was compared to the 
flags detected and transformed by the application. For the purpose of the evaluation it was 
decided to transform a selection of small, medium and one big open source program. This 
was to ensure the program could handle large ‘real world’ code, and to show that loop 
assigned flags can also be found in relatively small applications. The results are shown in 
Figure 32 for each program tested. 
 
The left hand column shows all predicates in a program. The next column along contains all 
predicates containing a flag following the syntax from Section 3. Often loop assigned flags are 
used in multiple conditionals outside a loop and the column ‘loop assigned Flags’ counts the 
definitions for each loop assigned flag. The last two columns show the number of flags 
detected by the application and the number of predicates transformed with the 
counter==fitness  statement. 
 
In total only four flags went undetected by the application, which resulted in 12 untransformed 
predicates which should have been transformed. All of which were flags used in the condition 
of a while loop and were not regarded as being loop assigned by the application because 
their assignments were all done via inline conditionals. The results show that around 94% of 
loop assigned flags were detected in 10,955 lines of parsed code. By modifying the program 
slightly in changing the inline conditionals to an if{}  statement, a 100% success rate could 
have been achieved. 
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Program 
Name 

Predicates 
(incl. 
while) 

with 
Flags 

loop 
assigned 

Flags 

Loop 
assigned 

Flags 

Detected 
Flags 

Transformed 
predicates 

arith_coder  236 20 6 2 2 6 

CKermit 26120 3178 299 62 58 287 

   ckcrp   1 1 1 1 

   ckcfn2   2 1 1 2 

   ckctel   9 3 3 9 

   ckucmd   7 3 2 6 

   ckucon   1 1 1 1 

   ckudia   1 1 0 0 

   ckutio   8 1 1 0 

   ckuus2   3 1 1 3 

   ckuus3   11 3 2 10 

   ckuus4   5 2 2 5 

   ckuus6   146 22 22 146 

   ckuus7   48 12 11 47 

   ckcnet   32 3 3 32 

   ckuusr   8 5 5 8 

   ckuusx   4 1 1 4 

   ckuusy   13 2 2 13 

Anagrams 21 2 2 1 1 2 

Fsquad 55 5 1 1 1 1 

Easter 24 11 10 3 3 10 

Total 26456 3216 318 69 65 306 
 
Figure 32: Results from running the transformation tool on 5 programs 
 
 

6.2. Increase in LOC by Transformations 
 
The second part of the evaluation was to investigate the increase of any size caused by the 
transformation. Lines of code (LOC) were used a unit for this measure. Only valid program 
statements and blank lines were considered to be a LOC.  
 
Figure 33 shows the size with respect to LOC of all transformed programs. Because the 
source code had to be manually pre-processed, removing pre-processor directives, 
comments and unstructuredness such as ‘goto’ statements, the code was sliced with respect 
to the last predicate containing a loop assigned flag inside a file to reduce complexity. Thus 
the actual LOC passed to the application are presented in the middle columns. The right most 
column shows the percentage the LOC were increased by the transformation.  
 
One factor that determines the size of a transformation is the complexity of predicates leading 
to a flag assignment, because the number of expressions used in such a predicate affects the 
size of the local fitness function. Another noticeable increase in the LOC is the presence of 
flag assignments in switch  statements. As described in Section 4, for every switch  
statement containing an assignment to a flag inside a loop, an if{}else{} statement block 
is added to the loop. The size of which in turn depends on the type of assignment to the flag. 
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In general positive flag assignments require more code to be added because for every loop 
iteration the state of the flag has to be checked in order to increment the fitness variable 
correctly, thus resulting in an additional if{}else{}  code block. 
 
However, not all the increase in size is due to the added code of the transformations. For 
example when outputting code from the xml.exe  tool, all inline declaration of variables such 
as ‘int t, s, d; ’ are converted into declarations on separate lines. On the other hand 
Figure 33, as well as the graph in Figure 35 suggest that the increase in size is more likely to 
be caused by the number of flags transformed than the xml.exe  tool. The ‘Easter’ program 
for example, having the fewest LOC but containing three loop assigned flags, yields an 
increase in size almost as big as the ‘C-Kermit’ program, having the largest LOC.  
 

Program 
Name 

Total LOC 
(all files) 

LOC  
IN 

LOC 
OUT 

% Increase 

arith_coder  3896 576 659 114% 

CKermit 260590 9434 16784 178% 

Anagrams 265 195 265 136% 

Fsquad 500 500 607 121% 

Easter 250 250 427 171% 

Total 265501 10955 18742 171% 
 
Figure 33:  Results showing the increase in LOC caused by the trans formations 
 
To assess if the transformation presented in Figure 33 caused a significant increase in the 
lines of code, a Mann-Whitney test was used. A p value was calculated for the results, 
comparing the LOC before and after the transformation. Values less than 0.05 were 
considered to be statistically significant. The test returned a p value of 0.23, indicating that the 
increase in LOC was insignificant.  
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Figure 34: Increase in the LOC after transformation. The y axis shows the LOC on a 
logarithmic scale 
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Figure 35: Compares the LOC of the untransformed program and the t ransformed 
program with respect to the number of flags transformed 
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6.3. Transformed Programs  
 
Example: arith_coder 
 
This program uses an arithmetic algorithm to implement a compression tool. The user has a 
choice of a word, character, bit or integer based compression.  The ‘main.c’ file, providing the 
entry point for the applications, contains two loop assigned flags. The verbose  flag indicates 
whether to print timing, compression, and memory usage information. The mem_specified 
flag is used to indicate if the user overrode the default memory allocation for the bit and word 
compression and if the compression method selected by the user allows dynamic memory 
allocation. 
 
Example: Easter 
 
This program calculates the date of Easter for any given year. It uses loop assigned flags to 
check if the input arguments provided contain a day number and are given in the Julian 
calendar. For the latter, the test problem is to a test case which includes the ‘j’ option in the 
input arguments.  
 
Example: C-Kermit 
 
C-Kermit is a “combined network and serial communication software package offering a 
consistent, transport-independent, cross-platform approach to connection establishment, 
terminal sessions, file transfer, file management, character-set translation, numeric and 
alphanumeric paging, and automation of communication tasks through its built-in scripting 
language” [29]. 
A full description of the program is beyond the scope of this project. 
 
Example: Anagrams 

This example prints all anagrams occurring in a dictionary file, or all anagrams of a word 
supplied on the command line. The problem is to find input arguments that set the 
print_all  flag to true. The flag being ‘true’ results in all anagrams of every anagram found, 
being displayed as opposed to only anagrams of a word provided as an input. 

Example: Fsquad  
 
This program simulates a solution to the firing squad synchronization problem. The same 
problem occurs in Finite and Infinite state machines and is described by Marvin Minsky [20]. 
Each soldier is depicted as a machine, containing amongst other things two colour states. 
The default colour is ‘black’, and is switched to ‘red’ to ‘prepare’ to fire. ‘Firing’ should only 
occur if both the neighbours of the current machine are also in a ‘red’ state. The challenge is 
to find test cases that set all the machines to ‘red’ thus executing the ‘fire’ command. 
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7.0 Conclusion 
 
 
This project has implemented a tool realising the testability transformations for loop assigned 
flags. The algorithm used for the transformations has different implementations depending on 
the structure and type of assignments to the flag.  
 
This paper has also presented an extension to the testability transformation. Unlike the 
existing transformation, this extended transformation can handle flags which are assigned by 
a function returning a loop assigned flag. 
 
The effectiveness of the tool in transforming loop assigned flags is validated with an empirical 
study that shows that the tool can successfully transform programs of varying size and 
complexity. Usually sliced programs are expected to be passed to the tool because commonly 
only one point in a program is of interest in structural testing. Thus, the input source file will be 
relatively small in size, usually containing around 1000 LOC. However the tool has 
successfully handled code containing over 5000 LOC. 
 
The paper also concludes that the transformations do not cause a highly significant increase 
in the size of the source code. Furthermore the empirical data shows that only when 
transforming a large number of loop assigned flags in a single file, the LOC of the transformed 
program increases by more than 140%. In structural testing however only few flags would be 
transformed per file, because program slices can be used instead of the entire source code.   
 
The application was developed in the java programming language, thus making it platform 
independent. This gives the advantage of being able to package third party applications 
together with the tool into a .jar file, which can easily be distributed. 
 
The programs included in this jar file were the two third-party applications ANISC.exe  and 
xml.exe . These are used by the tool to automate the task of generating the required XML 
file and transforming the XML back into C source code. Thus the tool can be used from the 
command line, taking the name of the C file to transform as only argument. After the 
successful transformation a C file named ‘output.c’ is generated. This file is suitable to be 
used for automated test case generation in conjunction with an evolutionary testing tool.  
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8.0 Future Work  
 
 
During the design stage of the project a number of assumptions about the syntax allowed in 
the source code had to be made. These were mainly based on identifying ‘real’ flags in 
predicates and ensuring a valid path condition could be computed for the fitness function. 
While this has not been found to be a problem for the majority of files transformed, lifting 
these assumptions would improve the tool even further as less manual ‘interference’ is 
required.  
 
Enumeration type variables can cause identical problems for genetic algorithms as flags. Like 
flags, they can also be loop assigned and have a use outside the body of the loop. The 
testability transformations described in this paper can not handle such variables as their 
range is not restricted to just two numbers. However transforming enumerations used as 
flags, briefly described in Section 3, having only two values ON and OFF where ON is defined 
as 2 and OFF as 3 for example, would only require a small modification to the transformation 
algorithm. The biggest obstacle would be determining all the possible states this type of 
variable can have and to ensure there are only two. 
 
Finally another possible area of research would be how to transform predicates which check if 
loop assigned pointers are NULL or if they ‘point’ to something. Such predicates have been 
found commonly during testing of open source programs. Again they inhibit genetic 
algorithms and no solution to this problem has been found to date.   
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10.0 Appendix 
 

10.1 User Manual 

 
All the files needed to start transforming C files have been included in a jar file. A jar file is the 
java equivalent to an executable and runs on any machine with a JVM installed. It can also be 
used as a container, similar to a zip file. The executable for the transformation tool has been 
packaged together with the ANSIC.exe  and xml.exe applications into jar container.  
 
To run the application you have to ‘extract’ the contents of the jar file first. To do so you will 
need the jar.exe program (for windows platforms). Extracting the files can either be done 
via the command line using 
 
jar xf FlagTool.jar 
 
or by a zip tool such as winzip. 
 
Once all the files have been extracted the folder should contain the ANSIC.exe, xml.exe, 
java.exe,ast.dtd and FlagRemovalTool.jar  files. 
 
The java application has been included to simplify the use from the command line. To start 
transforming C files place the file to transform in the directory and execute 
 
java –jar FlagRemovalTool.jar C_file_name 
 
Please note the tool currently only works on windows platforms. Any files to transform HAVE 
to be placed into the same directory as the jar file! 
 
If the transformation was successful, the transformed C file (named ‘output.c’) will be placed 
in the directory.  
 


