
Kiran Lakhotia MSc Individual Project Report September 2005

 I

Contents Page
Page(s)

I Contents
II Acknowledgements
III Abstract

1 1.0 Project Definition
1 1.1 Introduction
1 1.2 Scope
1 1.3 Aims & Objectives

3 2.0 Literature Review
3 2.1 Functional & Structural Testing
4 2.2 Metaheuristic Search Techniques
4 2.3 Evolutionary Testing
5 2.4 Flags
7 2.4.1 Loop Assigned Flags
8 2.5 Local Fitness Function
9 2.5.1 Distance Calculations
10 2.6 Previous Work
10 2.7 Conclusion

11 3.0 Design
11 3.1 Data Binding
12 3.2 Extension to Existing Transformation Algorithm
13 3.2.1 Transformation of Functions Returning a Loop Assigned Flag
14 3.3 Algorithm
14 3.3.1 Preconditions
15 3.3.2 Rules
16 3.3.3 The Local Fitness Function
17 3.3.4 Different Case Studies

22 4.0 Implementation
23 4.1 Class Overview
23 4.1.1 class MakeAST
23 4.1.2 class FileBufferReader
23 4.1.3 class SaxParser
24 4.1.4 class FlagRemovalTool

33 5.0 Testing

35 6.0 Evaluation
35 6.1 Detection and Transformation of Loop Assigned Flags
36 6.2 Increase in LOC by Transformation
39 6.3 Transformed Programs

40 7.0 Conclusion

41 8.0 Future Work

42 9.0 References

43 10.0 Appendix
 10.1 User Manual

Kiran Lakhotia MSc Individual Project Report September 2005

 II

Acknowledgements

I would like to thank my supervisor, Prof. Mark Harman, for his guidance, time and
encouragement during the project. Furthermore for his engagement in arranging a visit at
DaimlerChrylser in Berlin and providing me with the opportunity to use the tool developed in
conjunction with a ‘real world’ testing system.

I would also like to thank DaimlerChrysler for providing the ANSIC and xml parsers, and
sending me example source code from their systems.

Kiran Lakhotia MSc Individual Project Report September 2005

 III

Abstract

Metaheuristic search techniques are the preferred method for automatically generating good
quality test data for structural testing. However these techniques fail in the presence of flag
variables because they turn them into a random search. A testability transformation has been
developed to address the problem caused by loop assigned flags in particular, as they have
not been included in other solutions to the flag problem. The transformations convert
predicates containing loop assigned flags into flag free equivalents, while preserving test data
adequacy.

Previous work has shown the effectiveness of the transformations when used in conjunction
with a genetic algorithm to generate test data. However, no research has been done to
investigate the extend by which the transformation increase the size of a program.

The tool developed as part of this project is used to evaluate the transformations with respect
to any increase in size, measured in lines of code. In total five ‘real world’ programs
containing loop assigned flags were transformed by the tool. The paper presents empirical
data showing that the increase in size is not highly statistically significant. The paper also
presents an empirical study, showing that the ability of the tool to detect loop assigned flags in
‘real world’ code is around 94 percent.

Kiran Lakhotia MSc Individual Project Report September 2005

 1

1.0 Project Definition

1.1. Introduction

Evolutionary Algorithms in the past have been proven to successfully find solutions to
software problems. They have shown to be more efficient than traditional testing methods,
especially when used as a search tool to find adequate test cases that exercise a particular
system or branch of code as desired [19, 21].

However, an evolutionary algorithm performs very badly in certain circumstances, especially
when dealing with flag variables [3]. Considering the nature of an evolutionary approach is to
incrementally find a best solution, it fails for flag variables because there is no measure of
how close a test input came to causing an assignment to a flag. In such a case the outcome
of a fitness evaluation, which is part of any evolutionary algorithm [4], fails to guide the
algorithm towards desired test cases because the fitness criteria becomes irrelevant. Usually
the fitness of a test input can be measured on an ordinal scale where it is possible to
distinguish test cases according to their performance. With flag variables there are no such
criteria as there are only two options, true or false.

A particular problem are flag variables that have an assignment within a loop, but get used
outside the body of a loop. These variables can turn an evolutionary search algorithm into a
random search. In order to overcome this problem Harman et al. [3] developed a flag
replacement algorithm based on testability transformations.

The algorithm can have different implementations. Depending on which, it will either produce
a rough guidance towards desired test data which exercises a target branch, or a smooth
landscape towards a desired global optimum, i.e. most effective search for the desired test
data. By implementing the latter version of the algorithm, this projects aims to solve the loop
assigned flag problem and hence optimise the evolutionary test case generation method.

1.2. Scope

The automotive company DaimlerChrysler use an evolutionary testing process for the
embedded systems in their cars. The implementation described in this paper is tailored
towards applications used as part of their testing process. Ultimately the aim is to ‘prepare’
source code for the Genetic and Evolutionary Algorithm Toolbox [3] used by DaimlerChrysler.

To remove loop assigned flags, the program requires an Abstract Syntax Tree (AST)
representation of the source code in the XML file format. Currently this can only generated for
C files, but the transformation can potentially be applied to other programming languages,
providing they are structured in the same AST. The program also restricts itself to removing
loop assigned flags only, thus, in order to produce a fully testable version of a C program, it
has to be used in combination with a side effect removal tool, coupled with a transformation
program for non-loop assigned flags.

1.3. Aims & Objectives

The key aim is to implement the transformation algorithm for loop assigned flags. The
outcome will be a complete, easy to use application, which takes an XML file as input and will
output a flag free transformed program, suitable for test case generation. The XML will be
generated by a third party application (ANSIC.exe) which takes a C file as parameter and
outputs an AST version.

A crucial part of the implementation will be the design of a local fitness function, its output
incrementing a fitness variable. The implementation of the local fitness function will decide

Kiran Lakhotia MSc Individual Project Report September 2005

 2

whether the most effective transformation, with a smooth search landscape towards a global
optimum, can be achieved.

An assignment to a flag depends on the preceding predicate, hence the fitness function will
have to evaluate the condition of this predicate. Therefore, for each predicate leading to an
assignment, a fitness function with the expressions and structure of the predicate passed as
arguments will be created.

Once the AST has been transformed into a flag free representation, it can be converted back
into a C file by using the xml.exe application. It is then ready to be used by testing tools.

The objectives are as follows:

Implementation of the transformation algorithm:

• Create a DOM parser (in java)
• Load an AST representation of C source code, stored in an XML file
• Insert the counter and fitness variables, both initialized to 0, into the DOM tree
• Bush & blossom conditionals leading to an assignment to a flag by parsing the DOM

tree, and inserting, if necessary, an ‘else’ part
• Increment the counter variable before every predicate leading to an assignment to a

flag
• Increment the fitness variable by one if the current loop cycle avoided a negative

assignment to flag, else by the return value from a local fitness function
• Replace any predicate use of the flag with counter==fitness
• Marshal the AST back to an XML file

Implementation of an extension to the transformation algorithm:

• Identify function calls that return a loop assigned flag
• Apply the existing transformation rules to such functions, as well as transforming their

return value
• Insert a helper variable which stores the return value from those functions and

enables a flag to maintain its original state
• Replace any predicate use of the flag with helperVariable == 0

Analyze how much bigger the transformation will make the program:

• Use Lines of Code (LOC) as a measurement – suitable in this case because
comments are discarded in the AST

Integrate the application with both third party tools:

• Package all three applications into a jar file so it can be run from the command line on
any machine with a JVM.

Kiran Lakhotia MSc Individual Project Report September 2005

 3

2.0 Literature Review

2.1. Functional & Structural Testing

Software testing can generally be categorized into functional and structural testing. Functional
testing is also termed as black box testing because the source code is hidden from the tester.
The purpose of black box testing is to analyse whether a system behaves as expected and
follows the functional requirements. Due to the inability to determine the percentage of code
coverage achieved by a test input, it is not the most suitable approach for error detection
because ‘bugs’ can go undetected. Equally, this makes it difficult to decide whether a program
has been sufficiently tested.

An advantage of black box testing is that test cases can be re-used, e.g. for regression
testing, because they have been generated independently of any implementation. Tools such
as ‘Decision Table’ exist for black box testing.

Unlike functional testing, structural testing involves detecting errors in the implementation of a
system, meaning the source code is available to the tester. Hence it is known as white box
testing. Typically developers use structural testing to identify run time errors, memory leaks,
or code bottlenecks [28]. The research and implementation completed during this project aims
to improve white box testing only.

The necessity of the entire source code being available to the tester makes structural testing
more expensive because testing can only begin after the completion of the software
development cycle. Black box testing does not require the entire system to be complete and
testing can sometimes begin while development is still ongoing. Normally a combination of
both black and white box testing is used in software development, with black box testing often
preceding white box testing.

Since the purpose of white box testing is to exercise a particular part or path of a program, the
challenge for a tester is to find test cases that cover that path. This however is an extremely
time consuming and thus expensive task. In order to automate this search task, a number of
different techniques have been developed.

void main(int x)
{
 …
 if(x > 3)
 {
 /*target branch to execute*/
 }
 …
}

Figure 1: Example of a target branch. This branch will only be ex ecuted by test cases
that lead to x being greater than 3

The search for adequate test data is conducted within a search landscape. This landscape is
made up from possible test cases and contains local maximums and minimums as well as a
global maximum and minimum. The goal of any test data generation algorithm is to find this
global maximum as it represents desired test cases. One option would be to use a random
search for finding this optimum, but they have been proven to perform badly in the past
because often program parts cannot be reached by chance.

Kiran Lakhotia MSc Individual Project Report September 2005

 4

void main(int x)
{
 …
 if(x==0)
 {
 /*target branch to execute*/
 }
 …
}

Figure 2: This example shows a branch which is unlikely to be re ached by chance
because the input domain of values leading to an execution of the t arget is just one
number. The entire input domain ranges from -32767 to 32767

2.2. Metaheuristic Search Techniques

The majority of the work attempting to automate structural testing has focused on
metaheuristic search techniques as a solution to the problem of finding adequate test cases.
By definition those techniques “begin with only an approximate method of solving a problem
within the context of some goal, and then use feedback from the effects of the solution to
improve its own performance.” [36], thus making them well suited to tackle search space
problems.

Metaheuristic searches require solutions, i.e. test cases, to be encoded in a way which allows
the search to manipulate them and order them according to better or worse solutions [17].
This ordering is crucial to any search technique because it effectively guides the search
towards a desired test case. For structural testing the goal is a specific branch of a program
and the solution is a test case leading to an execution of that branch.

The two most popular metaheuristic search techniques used for automated white box testing
are simulated annealing and genetic algorithms [25]. This paper only considers genetic
algorithms used for structural testing.

2.3. Evolutionary Testing

Evolutionary algorithms are based on simulating evolution of nature and the concept “survival
of the fittest” [3]. In terms of testing, evolutionary algorithms are applied to find the ‘fittest’ test
case: one that represents a global optimum in the search landscape. One particular type of
evolutionary algorithms are genetic algorithms. These use methods for
reproduction/recombination, mutation and fitness evaluation.

Genetic algorithms encode their solutions into a sequence of components. Often this is done
as a binary string, each bit representing a single chromosome. To begin, an initial population
of individuals is created randomly. The size of the population usually remains constant and its
individuals are replaced during the process of running the genetic algorithm.

Each individual in the population, also known as the genotype from the analogy to nature’s
evolution, gets assigned a fitness value, which is used to rank it within the population. This
value is computed via a fitness function, which forms the backbone to any genetic algorithm.
A robust fitness function distinguishes a genetic algorithm from a random search and
determines the level of performance of a genetic algorithm.

A number of different ways exist for ranking the individuals, for example linear ranking or
tournament selection [17]. Depending on the selection process, usually the fitter individuals
are used to form new ‘parents’ and by recombination create new ‘offspring’. Again, different
techniques such as ‘two point’ crossover exist for this process. Once new offspring have been
formed they are mutated at random, for example by flipping a bit in the binary sequence.
Consequently the genetic algorithm is run again with the newly created population and its

Kiran Lakhotia MSc Individual Project Report September 2005

 5

individuals are evaluated via a fitness function. This process continues until either a stop
condition or the desired solution is reached.

The fitness functions calculate the distance of a test case from a desired branch or point in a
program. The closer a test case gets to a target branch, the fitter it is considered to be. To
illustrate this, consider a solution to be defined as an input x having the value 100. A test case
with the value 60 would have a distance of 40 from the solution, whereas a test case with
value 80 would only be 20 from the solution, therefore the latter is regarded as fitter.
However uses of special variables, such as flags, make it impossible to calculate a correct
distance.

Figure 3: A 2D representation of a fitness landscape, demonstr ating local optima (A,
C), as well as a global optimum B. The white spot is the current test case, whereas the
black spot shows the optimal solution

2.4. Flags

Flag variables are usually of type Boolean and can have either true or false as their value. A
flag can also be of type ‘int’, in which case the values true and false are represented by 1 and
0 respectively. C programs, the source code language dealt with in this project, do not have a
Boolean data type and instead use the ‘int’ representation for flags.

Because it is impossible to calculate the distance of a test case from being true or false, there
is no way of assigning correct fitness values to individuals. As a result, the search landscape
gets transformed into a two-plateau landscape, with one single unfit plateau and one single
super-fit plateau, representing the two states of the flag.

Figure 4: Worst case search landscape, produced by flag variable s used in predicates

Maximum
Fitness Score

Fitness

Test case that caused the
desired branch to execute

Value of test case

Kiran Lakhotia MSc Individual Project Report September 2005

 6

The presence of flags deteriorates a guided search into a random search because the
resulting search landscape does not offer any guidance to the genetic algorithm. This makes
finding a test case that corresponds to the global optimum like finding a ‘needle in a
haystack’.

Because flags can only have two states they are commonly used in embedded systems
where it is often required to capture system state information about an event or the system.
Furthermore, the input domain for one value of a flag is typically very small, making it unlikely
to be reached by a test input [3].

Since evolutionary testing has previously proven to generate good quality test data for
programs without flags [14, 15, 19], the aim has been to transform programs containing flags
into flag-free equivalents for testing. This approach is also known as a ‘testability
transformation’ [3].

A testability transformation differs from traditional transformations because it does not
preserve functional equivalence, yet guarantees a branch will be executed under the same
initial conditions in the non-transformed program. It is not designed to be an exact copy of the
original source, but to aid testing tools to find adequate test data for the original program.
After completion, the transformed program is of no further use.

For flags such a transformation is achieved by applying an amorphous slicing technique,
which substitutes the use of the flag with a flag free expression. An algorithm developed by
Harman et al. [3] retains the state of the flag, and only replaces its use.

static void pvaloct(long val)
{
 char sp ;
 unsigned long lval;
 sp = SP;
 if (val < 0) {
 lval = -val;
 sign = 1;
 } else {
 lval = val;
 sign = 0;
 }

 if (!long_flag)
 lval &= 0x0000ffff;
 if (short_flag)
 lval &= 0x000000ff;

 while (lval) {
 ch = (lval % 8) + '0';
 _asm push _ch _endasm;
 lval = lval / 8;
 }

 if (sign) {
 ch = '-';
 _asm push _ch _endasm;
 }
 ...
}

static void pvaloct(long val)
{
 char sp ;
 unsigned long lval;
 sp = SP;
 if (val < 0) {
 lval = -val;
 sign = 1;
 } else {
 lval = val;
 sign = 0;
 }

 if (!long_flag)
 lval &= 0x0000ffff;
 if (short_flag)
 lval &= 0x000000ff;

 while (lval) {
 ch = (lval % 8) + '0';
 _asm push _ch _endasm;
 lval = lval / 8;
 }

 if (val < 0) {
 ch = '-';
 _asm push _ch _endasm;
 }
 ...
}

Figure 5: The left hand column shows the flag ‘sign’ being used in a pr edicate. The
right hand column is a transformed version where the use of the flag has been
replaced by the expression leading to the assignment of the flag

Kiran Lakhotia MSc Individual Project Report September 2005

 7

2.4.1. Loop Assigned Flags

The transformation described above for ‘normal’ flags fails for loop assigned flags. They are
variables that have an assignment within a loop, but get used outside the body of a loop.

An assignment to a flag usually depends on a predicate preceding the assignment. If such an
assignment occurs within a loop, the predicate itself might depend on some loop condition
(e.g. how many times the body of a loop is executed). Such interdependency rules out the
amorphous slicing technique, hence another transformation algorithm is needed to deal with
loop assigned flags.

void f(char a[ELEMENTCOUNT])
{
 int i;
 int flag = 1;
 …
 for(i=0;i<ELEMENTCOUNT;i++)
 {
 …
 if(a[i]==0)
 {
 flag = 0;
 }
 …
 }
 if(flag)
 {
 /*target branch*/
 }
 …
}

Figure 6: This example illustrates a loop assigned flag and how its assignment
depends on variable loop variable ‘i’

As with the algorithm to transform conventional flags, the transformation of loop assigned
flags retains the original value of the flag variable. This ensures any other program part such
as functions, which might reference the flag, are still executed correctly.

The structure of the transformation algorithm is to simulate the flags’ use and state.
Introducing two new variables - counter and fitness - into the program achieves this.

The counter is used as a count for loop iterations, whereas the fitness variable is used to
assign a fitness score to a test case. Depending on whether an assignment to a flag occurs
during a loop iteration, and based on the type of assignment, the value of the fitness variable
is incremented. Finally the predicate use of a flag is replaced by the statement
if(counter==fitness) .

The working of the algorithm is best explained by an example. Consider the case where a flag
has the value true when entering the loop and there is some condition inside the loop, which
leads to an assignment of false to the flag. If every iteration of the loop avoids an assignment
of false to the flag, the fitness variable is incremented by 1 during each iteration. In effect this
counts the number of times the body of the loop is executed without leading to a negative
assignment to the flag. When exiting the loop, counter and fitness will be equal, thus
representing the initial value of true for the flag.

If however there was to be an assignment of false to the flag, the fitness variable would not be
incremented during that particular iteration, hence the statement if(counter==fitness)
would evaluate to false, again representing the state of the flag correctly. Another example
would be where the flag is set to false when entering the loop and some condition exists
where the flag is set to true within the body of the loop. In this case, when an assignment of
true to a flag occurs, the fitness variable is simply assigned the value of counter.

Kiran Lakhotia MSc Individual Project Report September 2005

 8

In this way the fitness of a test input can be evaluated with respect to the fitness variable
providing a measure for the genetic algorithm of how close a test case came to changing the
value of a flag, for example from true to false.

2.5. Local fitness function

A more sophisticated implementation of the transformation algorithm is to increment the
fitness variable with a local fitness function. An assignment of false to a flag is usually
regarded as ‘bad’, because it represents ‘falseness’ of some condition. Thus, a test case that
avoids a negative assignment to a flag should receive a higher fitness score than one that
sets the flag to false. A test case avoiding an assignment of true to a flag should equally
receive a lower fitness score.

The algorithm achieves this by ‘punishing’ a test case that leads to an assignment of false to
a flag by assigning it a value of less than 1. The exact value depends on the local fitness
function. It also rewards test cases for every iteration that avoid setting the flag to false by
incrementing the fitness variable with the highest possible fitness score: a value of 1. If the
flag is false when entering the loop, any test case that avoids an assignment of true to a flag,
also gets ‘punished’ by a local fitness function.

Making use of a local fitness function not only enables the genetic algorithm to backtrack to
the point where a false assignment could have been avoided, but also has a positive effect on
the fitness landscape. Non-implementation of such a function produces a coarse grained
landscape which does not offer unambiguous guidance towards the global optimum because
it contains small plateaus where a genetic algorithm may still get ‘trapped’. With the use of a
fitness function however, the algorithm is able to produce a much smoother path towards the
global optimum because it takes into account any failed positive or any negative assignments
to a flag.

This yields a better performance of the genetic algorithm, as can be seen by results published
by Harman et al. [3].

Worst case landscape

No guidance towards global
optimum

Coarse grained landscape
with some guidance towards

global optimum

Smooth landscape with
ubiquitous guidance towards

the global optimum

Figure 7: The flag landscape [3]

In order to increment the fitness variable correctly and provide a meaningful distance
measure for the genetic algorithm, any conditionals that lead to an assignment of a flag need
to be ‘bushed and blossomed’. This means converting any if statement into a corresponding
if{}else{} statement. As a result, one branch of the conditional represents a flag having
the value true, and the other represents the case where a flag has the value false.

After the transformation, slicing can be applied with respect to the predicate use of the flag
variable to produce a specialised fitness function for a particular branch. It also improves the
performance of the algorithm since evolutionary testing requires repeated execution of the
program. Hence a smaller program improves the overall execution time.

2.5.1. Distance Calculations

Kiran Lakhotia MSc Individual Project Report September 2005

 9

Structural testing commonly uses control flow graphs (CFG) as a starting point. CFGs are
statistical representations of a program, showing every possible flow path. They are created
from a set of nodes and corresponding edges. A node is a program statement, an assignment
for example, while an edge is a connection between two nodes. Some nodes, for example
those representing decision statements in a program, can have multiple edges.

Decision statements are if statements or while loops. They are also known as branching
nodes because the program can follow different edges, depending on the evaluation outcome
of the node.

1.void main(int z)
2.{
3. int x;
4. x = -1;
5. if(x==z)
6. {
7. /*target branch to execute*/
8. }
9. else
10. x = 0;
11.
12.}

Figure 8: A CFG for the program in the left column, with line numbers used to identify
nodes

Such nodes are often the target point of a testing system because they decide what branch
coverage a test input achieves. Figure 8 illustrates this: if the test cases used are all greater
than 0, the left branch of node 5 will never be executed.

If a decision node precedes a point of interest in a program, the genetic algorithm calculates
the distance from the point a test input reaches to the target node. As previously explained,
genetic algorithms assign a fitness value to a test input based on this distance measure.
Consider the case where the target node is in the true branch of a loop assigned flag
predicate. After applying the transformation for loop assigned flags, the conditional looks like
if(counter==fitness) . In order for the genetic algorithm to be able to calculate the
correct distance for test inputs, it is paramount that the value of fitness adequately represents
how close a test input came to executing the target branch. This means that the distance
calculations used within the transformation do not refer to the predicate node using the flag,
but instead calculate the distance of a test input from the node leading to an assignment of a
flag. The methods used for this calculation are taken from Tracey’s objective functions [23],
and depending on the structure of the predicate are evaluated as follows:

1

12

3

4

5

7 10

Kiran Lakhotia MSc Individual Project Report September 2005

 10

Relational Predicate Formula for Local Fitness Function

a==b
a!=b
a>b
a>=b
a<b
a<=b
!a

if abs(a-b)==0 then 0 else abs(a-b) + K
if abs(a-b)!=0 then 0 else K
if b-a > 0 then 0 else (b-a) + K
if b-a >= 0 then 0 else (b-a) + K
if a-b > 0 then 0 else (a-b) + K
if a-b >= 0 then 0 else (a-b) + K
converted to a==0 => if abs(a-0)==0 then 0 else abs(a) + K

Figure 9: An adaptation of Tracey’s objective functions for relati onal predicates. K
refers to a non-negative failure constant [17]

2.6. Previous Work

Previous work has found solutions to the flag problem; however none of these approaches
work for loop assigned flags. The paper by Harman [3] is the first to offer a testability
transformation to tackle this problem.

2.7. Conclusion

This chapter has discussed evolutionary testing and its associated problems, focusing on
flags. It briefly described existing techniques for removing ‘normal’ flags and discussed in
detail a testability transformation for loop assigned flags.

Kiran Lakhotia MSc Individual Project Report September 2005

 11

3.0 Design

3.1 Data Binding

In order to transform parts of the AST, research was done to find the best way of manipulating
an XML document. A number of data binding tools for XML such as the freeware Castor or
shareware Liquid Technologies are available. They use an XML schema to unmarshal the
XML document into classes, as well as marshal them back into XML files. These classes can
be constructed for a number of different programming languages.

An alternative approach is to use the Document Object Model (DOM). DOM represents
structured documents, i.e. XML files, in a tree form as an object oriented model in memory.
This makes it best suited for ASTs because they are already represented as a tree. A further
benefit is that DOM is platform and language independent [31]. It also provides an easy to
use programming interface.

DOM uses nodes to represent the XML data. Nodes can be of different type, e.g. element
nodes, text nodes etc. Attributes are also regarded as nodes and appended as node lists to
an element.

Because DOM keeps the entire tree structure in memory, it can easily be traversed
programmatically, both upwards and downwards. It also enables a programmer to keep track
of the current position within a document, which is crucial for modifying the tree.

Yet another alternative to using DOM would be SAX: an event driven API to parse XML
documents. Unlike DOM it does not load the entire tree structure into memory, but instead
uses ‘callback’ functions for the start and end elements of an XML document. It is then up to
the programmer to handle those ‘callbacks’. Attributes and node types are passed as
arguments to those functions.

During the progress of the project it became clear that the transformations did not require
exclusive use of DOM or SAX, but instead a combination of both could be used to achieve
different tasks. Most elements for example, have an ID attribute. When creating new
elements, in order to set their ID attribute correctly, the entire document needs to be parsed to
find the maximum element ID. For this task it is better to use SAX, which always parses the
entire document. To achieve the same with DOM, recursive functions have to be used, which
can be expensive on the system stack. However, when inserting or replacing nodes in a tree,
SAX is not the best choice because it is hard to keep track of the current position within the
document.

public void startElement(String uri, String localNa me,String qName,
Attributes attributes) throws SAXException
{

levelFromRoot++;
 switch(mAction)
 {
 …
 case IS_LOOP_ASSIGNED:
 isLoopAssigned(qName,attributes,true);
 break;
 case GET_MAX_EXPR_ID:
 String exprID = attributes.getValue(‘id’);
 …
 }
}

Figure 10: An example of using the SAX starElement callback funct ion

3.2 Extension to Existing Transformation Algorithm

Kiran Lakhotia MSc Individual Project Report September 2005

 12

This section addresses a problem neither of the existing transformations currently tackles: a
flag which gets assigned a value via a function, which in turn returns a loop assigned flag.

The extension is only relevant to C programs, because it assumes that flags are of type ‘int’
rather than Boolean. Since this project relies on the ANSIC.exe tool to achieve the testability
transformations, which only works for C files, this was not considered to be a problem.

void main()
{
 int flag = 1;
 int a[] = {1,2,0,3};
 flag = example(a);
 if(flag)
 {
 /*target branch*/
 }
}

int example(int a[])
{
 int i=0;
 int flagFunc = 1;
 for(int i=0;i<5;i++)
 {
 if(a[i] != 0)
 flagFunc = 0;
 }
 return flagFunc;
}

Figure 11: An example of a function returning a loop assigned flag, wh ich is
consequently being used in the left hand column

The extension aims to apply the existing transformation algorithm to the function containing
the loop assigned flag. Only the last part of this transformation where the predicate use of the
flag is replaced with counter==fitness differs, because it now returns the absolute value
of the difference between counter and fitness. The predicate if(flag) in the program
making the function call, is replaced with if(flag==0) . As a consequence, the fitness
landscape is now computed as the distance a flag has from 0. A special case exists where a
function does not return the flag directly, but instead uses the flag in a branching node to
return either 1 or 0.

void main()
{
 int flag = 1;
 int a[] = {1,2,0,3};
 flag = example(a);
 if(flag)
 {
 /*target branch*/
 }
}

int example(int a[])
{
 int i=0;
 int flagFunc = 1;
 for(int i=0;i<5;i++)
 {
 if(a[i] != 0)
 flagFunc = 0;
 }
 if(flagFunc)
 return 1;
 else
 return 0;

}

Figure 12: An example where the existing transformation for loop assigned flags
suffices for functions returning loop assigned flags

In this case no modifications to the flag being assigned the return value of such a function is
necessary, because the branching node will have been replaced by
if(counter==fitness) by the existing transformation for loop assigned flags. This means
that the fitness landscape still provides a smooth guidance towards the global optima, where
a flag has a desired value, but is computed in the function body with respect to the flag in the
function, rather than flag getting assigned via a function call.

3.2.1 Transformation of Functions Returning a Loop Assigned Flag

Kiran Lakhotia MSc Individual Project Report September 2005

 13

Step 1 applies the existing transformation for loop assigned flags to the function returning a
flag.

In Step 2 the return value of the function is substituted by the absolute difference between
counter and fitness abs(counter-fitness) . In the case of a flag being true, this
expression will return 0, else it will return a number greater than 0. This is due to the existing
transformation ensuring counter==fitness represents the correct state of the flag.

The transformation at this stage has effectively transformed the return value of the function
from a flag to an integer. In the program, the flag being assigned this return value is hence
also converted into an integer variable. Due to the potential effect on the execution of other
parts of the program, care was taken to restore the state of the original flag. Another helper
variable ‘returnValue’ is introduced to the program in Step 3 as instrumentation to achieve
this.

Step 4 assigns ‘returnValue’ the value of the flag, so the flag can be reset to its intended
value, i.e. either 0 or 1 in Step 5. To do so, the value of the flag has to be checked. If it is 0, it
means the function has evaluated to true, hence the flag can be set to 1. If flag has a non-
zero value, it means the function evaluated to false and flag is assigned the value 0.

Step 6 replaces the predicate use of the flag with if(returnValue==0) .

void main()
{
 int flag = 1;

 int returnValue = 0;

 int a[] = {1,2,0,3};
 flag = example(a);

 returnValue = flag;

 flag=(flag==0)? 1:0;

 if(returnValue==0)
 {
 /*target branch*/
 }
}

int example(int a[])
{
 int i=0;
 int flagFunc = 1;
 int counter = 0;
 double fitness = 0.0;
 for(int i=0;i<5;i++)
 {
 if(a[i] != 0)
 {
 flagFunc = 0;
 fitness += local(a[i],0);
 }
 else
 fitness += 1;
 }

 return abs(counter – fitness);

}

local(int a,int b)
{
 ///
}

Figure 13: Example of how the extension algorithm is applied to Figure 12 to transform
the return value of the function and subsequent use of the function a ssigned flag

Step 1

Step 2

Step 3

Step 4

Step 5

Step 6

Kiran Lakhotia MSc Individual Project Report September 2005

 14

The transformation also applies to functions returning a loop assigned flag and whose return
value is used directly inside a predicate (Figure 14). In this case Step 3 – 5 can be ignored.

void main()
{
 if(example(a))
 {
 /*target branch*/
 }
}

void main()
{
 if(example(a)==0)
 {
 /*target branch*/
 }
}

Figure 14: Shows how the predicate containing a function which returns a loop
assigned flag can be transformed

The extension does not preserve the semantics of the original program. A more generic
transformation could have been applied, assigning the return value of the function directly to
the ‘returnValue’ variable and then using ‘returnValue’ to reset the state of the flag. This would
avoid changing the data type of a flag to a real number. Similarly the transformation could be
extended for non-C programs by converting the return type of the function from Boolean to
‘int’. This is easily done in an AST representation of a program. However it is beyond the
scope of the project because the implementation is based on C programs.

3.3 Algorithm

This section describes in detail the rules implemented to successfully transform loop assigned
flags. The examples presented previously are very simplified and not relevant to ‘real world’
programs containing loop assigned flags. To name but a few, loop assigned flags can occur
inside nested loops, a loop assigned flag can be used as a predicate for an assignment to
another loop assigned flag, and flags can have multiple assignments of different types and
their use may be spread throughout a program. Hence the transformation presented by
Harman et al. [3] was taken as a basis to construct a program that could handle different C
files of varying complexity.

3.3.1 Preconditions

One of the most important design decisions was how to identify flags in a program. This is
particularly difficult in C programs because the lack of a Boolean data type. For example the
statement if(x==0) could be interpreted as an integer variable having the value 0 or, as a
flag x being false. The only way to determine if x was a flag or a real number is to analyse the
entire program and all the assignments to x. Yet even this is not sufficient to say with absolute
certainty that x is of one type or another. Pointers for example can cause indirect assignments
to a variable.

 int x = 1;
 int* a = &x;
 *a = 5;

Similarly function calls that pass parameters by reference would have to be analyzed.
Especially for large applications this is an infeasible approach. Therefore the use of flags
within predicates had to be restricted to certain syntax.

This project defines a flag as a variable of type ‘int’ which only ever takes on the two values, 0
or 1. Often user defined values are used to indicate two states of a flag, e.g. a variable of type
‘int’ could be assigned SET_ON and SET_OFF, where SET_ON and SET_OFF are defined
as being 3 and 4 respectively. Variables used in this way are not considered to be flags for
the scope of this project, because they bear more resemblance to enumeration type
variables.

Kiran Lakhotia MSc Individual Project Report September 2005

 15

Experience has shown that flags are most commonly used in a predicate having the form
if(flag) or if(flag &&) . For the scope of this project, only variables following this
predicate syntax are considered to be flags and thus transformed.

void main(void)
{
 ...
 do{
 progress = 0;
 for(i=0; i<lemp->nstate; i++){
 for(cfp=lemp->sorted[i]->cfp; cfp; cfp=cfp->next) {
 if(cfp->status==COMPLETE) continue;
 for(plp=cfp->fplp; plp; plp=plp->next){
 if(sorted[i]->cfp)
 change = 0;

 }
 if(change){
 plp->cfp->status = INCOMPLETE;
 progress = 1;
 }
 else
 progress = 0;
 cfp->status = COMPLETE;
 }
 }
 }while(progress);
}

Figure 15: Example of a loop assigned flag (progress, assigned i n the outer for loop)
being used in a predicate of a while loop

A special case of a loop assigned flag is where the flag is initialized to false and has only an
assignment of false inside a loop. If a test case avoids this assignment, the predicate
if(counter==fitness) would evaluate to true, thus amounting to a wrong representation
of the state of the flag. In this case, initializing the fitness to a different value to counter would
solve the problem, yet there is no need for the transformation to deal with this scenario
explicitly. If a test case is to execute the branch where if(!flag) evaluates to true, the
genetic algorithm will use the guidance provided by the fitness and counter variables to find
test cases that set the flag to false inside the loop.

Clearly the same applies for a flag being initialized to true and having only an assignment of
true within a loop.

The relevance of such a scenario is unknown and has not been researched. However it is
theoretically possible for such code to occur and has thus been included for completeness.

3.3.2 Rules

For each flag there will be a counter and fitness variable. The naming of these variables is as
follows: counterFLAGNAME and fitnessFLAGNAME. These variables will be used as an
instrumentation to compute the fitness landscape [3]. In case a flag is assigned values in two
or more different loops, the variables will be used cumulative in every loop-body containing an
assignment to flag without being reset to 0. This allows the transformation to carry the state of
a flag from one loop to another. If, for example, the while loop in Figure 16 avoids setting the
flag to true, the predicate use of the flag would be wrong if counter and fitness would have
been reset after the for loop.

Kiran Lakhotia MSc Individual Project Report September 2005

 16

void main(void)
{
 ...
 for (i = 0; (i < 10); i ++)
 {
 counterFLAG ++;
 if ((i == 3))
 {
 flag = 0;
 fitnessFLAG += local1(i, 3);
 }
 else
 {
 fitnessFLAG += 1;
 }
 }
 while ((i < 20))
 {
 counterFLAG ++;
 i ++;
 if ((i == 22))
 {
 flag = 1;
 fitnessFLAG = counterFLAG;
 }
 else
 {
 ...
 }
 }
 if ((counterFLAG == fitnessFLAG))
 {
 ...
 }
 ...
}

Figure 16: Example how counter and fitness are used cumulative

3.3.3 The Local Fitness Function

This project assumes that all flag assignments are preceded by a predicate, which cannot be
inline. Therefore the return value of the fitness function needs to be based on the predicate
leading to those assignments. This program distinguishes between two types of predicates -
simple and complex.

Simple Predicates
Simple predicates only contain three parameters - a variable or constant followed by a
comparison operator, e.g. ‘==’, and followed by another variable or constant. In this case a
formula from Figure 9 corresponding to the structure of the predicate is applied to compute
the initial fitness value. As the maximum fitness score of an iteration, e.g. for avoiding a
negative assignment, is 1, the return value of the fitness function needs to be normalized
between 0 and 1. Obviously the value 1 can never be returned by the function as this would
mean the flag had either been set to true, or avoided a negative assignment.

Kiran Lakhotia MSc Individual Project Report September 2005

 17

Complex Predicates
Complex predicates contain one or more Boolean ‘AND’ or ‘OR’ operators. In simple
conditionals, if the expression evaluates to true, the ‘true’ branch of the predicate is executed.
The ‘AND’ operator requires both, the expressions on the left as well as right hand side to be
true for the ‘true’ branch to be executed. The ‘OR’ operator only requires either one of the two
sides (or both) to be true.

For complex conditionals the fitness function needs to compute a fitness score for each side
of a Boolean operator with respect to a test case, according to one of the formulas in Figure
9. Since only one score can be returned, the function then needs to decide which score to
return. If two expressions are linked by an ‘AND’ operator, the lower of the two fitness scores
is returned. If they are linked by an ‘OR’ operator the higher of the two scores is returned.

In the AST, Boolean operators are ordered with the furthest right operator outside of any
brackets, being at the top level. By applying the rules described above for each Boolean
operator inside a predicate, the function will eventually return a fitness score based on the top
level Boolean.

Failure Constant
The objective functions from Figure 9 use a failure constant, which is always added to the
fitness score if an expression does not evaluate to 0. The purpose of this constant is best
explained in the following example.

if(x == 3)
 flag = 1;

After the transformation, the local fitness function uses the parameters from the predicate to
compute how close a test case came to setting the flag to true. A fitness value of 1 is the best
case, leading to a true assignment, while a return value of 0 indicates the worst case, i.e. the
furthest distance a test case can have of changing the state of the flag.

Applying the objective functions from Figure 9 to this example results in 0 only when x is
equal to 3. Due to the computation of the return value for the fitness function, 0 yields a return
value of 1. Of course if x was 3, the fitness function would not be executed. For all other
cases, e.g. x being 2, a failure constant would be added to the absolute difference between 2
and 3 to further punish incorrect test data. This value was arbitrarily chosen to be 0.5, as this
represents a mediocre fitness.

The local fitness function is created as an AST and always appended at the end of the
existing AST for the program.

3.3.4 Different Case Studies

This section details how the algorithm deals with various types of flag assignments, illustrating
the different behaviour of the algorithm for each case.

Case 1
The first case where flag is true when entering a loop and consequently gets assigned false in
the body of the loop is straightforward to implement.

Firstly the counter variable for the flag is incremented at the start of the loop. This is identical
for all cases and therefore will not be mentioned again hereafter.

The second step is to bush and blossom the conditional leading to the assignment of the flag.
If a predicate already contains an ‘else’ part, the algorithm checks whether the flag
assignment occurs in the if or the else part of the predicate. Depending on which, the
fitness variable is incremented by a local fitness function in the branch containing the negative
assignment. The other branch increments the fitness by 1, the same as counter.

Kiran Lakhotia MSc Individual Project Report September 2005

 18

Case 2
The second case requires a slightly more complicated implementation of the algorithm. In the
branch of a predicate containing the positive assignment to a flag, fitness gets assigned the
value of counter. The branch avoiding the assignment needs to do two things.

One, it needs to check the state of the flag, i.e. if it has already been set to true during an
iteration. This is done with if(counter==fitness) . If this evaluates to true, the fitness is
incremented by 1, so when exiting the loop, the statement counter==fitness is true too.

Two, in case a test input avoided setting the flag to true, the fitness is incremented by a local
fitness function to provide ubiquitous guidance for the genetic algorithm.
 ...
 counterFLAG ++;
 if ((i == 2))
 {
 flag = 1;
 fitnessFLAG = counterFLAG;
 }
 else
 {
 if ((counterFLAG == fitnessFLAG))
 {
 fitnessFLAG += 1;
 }
 else
 {
 fitnessFLAG += local1(i, 2);
 }
 }
 ...

Figure 17: Illustrating how a positive assignment to a flag is transformed. If setting the
flag to true is avoided by an iteration, the program needs to check if the f lag has been
set to true by a previous iteration of the loop.

Case 3
A flag can have multiple assignments of different type, e.g. true to false or false to true. These
assignments can all be inside one loop, or spread over different loops. One assumption this
paper makes is that all flags are loop assigned. In case a flag is both, loop assigned as well
as assigned outside any body of a loop, the outside assignment is ignored by the algorithm. If
assignments to a flag are spread over different loops, the same rules as for Case 1 and 2 are
applied for each assignment.

The next case to consider is where a predicate contains an if{}elseif{}else{}
statement, with two branches leading to an assignment to a flag and the third case avoiding
an assignment. This is depicted in an AST as a simple if{}else{if{}else{}} statement,
with the else part containing another predicate.

 if(i==3)
 flag = 0;
 else
 {
 if(i==2)
 flag = 1;
 else
 i = 1;
 }

Figure 18: Source code representation of how elseif statements are ordered in the
AST

To transform an if{}elseif{}else{} statement, a slight adaptation is necessary. The
‘true’ branch of the predicate follows Case 2, and the ‘false’ part Case 1. However, the

Kiran Lakhotia MSc Individual Project Report September 2005

 19

predicate nested in the else part now also needs to be transformed so it reflects the else
part of the original code.

Firstly the program needs to check the state of the flag. As in Case 2, this is done with
if(counter==fitness) . Executing this predicate when a flag is set to true, i.e. flag was
true when entering the loop, or has been set to true during a previous iteration, means that a
test case successfully avoided setting the flag to false. Hence the fitness variable is
incremented by 1. If the predicate evaluates to false, the flag is currently set to false and
consequently the fitness variable is incremented by a local fitness function. The parameters
for that function are taken from the predicate that contains the branch for setting flag to true.

A loop can contain multiple predicates, each of which containing one or more assignments to
a flag. For the transformation to work correctly in such an event, the counter variable needs to
be incremented before each predicate leading to a flag assignment. As we can see from
Figure 19, using counter purely as a count for the loop iterations would lead to an incorrect
relationship between fitness and counter. Because if{}else{if{}else{}} statements are
represented as nested predicates, the algorithm applies this same rule, even though the loop
only contains one ‘actual’ predicate.

void main(void)
{
 ...
 for (i = 0; (i < 10); i ++)
 {
 counterFLAG ++;
 if ((i == 3))
 {
 flag = 0;
 fitnessFLAG += local1(i, 3);
 }
 else
 {
 counterFLAG ++;
 fitnessFLAG += 1;
 if ((i == 2))
 {
 flag = 1;
 fitnessFLAG = counterFLAG;
 }
 else
 {
 i = 1;
 if ((counterFLAG == fitnessFLAG))
 {
 fitnessFLAG += 1;
 }
 else
 {
 fitnessFLAG += local2(i, 2);
 }
 }
 }
 }
 ...
}

Figure 19: Illustrating how nested if{}else if{} predicates are transformed

Case 4
Of course flags can also be used inside predicates of a while or do{}while() loop. There
is no difference in how the transformation is applied to flags inside an if predicate or inside
predicates of a while loop. It is also possible to use the counter and fitness variables related
to one flag, as parameters for a local fitness function belonging to another flag.

Kiran Lakhotia MSc Individual Project Report September 2005

 20

...
for(i=0; i<lemp->nstate; i++){
 for(cfp=lemp->sorted[i]->cfp; cfp; cfp=cfp->next){
 if(cfp->status==COMPLETE) continue;
 for(plp=cfp->fplp; plp; plp=plp->next){
 if(sorted[i]->cfp)
 change = 0;

 }
 if ((counterCHANGE == fitnessCHANGE))
 {
 plp->cfp->status = INCOMPLETE;
 progress = 1;
 fitnessPROGRESS = counterPROGRESS;
 }
 else
 {
 progress = 0;
 fitnessPROGRESS+=local3(counterCHANGE,f itnessCHANGE);
 }
...

Figure 20: Example of how a flag is used in a predicate leading t o an assignment of
another loop assigned flag

Case 5
In the AST, switch statements are represented by a ‘switchstatement’ element which
encapsulates all the code. Each case is mapped to a ‘caselabel’ element as a child of the
‘switchstatement’. However, the code for each case is not a child of the ‘caselabel’ but of the
main ‘switchstatement’ element instead. If one case contains an assignment to a flag, all
other cases need to increment the fitness variable in some form, because they avoid an
assignment to flag. The way switch statements are depicted in an AST makes it difficult to
keep track of the current case when walking up and down the tree. Therefore the
transformation algorithm implemented converts a switch statement into a corresponding
if{}else{} statement. The if{}else{} block is then appended to the loop. The algorithm
essentially groups together all cases avoiding an assignment to a flag, as well as all cases
leading to an assignment. Converting the switch into an if{}else{} block has a number
of advantages.

If transforming the switch statement directly, each case avoiding a positive assignment to a
flag for example, would have to increment the fitness variable for the flag with a local fitness
function, taking the ‘switch’ variable as well as the current case as arguments. As a result the
size of the program would increase significantly because each case needs its own fitness
function. When transforming the switch into an if{}else{} statement, only one, albeit
slightly more complicated, fitness function is needed for all cases avoiding an assignment.

Secondly, if a switch contains multiple assignments to a flag, transforming it directly results
in very complicated code, especially if there is a mix of positive and negative assignments to
a flag. In an if{}else{} statement, the logic of the transformation becomes a lot clearer
and easier for people to understand.

Kiran Lakhotia MSc Individual Project Report September 2005

 21

 ...
 counterFLAG ++;
 switch (b)
 {
 case 2:;
 case T:;
 flag = 0;
 break ;
 case 5:;
 T = 8;
 break ;
 default:;
 }

 if((b != 2 && b != T))
 {
 if ((counterFLAG == fitnessFLAG))
 {
 fitnessFLAG += local1(b, 2, b, T);
 }
 else
 {
 fitnessFLAG += 1;
 }
 }
 else
 {
 if((b==2 || b==T))
 {
 fitnessFLAG += local1(b, 2, b, T);
 }
 }
 ...

Figure 21: Switch statements containing a loop assigned flag are not transformed
directly. Instead all the cases leading to a flag assignment a re represented in a
corresponding if statement, with the else part representing all the cases avoiding an
assignment to the flag. This statement block is then appended to the loop body after
the switch statement.

Kiran Lakhotia MSc Individual Project Report September 2005

 22

4.0 Implementation

The implementation of the testability transformation is tailored towards the DaimlerChrysler
testing system. DaimlerChrysler own a tool named ANSIC.exe which takes a C file as input
and outputs an AST representation in XML format. The structure of the XML is defined in the
document type definition ‘ast.dtd ’. An AST is an abstract data structure and in this case
represents the parsed C file. DaimlerChrysler also has a counterpart called xml.exe , which
transforms it back into C source code. These two programs, coupled with the transformation
algorithm, formed the starting point for this project.

The tool developed in this project applies the transformations to the AST rather than the
source code. This has a number of advantages as well as some disadvantages. Working with
an abstract data structure makes the application independent of a specific source code
language, and it could easily be adapted to handle java programs for example. Furthermore,
tree-like structures are easier to manipulate because program statements are grouped
together. By following XML syntax, the AST also adds some semantics to the source code,
e.g. by using element attributes to relate different parts of a tree. Without an AST, the raw
source code would just be a string of characters and it would be up to the application to
interpret those correctly.

A disadvantage is that the C files need to be pre-processed before they can be converted into
an AST. ‘include ’ files, ‘#define ’ and comments for example cause problems for the
ANSIC.exe program. Another disadvantage is that the two parsers are owned by
DaimlerChrysler and not commercially available.

Figure 22: An overview of the system developed

<?xml version=‘1.0’?>
<!DOCTYPE ast SYSTEM ‘ast.dtd’>
<ast >
 <declaration name=‘main’ id=‘id4’
line=‘2’ file=‘_’ >
 <function >
 <return >
 <declaration >
 <basictype name=‘int’ />
 </declaration>
 </return>
 </function>
 <statementblock >

C FILE

C FILE

ANSIC.exe

xml.exe Flag Removal Tool

Kiran Lakhotia MSc Individual Project Report September 2005

 23

4.1 Class Overview

Several classes have been implemented in order to realise the transformation algorithm. Two
of these are used to integrate the third party applications, while the remaining perform the
actual transformation. This section provides a brief overview of their functionality as well as an
insight into how the design from Section 3 has been applied in the application.

4.1.1. class MakeAST

This class is used to create an XML file to hold the contents of the AST and a C file, which will
contain the transformed program. This is achieved by executing the ANSIC.exe and
xml.exe programs respectively. The name of the executable along with any parameters
required, are passed as arguments to its ‘main’ function.

The java Runtime class is then used to start the execution of either program. Both the
ANSIC.exe and xml.exe output the AST or source code line by line when run from the
command line. Instead of writing this output to a window, it now gets captured by an instance
of the FileBufferReader class, created after the program has been invoked.

Declaring this class as part of my package has the advantage that its ‘main’ method can be
called directly from the FlagRemoval class, without having to instantiate it first.

4.1.2. class FileBufferReader

The constructor of this class takes the buffer created by starting the ANSIC.exe or xml.exe
process, as well as the handle to the corresponding output file as arguments.

The purpose of this class is to start a concurrent thread, which will gather the contents of the
buffer and write it to a file. This is done reading line by line from the buffer and dumping it to
the file via an instance of the java PrintWriter class.

4.1.3. class SaxParser

As previously explained, a SAX parser traverses an XML file from top to bottom. For each
start element, e.g. ‘<statementblock>’, the startElement callback function is invoked.
Equally, for each closing element, e.g. ‘</statementblock>’, the endElement function is
called. Empty elements, e.g. ‘<declaration />’ have both functions called straight after each
other. Only the element names and its attributes are passed to these callbacks and it is left to
the application to handle those events and keep track of the position within a document.

Combining DOM and SAX in a project, where both refer to the same XML file is not always
straightforward. For example, if a tree has been modified with DOM, it would have to be
dumped back to an XML file, and a new SAXParser class would have to be set up before
being able to parse the modified tree. This is because SAX does not load a tree structure into
memory, but accesses the XML file directly.

To keep the start and end element callbacks as simple and legible as possible, no major code
blocks were written into those functions. Instead a switch block was used to delegate
various function calls. The SAXParser class contains a member variable called ‘mAction’ of
type ‘int’. This member is initialised in the constructor whenever an instance of the parser is
created, with the caller passing the required ‘action’ to the constructor. Because java does not
support enumerations, a list of private static final short variables was used to
mimic enumerations. These represent different cases for the switch block, e.g.
‘FIND_FLAGS’.

Kiran Lakhotia MSc Individual Project Report September 2005

 24

Functions corresponding to each action case contain all the code for a specific event. Splitting
the different tasks into cohesive functions makes the code easier to maintain.

4.1.4. class FlagRemovalTool

The ‘main’ function of this class provides the entry point for the application. It contains the
bulk of the transformation algorithm and instantiates the other three classes as and when
needed. Code, as well as functionality of this class is explained in more detail in the next
section.

After loading the XML file into memory and setting up the SAXParser for the same file, the
program proceeds to identify any loop assigned flags in the code via the ‘FindFlags() ’
function. Inside this function a new instance of the SAX parser is created. To identify flags the
program first searches for any variables used inside predicates. As mentioned in Section 3, a
predicate use of a flag has to follow certain syntax. The program is not able to distinguish a
‘real’ flag, from an integer or other variable used as a flag. Since C does not have a special
data type for flags, i.e. Boolean, this is not a problem. Furthermore, an integer used as a flag
has the same effect on evolutionary testing as real flags do; therefore they also need to be
transformed.

if(flag) ...

<conditionalstatement id=‘stat6’ >
 <ref id=‘expr20’ name=‘flag’ idref=‘id2’ />
...

if(buff) ...
<conditionalstatement id=‘stat6’ >
 <ref id=‘expr20’ name=‘buff’ idref=‘id2’ />
...

Figure 23: Highlights the problem of distinguishing ‘real’ flags from other variables
having a boolean use in predicates. The second line represents a char* (pointer to a
char) where the conditional checks if the buffer is empty. The first predicate on the
other hand contains a ‘real’ flag

In the AST every variable is represented as a ‘ref’ element. The attributes of this element
contain a unique element ID, the name of the variable, as well as the ID of the parent element
containing the declaration of the variable. The declaration of a variable in general has two
uses. Firstly, in the case of a flag it provides a reference point where to insert and perform the
fitness and counter initialisation for a flag. Otherwise, their child elements contain the data
type of the variable, which is needed for creating the fitness functions for example.

If the use of a variable follows the syntax laid out in Section 3, it is represented in the AST as
immediate child of the predicate or, in case of the predicate containing Boolean operators, as
child of the operator. In any other case, if(variable > 3) for example, the ‘ref’ element
would be a child of an ‘operatorapplication’ element representing the ‘>’ symbol.

Kiran Lakhotia MSc Individual Project Report September 2005

 25

if(flag) ...

<conditionalstatement id=‘stat6’ >
 <ref id=‘expr20’ name=‘flag’ idref=‘id2’ />
...

if(flag > 0) ...
<conditionalstatement id=‘stat6’ >
 <operatorapplication id=‘expr20’ op=‘>’>
 <ref id=‘expr20’ name=‘flag’ idref=‘id2’ />
 <constant ...>
 </operatorapplication>
...

Figure 24: Shows how the program is able to distinguish between variables used as
flags and expressions evaluating to true or false by examining the structure of the AST

Thus the ‘FindFlags() ’ function needs to check that the parent of a ‘ref’ element is either a
‘conditional’, ‘while’ loop or Boolean operator. The SAXParser class is used to do exactly
that. Furthermore it keeps track of a loop count, which later ensures any predicate use of a
flag is outside the loop containing an assignment to the flag.

If a matching ‘ref’ element has been found, the flag name taken from the ‘name’ attribute of
the element, its element ID, as well as the current loop count is stored in an array, which in
turn is appended to a vector. If this vector is not empty after parsing the file, i.e. a flag has
been found, the program creates another instance of the SAXparser to check if the flags are
indeed loop assigned. The reason for creating this new instance is that once a predicate
containing a flag has been found, the parser has passed at least one loop assignment of the
flag in the document, and is unable to go backwards. The function performing this check uses
the ‘forstatement’ and ‘whilestatement’ elements to keep track of a loop count.

Every assignment to a variable is depicted as an ‘operatorapplication’ element in the AST,
with the ‘op’ attribute equalling ‘=‘. If such an element is encountered and it is inside a loop
(by checking loop count is greater than 0), the element is saved by using the DOM
‘document.getElementById() ’ function. This is a good example of SAX and DOM being
used in conjunction: the function checking that flags are loop assigned is called from the SAX
parser, but uses DOM to perform the actual check.

After a reference to the element has been created, the program loops through its children to
see if a child matches a flag name stored earlier. If a match is found, and the current loop
count is greater than the loop count stored previously with the flag information, it is
considered to be a loop assigned flag.

The information for each flag stored from the ‘FindFlags() ’ function is then copied into a
new array. This array will eventually hold the name of the flag, the ID of the element declaring
the flag, the type of assignment to the flag, i.e. negative or positive, the ID of the predicate
leading to the assignment of the flag and the ID of the element representing the assignment
operator.

info[0] flag name
info[1] id of the flag ref
info[2] type of assignment to flag, e.g. positive o r negative
info[3] id of conditional leading to assignment of flag
info[4] id of operatorapplication assigning value t o flag

Figure 25: The information stored for each flag which is consequentl y used to
transform them

The program uses the array shown in Figure 25 to indicate if a flag has been found by
checking if the name (element at index 0) has been set. The program also needs to establish
whether the assignment to the flag is positive or negative. In C this is represented as 1 and 0

Kiran Lakhotia MSc Individual Project Report September 2005

 26

respectively, but the keywords TRUE and FALSE (case insensitive) are also recognized by
the application because they may have been declared as 1 or 0 respectively elsewhere.

Real numbers are mapped to a ‘constant’ element in the AST. If such an element is found as
a child of the ‘operatorapplication’ element mentioned above, its attributes are checked to
detect a positive or negative assignment.

The final step is to check that the assignment to a flag is preceded by a conditional because
one is needed to compute a correct fitness function later. This is done by examining the
parent of each parent from the ‘constant’ element upwards until a ‘conditionalstatement’
element is reached. Currently inline conditionals such as flag = (x>3) are not supported.

Once all the information about a loop assigned flag has been gathered, the array (Figure 25)
containing this information is stored in a vector.

Every flag assignment is treated independently. That is, for every assignment all the
information needed to transform a flag will be stored. In some cases this means that duplicate
data will be saved. In the example below the two flag assignments share the same conditional
parent, flag name etc. Duplicating this information enables the program to detect which
predicates have an assignment in both of their branches.

if(i==3)
 flag = 0;
else
 flag = 1;

However, to ensure that only one counter and fitness variable is initialised in the AST, the
program checks if a flag with the same name already exists in the flag vector. If not, the
element ID declaring this flag is stored in a separate vector.

Those two vectors now contain all the information needed to start transforming flags. The
FlagRemoval class contains one big recursive function which forms the backbone to the
application. Like the SAXParser class, it uses a switch statement to decide what action to
take. The parameters passed to it are a node as well as the action. Its main task is to traverse
different parts of the tree starting from the node passed as an argument. This is achieved by
recursively calling the child nodes of the starting node. Sometimes not all the children need to
be traversed: thus return as well as stop conditions are used to terminate this process early.
The full source code can be found in the appendix and just a few cases of this function will be
highlighted within the next section.

The function ‘checkBushBlossom() ’ loops through the flag vector and starts the
transformation for each flag. As mentioned earlier, a flag can have multiple assignments,
either in one loop or inside different loop bodies. Usually the counter variable for a flag gets
incremented before each predicate leading to an assignment.

A special case exists when both branches of a predicate contain an assignment to a flag.
Even though they belong to the same predicate, they will be stored as two separate elements
in the flag vector; therefore the program needs to check whether a flag assignment occurs in
a predicate that is already preceded by a counter increment for this flag.

An exception to this rule are nested if{}elseif{}else{} statements (see Section 3,
Figure 19). Since the element IDs of the predicates leading to an assignment as well as the
flag names are amongst the information stored for each flag, this check is straightforward and
a global flag (‘flagHandled’) is used to indicate either case.

If the assignment is outside a switch statement, the program calls the ‘NodeDetails() ’
function to see if the predicate leading to the assignment contains two branches. In the AST,
a ‘conditionalstatement’ element can only have at most two ‘statementblock’ elements as
children. The ‘statementblock’ element represents a source code block, encapsulated by curly
brackets. After converting the source code, a predicate has the expression in the predicate as
well as a ‘statementblock’ element for each branch as child nodes. Thus counting the

Kiran Lakhotia MSc Individual Project Report September 2005

 27

‘statementblock’ elements which are a direct child of the predicate indicates if it needs to be
bushed and blossomed. If the count equals two, the predicate contains an else part, else it
only has one branch.

The program simultaneously checks whether the ‘statementblock’ contains a flag assignment.
This evaluation, coupled with the type of assignment, determines how the fitness variable
needs to be incremented.

If a flag assignment is found as a child of the first ‘statementblock’ element, the program also
checks if the predicate has an assignment in the else part, as this influences the fitness
increment too.

Every time an assignment to a flag is found, the program needs to parse the conditional
leading to the assignment so a fitness function can be constructed and the ‘NodeDetails() ’
function is called, passing the node representing the conditional.

The case ‘PARSE_CONDITIONAL’ considers two scenarios: A simple conditional and a
complex conditional (described in Section 3.3.3). It also needs to create the local fitness
function with the correct arguments and make the function call passing the expression from
the predicate to the function. Two vectors, one for the parameters (‘localParameters’) and one
for the arguments (‘fitnessParameters’), are used to store the required information. Both
vectors are of type ‘string’ and the ‘localParameters’ vector holds the element IDs of the
elements used in the predicate, as well as the operator separating them. Conversely, the
‘fitnessParameters’ vector stores the data type for each element in the predicate as well as
the operators.

The ‘GET_PARAMETERS’ case is used to populate the vectors. A predicate of the form
if(flag) is considered to be equivalent to the statement if(flag != 0) and the latter
version is stored in the vectors. If the predicate contains an operator such as ‘==‘ or ‘>=‘, the
children of the operator form the two parameters to be passed to the fitness function.

A special case for example is if(x + 1) . In the AST this has the same structure as if the ‘+’
sign was a comparison operator. Therefore, if the ‘op’ attribute of the ‘operatorapplication’
element is an arithmetic operator, the entire expression, i.e. (x + 1) is passed to the fitness
function, with the arguments being cast to be of type ‘double’.

Casting an expression to be of type ‘double’ was done due to time constraints and ideally
another case determining the data type returned by an arithmetic expression would have
been included in the program.

It is beyond the scope of this project to transform side effects, thus the program does not
handle ‘throw’ statements and function calls inside predicates. Other side effects such as
if(++x) also need to be removed from the source code, else the transformation could cause
problems by executing them twice, once inside the predicate and once when passed to the
fitness function.

Complex predicates contain a Boolean operator and are depicted as a binary tree in the AST.

Kiran Lakhotia MSc Individual Project Report September 2005

 28

if(flag &&x>1) <conditionalstatement id=‘stat1’ >

 <operatorapplication id=‘expr5’ op=‘&&’ >
 <ref id=‘expr4’ name=‘flag’ idref=‘id2’ />
 <operatorapplication id=‘expr3’ op=‘>’ >
 <ref id=‘expr2’ name=‘x’ idref=‘id1’ />
 <constant id=‘expr1’ type=‘int’ value=‘1’ />
 </operatorapplication>
 </operatorapplication>
 <statementblock>

</conditionalstatement>

Figure 26: Example of structure of predicates containing Boolean oper ators in the AST

Storing the correct structure of such a predicate is important because the fitness function
needs to be able to decide whether to return the fitness score evaluated for the left hand side
of the Boolean operator or the score from the right hand side. Especially for predicates with
multiple Boolean operators the function needs to know which operator has precedents over
the others. Figure 26 shows how Boolean predicates are arranged in the AST.

if((a[i]!=0&&c==2)||d>5)

Figure 27: Complex predicate structures can be represented in a binary tree. The tree
representation is used to calculate the return value of the loca l fitness function

The predicate expression is passed to the fitness function in sequence and the fitness score
is computed based on that input sequence. Thus the parameters passed need to be in an
order such that they reflect the tree structure of the predicate in the AST.

To capture the structure of a binary tree unambiguously in string form, either a prefix or
postfix expression can be used. For example the prefix expression for Figure 27 would look
like ‘|| && a[i]!=0 c==2 d>5’. The program computes this expression for any complex predicate
and stores it in a vector called ‘prefixExpr’. Each expression where a fitness score can be
computed by using one of the functions from Figure 9 is grouped together and stored as one
element in the vector. Each Boolean operator is stored as a separate element.

As described in Section 3, the fitness function needs to return the fitness score for either the
left or right hand side of a Boolean operator. In the example from Figure 27, the inferior of the
two scores from a[i]!= 0 and c==2 would be compared against the score from d > 5 . The
better score of the latter comparison would then be used to increment the fitness variable.

Having the predicate expression in vector form makes it easy to choose between the
minimum and maximum scores. Two functions, ‘getMin() ’ and ‘getMax() ’ are used to
compare two values. The program loops through the vector and every time a Boolean
operator is encountered it generates a function call to either of these two functions. The next
element in the vector, a previously computed fitness score, is then added as parameter to that
function. This process is repeated until the entire vector has been parsed.

The result for the expression in Figure 27 would hence be:

||

d > 5 &&

a[i]!= 0
c == 2

Kiran Lakhotia MSc Individual Project Report September 2005

 29

return getMax(getMin(‘a[i] != 0’, ‘c==2’), ‘d > 5’) .

The fitness function as well as the function call could have been created ‘on the fly’ without
capturing the predicate in a vector first. However using a vector not only simplifies the task,
but also avoids iterating the tree structure for the predicate twice, once for the parameters
vector and once to order and compare the fitness scores.

The ‘fitnessParameters’ vector holds the data type as well as operators and is used to create
the argument list for the fitness function. The ‘arg’ string plus an appended index represent
each argument. The operators are not passed between the two functions directly and are only
used as part of the computation.

The fitness function uses an array of type double to store all the fitness scores for each pair of
arguments. The size of the array is deducted from the size of the ‘fitnessParameters’ vector.
Stepping through the list of arguments, an objective function from Figure 9 is applied to each
set of arguments depending on the operator linking them. The result of this computation is
then stored in the array after being converted to an absolute value where necessary. Once all
the fitness scores have been calculated, the program proceeds to choose the correct value to
return from the array.

The first step when transforming switch statements is to capture the ‘switch’ variable and its
data type. The structure of a switch in the AST is similar to that of an if statement. The
predicate use of the variable is again the first child of the ‘switchstatement’ element, followed
by a ‘statementblock’ element which encapsulates the body of the switch .

Each ‘caselabel’ element has only the case declaration as child, not the code block for each
case. Presumably this was done because an input can apply to multiple cases. However
structuring the switch statement in this way makes it hard to transform directly in DOM
because it is difficult to keep track of the current position within the switch block. As every
code block is a direct child of the ‘switchstatement’ element, inserting the fitness variables at
the correct positions, especially if the switch contains multiple flag assignments, is very
complex.

The solution to this problem was to transform the entire switch statement into a corresponding
if{}else{} statement. Apart from the benefits mentioned in Section 3, the
‘conditionalstatement’ structure is far easier to handle in DOM.

When transforming a switch into an if{} statement with regards to flags, only cases leading
to an assignment need to be considered. Thus when only one flag assignment exists in a
switch statement, regardless of how big the switch is, one if{} statement with both
branches suffices to increment the fitness variable correctly. As the predicate is appended to
the loop and the switch statement not transformed, only the fitness variable for a flag is of
interest. Figure 28 illustrates this case with an example.

Kiran Lakhotia MSc Individual Project Report September 2005

 30

switch(x)
{
 case ‘s’:
 case ‘S’:
 flag = 0;
 break;
 case ‘D’:
 i = 5;
 continue;
 case ‘B’:
 d = 9;
 break;
 default: i = -1;
}

if(x==’S’ || x==’S’)
 fitness += local(‘s’,0,’S’,0);
else
 fitness += 1;

Figure 28: A simple transformation from a switch to an if{} statement block. Every
case leading to a flag assignment is mapped to one condition, unless m ultiple cases
execute the same statements. In this case they are grouped t ogether in one conditional
by a Boolean ‘OR’ operator

for(...)
{
 switch(x)
 {
 case ‘s’:
 case ‘S’:
 flag = 0;
 fitness += (‘s’,0,’S’,0);
 break;
 case ‘D’:
 i = 5;
 fitness += 1;
 continue;
 case ‘B’:
 d = 9;
 fitness += 1;
 break;
 default: i = -1;fitness += 1;
 }
....
}

Figure 29: highlights some of the problems that can occur when incr ementing the
fitness directly inside the switch statement. For example, the use of a continue
statement can potentially lead to a wrong evaluation of fitnes s when exiting the loop

When different cases contain assignments of different type to a flag, the transformation
follows slightly modified rules as those described in Section 3 and shown in Figure 19.

Previously the branch avoiding an assignment of false to a flag would always ‘reward’ the test
case by incrementing the fitness by 1, before ‘punishing’ it if it also avoided setting the flag to
true. With the new transformation rules, which at the moment are only applied to switch
statements, a test case always gets ‘punished’ for avoiding a ‘positive’ assignment to a flag.
In theory this should speed up finding test cases that set a flag to true.

Kiran Lakhotia MSc Individual Project Report September 2005

 31

switch(x)
{
 case ‘s’:
 case ‘S’:
 flag = 0;
 break;
 case ‘D’:
 flag = 1;
}

if(x==’S’ || x==’S’)
{
 fitness += local();
}
else
{
 if(x==’D’)
 fitness = counter;
 else
 {
 if(counter == fitness)
 {
 fitness += 1;
 }
 else
 fitness += local();
 }
}

Figure 30: Demonstrates how the new rules affect the transform ation

Switch statements assigning to a flag as part of a default statement require yet another
variant of the transformation. In the previous example, only cases leading to an assignment to
a flag had to be considered in the transformation. If a flag assignment occurs inside a default
block, the exact the opposite is true.

The program again uses SAX combined with calls to the DOM API to collect all the case
statements avoiding an assignment to a flag. These are now grouped together by a Boolean
‘AND’ operator inside a predicate. When a test case evaluates this expression to ‘false’, it is
equivalent to executing the default case of the switch .

It is possible for a flag to be assigned as part of a case statement and also have an
assignment of the same type, e.g. false inside the default case. Again all cases leading to
one type of flag assignment need to be grouped together. The default part is treated like
another case and appended to the expressions in the predicate with a Boolean ‘OR’ operator.
In essence the predicate thus evaluates all cases leading to the assignment or all cases
avoided by the switch predicate.

Kiran Lakhotia MSc Individual Project Report September 2005

 32

switch (b)
 {
 case 1:
 flag = 0;
 break ;
 case 2:
 T = 6;
 break ;
 default:flag = 1;
 }

if ((1 == b))
 {
 fitnessFLAG += local1(1, b);
 }
 else
 {
 if (((b != 1) && (b != 2)))
 {
 fitnessFLAG = counterFLAG;
 }
 else
 {
 if ((counterFLAG == fitnessFLAG))
 {
 fitnessFLAG += 1;
 }
 else
 {
 fitnessFLAG += local2(b, 1, b, 2);
 }
 }
 }

Figure 31: Example of how flags in the default label of a switch statement are
transformed

This chapter has provided an insight into how parts of the transformation were implemented in
the program. A full explanation of all the functions and implementation details would have
been beyond the scope of this report therefore, only sections which were considered to be of
particular interest by the author were highlighted. The aim was to provide this information at
an abstract level and as independent of the implementation language as possible. The full
source code including code comments can be found in the appendix.

Kiran Lakhotia MSc Individual Project Report September 2005

 33

5.0 Testing

As the final implementation is not intended to be a commercial product, testing was limited to
ensuring the algorithm had been implemented correctly and that the program was capable of
transforming a selection of ‘real world’ code. It was not the aim during testing to achieve a
certain percentage of branch coverage or to detect every ‘bug’. In fact one of the toughest
decisions in software testing is to determine when one has tested enough. Applying white box
testing techniques for example, which require the use of CFG, would have been beyond the
scope of this project and it was decided that no ‘formal’ testing was needed.

The functionality of the program had been categorized into detecting flags and consequently
transforming those flags. To achieve the transformations they were split into different stages,
each stage represented by a ‘case’ from Section 3. After a stage had been completed, testing
was done before progressing to the next stage.

A number of very simple C programs were written to test each stage of the project. After
testing for one stage had been completed, the test code was re-used in all following test runs
to ensure any new functionality did not break an existing part of the transformation. Only once
the entire application had been developed, ‘real world’ code was used to perform the final
tests.

For the first part of the implementation - detecting loop assigned flags, the emphasis was on
placing flags inside a variety of nested loops and changing their use from occurring inside if
predicates to while predicates for example. The predicates were also changed in
complexity, i.e. ranging from simple statement like if(flag) to more advanced ones,
containing Boolean operators, multiple flags as well as other variables such as arrays and
pointers.

The next major part of testing was to ensure the transformations created the correct function
calls to the fitness functions, as well as the correct logic in those functions. The code for
capturing the predicate structure as well as returning the correct fitness score is quite
complicated and thus they were considered the most ‘vulnerable’ points where the application
could break. Either by creating wrong prefix expressions or not being able to construct
function calls from predicates leading to a flag assignment. The latter in particular needed
more attention while testing because a predicate can contain very complex data types such
as user defined structures or double pointers.

An advantage of choosing to write simple C files for testing rather than use real code was that
it was instantly obvious if the application behaved correctly. For example, when testing if the
precedence of Boolean operators in a predicate is correctly evaluated in the fitness function, it
is unhelpful if the application ‘breaks’ because it cannot handle a certain data structure inside
the predicate.

The program was implemented in JCreator Light for a number of reasons. Firstly, it is a
freeware product and secondly, it is the only development environment for java available at
university. A disadvantage of using the ‘Light’ version however is that it does not offer any
debugging facilities. In general, development tools for java are not as good for debugging
applications as Microsoft’s visual studio suite for example, and often one has to resort to
‘ancient’ debugging practices such as print statements, because features such as step over or
step into are not available.

As mentioned in Section 1, the parser generating the AST does not accept include files,
define statements and comments. As a result every file has to be pre-processed before
passing it to the ANSIC.exe application. DaimlerChrysler have a tool inserting all the code
from libraries into the source file, as well as converting #define statements. However a
working copy of this tool was unavailable for testing, so all the ‘real world’ code had to be
treated manually. As this is a time consuming process it was decided to extract functions
containing loop assigned flags into a temporary file, which was used to perform the
transformation instead. The functions were already known, because all code later had to be

Kiran Lakhotia MSc Individual Project Report September 2005

 34

manually checked to evaluate if the application identified all loop assigned flags and
transformed them correctly. After running the flag removal tool, the transformed functions
were then re-inserted into the original source code.

During the final testing it became apparent that a major challenge was to generate an AST
with the parser from DaimlerChrysler, especially when used with open source code. The
reason for this was that such code often includes libraries which were unavailable, or, so big
that transforming them manually so they were suitable to be included directly into the code to
transform was unfeasible. This was a particular problem for code instantiating user defined
classes or structures and the use of pre-compiler directives like ‘#ifdef ’. Other problem
syntax included ‘goto ’ statements as the label for these was not accepted by ANSIC.exe
either.

Pre-processor directives cause a particular problem because they need to be removed to
convert the source code into an AST, but are also needed when testing code. The only
available approach to this problem was to take these directives out of the source code before
the transformation and then re-insert them into the transformed C file.

Similarly, if the AST for a part of a program could not be generated, the problem statements
were stripped from the function providing this did not affect the transformation of the loop
assigned flags. This was in effect ‘slicing’ the functions with the slicing criterion being the
conditional leading to a flag assignment.

Strictly speaking it was not slicing in the traditional sense, but rather a means to an end for
generating the AST. Because no code is executed during the transformations or when
converting source code to an AST and back again, it is possible to produce ‘wrong’ code in
order to generate the AST. When transforming loop assigned flags, the only part of the source
code that must not change when viewed as a string of characters, are the predicate
expressions leading to a flag assignment.

In very large applications it was found that especially ‘global’ flags often had assignments
both inside a loop as well as outside the body of a loop. While this is not a problem as long as
all assignments and uses are within one function, or one file, replacing all predicate uses of a
flag over different functions with counter==fitness might cause problems in the following
scenario:

Consider three functions, two - f1 and f2 within the same file and one - f3 in a different file.
Further assume that f1 contains an assignment within a loop to a global flag, and the three
functions are called in the following sequence: f1, f3, f2. Because the application developed
can only transform one C file at a time, replacing all the predicates used in f1 and f2 results in
a potentially wrong representation of the state of the flag.

Unfortunately it was not possible to pack all the files of a program into one C file before
transforming it, as the file would have been too big to handle for the home PC used for
testing. For example, one program presented in Section 6 consists of 34 C files totalling
260,590 lines of code.

As a result it was decided in the case of global flags, only to transform flag uses following a
loop assignment within the scope of a function.

Kiran Lakhotia MSc Individual Project Report September 2005

 35

6.0 Evaluation

One of the objectives is to evaluate by what degree the testability transformations described
in this paper improve evolutionary testing. The criterion of interest is the time taken and the
ability to find appropriate test data that exercises a desired branch in a program. This
evaluation will be based on the DaimlerChrysler testing system briefly described in Section 1
and by Harman et al. [3]. Unfortunately it was not possible to arrange a visit to
DaimlerChrylser in the time limit to use their testing system. This has been postponed to a
later date thus outside the scope of this report.

Due to the delay of evaluating the transformations on a live testing rig, a more academic
evaluation was chosen. By evaluating the transformations in academic terms first, another
dimension to the analysis is added, because it will show if the program is indeed suitable to
be used in conjunction with real testing systems.

Two key points were considered; firstly the ability of the program to detect loop assigned flags
and; secondly to evaluate by how much the transformations increase the size of the
transformed source code. Each transformed C file was evaluated with respect to those two
points.

When running a genetic algorithm on a program with the intention of finding test cases
executing a specific branch, the problem points where it will get ‘trapped’ are identified in the
process. For the evaluation of this project it was not known where in the code those points
were, or indeed if any loop assigned flags existed. Identifying potential problem areas within a
program as well as any loop assigned flags thus had to be done manually.

‘Real world’ programs usually contain a number of C files. For each of these files all
predicates were identified first and examined with respect to flags. Because the application
developed also transforms flags used in while loop conditions, all while loops were
included in the predicate count shown in Figure 32.

Any predicate containing a flag (according to the definition from Section 3) was then manually
checked to determine if the flag was loop assigned. This was done to be able to determine if
the application recognised all loop assigned flags or if any had been missed.

6.1. Detection and Transformation of Loop Assigned Flags

The number of loop assigned flags identified using the above method was compared to the
flags detected and transformed by the application. For the purpose of the evaluation it was
decided to transform a selection of small, medium and one big open source program. This
was to ensure the program could handle large ‘real world’ code, and to show that loop
assigned flags can also be found in relatively small applications. The results are shown in
Figure 32 for each program tested.

The left hand column shows all predicates in a program. The next column along contains all
predicates containing a flag following the syntax from Section 3. Often loop assigned flags are
used in multiple conditionals outside a loop and the column ‘loop assigned Flags’ counts the
definitions for each loop assigned flag. The last two columns show the number of flags
detected by the application and the number of predicates transformed with the
counter==fitness statement.

In total only four flags went undetected by the application, which resulted in 12 untransformed
predicates which should have been transformed. All of which were flags used in the condition
of a while loop and were not regarded as being loop assigned by the application because
their assignments were all done via inline conditionals. The results show that around 94% of
loop assigned flags were detected in 10,955 lines of parsed code. By modifying the program
slightly in changing the inline conditionals to an if{} statement, a 100% success rate could
have been achieved.

Kiran Lakhotia MSc Individual Project Report September 2005

 36

Program
Name

Predicates
(incl.
while)

with
Flags

loop
assigned

Flags

Loop
assigned

Flags

Detected
Flags

Transformed
predicates

arith_coder 236 20 6 2 2 6

CKermit 26120 3178 299 62 58 287

 ckcrp 1 1 1 1

 ckcfn2 2 1 1 2

 ckctel 9 3 3 9

 ckucmd 7 3 2 6

 ckucon 1 1 1 1

 ckudia 1 1 0 0

 ckutio 8 1 1 0

 ckuus2 3 1 1 3

 ckuus3 11 3 2 10

 ckuus4 5 2 2 5

 ckuus6 146 22 22 146

 ckuus7 48 12 11 47

 ckcnet 32 3 3 32

 ckuusr 8 5 5 8

 ckuusx 4 1 1 4

 ckuusy 13 2 2 13

Anagrams 21 2 2 1 1 2

Fsquad 55 5 1 1 1 1

Easter 24 11 10 3 3 10

Total 26456 3216 318 69 65 306

Figure 32: Results from running the transformation tool on 5 programs

6.2. Increase in LOC by Transformations

The second part of the evaluation was to investigate the increase of any size caused by the
transformation. Lines of code (LOC) were used a unit for this measure. Only valid program
statements and blank lines were considered to be a LOC.

Figure 33 shows the size with respect to LOC of all transformed programs. Because the
source code had to be manually pre-processed, removing pre-processor directives,
comments and unstructuredness such as ‘goto’ statements, the code was sliced with respect
to the last predicate containing a loop assigned flag inside a file to reduce complexity. Thus
the actual LOC passed to the application are presented in the middle columns. The right most
column shows the percentage the LOC were increased by the transformation.

One factor that determines the size of a transformation is the complexity of predicates leading
to a flag assignment, because the number of expressions used in such a predicate affects the
size of the local fitness function. Another noticeable increase in the LOC is the presence of
flag assignments in switch statements. As described in Section 4, for every switch
statement containing an assignment to a flag inside a loop, an if{}else{} statement block
is added to the loop. The size of which in turn depends on the type of assignment to the flag.

Kiran Lakhotia MSc Individual Project Report September 2005

 37

In general positive flag assignments require more code to be added because for every loop
iteration the state of the flag has to be checked in order to increment the fitness variable
correctly, thus resulting in an additional if{}else{} code block.

However, not all the increase in size is due to the added code of the transformations. For
example when outputting code from the xml.exe tool, all inline declaration of variables such
as ‘int t, s, d; ’ are converted into declarations on separate lines. On the other hand
Figure 33, as well as the graph in Figure 35 suggest that the increase in size is more likely to
be caused by the number of flags transformed than the xml.exe tool. The ‘Easter’ program
for example, having the fewest LOC but containing three loop assigned flags, yields an
increase in size almost as big as the ‘C-Kermit’ program, having the largest LOC.

Program
Name

Total LOC
(all files)

LOC
IN

LOC
OUT

% Increase

arith_coder 3896 576 659 114%

CKermit 260590 9434 16784 178%

Anagrams 265 195 265 136%

Fsquad 500 500 607 121%

Easter 250 250 427 171%

Total 265501 10955 18742 171%

Figure 33: Results showing the increase in LOC caused by the trans formations

To assess if the transformation presented in Figure 33 caused a significant increase in the
lines of code, a Mann-Whitney test was used. A p value was calculated for the results,
comparing the LOC before and after the transformation. Values less than 0.05 were
considered to be statistically significant. The test returned a p value of 0.23, indicating that the
increase in LOC was insignificant.

Kiran Lakhotia MSc Individual Project Report September 2005

 38

1

10

1 2 3 4 5
Number of Programs

LO
C

 (
Lo

ga
rit

hm
ic

 S
ca

le
)

Untransformed

Transformed

Figure 34: Increase in the LOC after transformation. The y axis shows the LOC on a
logarithmic scale

1

10

LOC
(Logarithmic

Scale)

1 1 2 3 62
Number of Loop Assigned Flags

Untransformed

Transformed

Figure 35: Compares the LOC of the untransformed program and the t ransformed
program with respect to the number of flags transformed

Kiran Lakhotia MSc Individual Project Report September 2005

 39

6.3. Transformed Programs

Example: arith_coder

This program uses an arithmetic algorithm to implement a compression tool. The user has a
choice of a word, character, bit or integer based compression. The ‘main.c’ file, providing the
entry point for the applications, contains two loop assigned flags. The verbose flag indicates
whether to print timing, compression, and memory usage information. The mem_specified
flag is used to indicate if the user overrode the default memory allocation for the bit and word
compression and if the compression method selected by the user allows dynamic memory
allocation.

Example: Easter

This program calculates the date of Easter for any given year. It uses loop assigned flags to
check if the input arguments provided contain a day number and are given in the Julian
calendar. For the latter, the test problem is to a test case which includes the ‘j’ option in the
input arguments.

Example: C-Kermit

C-Kermit is a “combined network and serial communication software package offering a
consistent, transport-independent, cross-platform approach to connection establishment,
terminal sessions, file transfer, file management, character-set translation, numeric and
alphanumeric paging, and automation of communication tasks through its built-in scripting
language” [29].
A full description of the program is beyond the scope of this project.

Example: Anagrams

This example prints all anagrams occurring in a dictionary file, or all anagrams of a word
supplied on the command line. The problem is to find input arguments that set the
print_all flag to true. The flag being ‘true’ results in all anagrams of every anagram found,
being displayed as opposed to only anagrams of a word provided as an input.

Example: Fsquad

This program simulates a solution to the firing squad synchronization problem. The same
problem occurs in Finite and Infinite state machines and is described by Marvin Minsky [20].
Each soldier is depicted as a machine, containing amongst other things two colour states.
The default colour is ‘black’, and is switched to ‘red’ to ‘prepare’ to fire. ‘Firing’ should only
occur if both the neighbours of the current machine are also in a ‘red’ state. The challenge is
to find test cases that set all the machines to ‘red’ thus executing the ‘fire’ command.

Kiran Lakhotia MSc Individual Project Report September 2005

 40

7.0 Conclusion

This project has implemented a tool realising the testability transformations for loop assigned
flags. The algorithm used for the transformations has different implementations depending on
the structure and type of assignments to the flag.

This paper has also presented an extension to the testability transformation. Unlike the
existing transformation, this extended transformation can handle flags which are assigned by
a function returning a loop assigned flag.

The effectiveness of the tool in transforming loop assigned flags is validated with an empirical
study that shows that the tool can successfully transform programs of varying size and
complexity. Usually sliced programs are expected to be passed to the tool because commonly
only one point in a program is of interest in structural testing. Thus, the input source file will be
relatively small in size, usually containing around 1000 LOC. However the tool has
successfully handled code containing over 5000 LOC.

The paper also concludes that the transformations do not cause a highly significant increase
in the size of the source code. Furthermore the empirical data shows that only when
transforming a large number of loop assigned flags in a single file, the LOC of the transformed
program increases by more than 140%. In structural testing however only few flags would be
transformed per file, because program slices can be used instead of the entire source code.

The application was developed in the java programming language, thus making it platform
independent. This gives the advantage of being able to package third party applications
together with the tool into a .jar file, which can easily be distributed.

The programs included in this jar file were the two third-party applications ANISC.exe and
xml.exe . These are used by the tool to automate the task of generating the required XML
file and transforming the XML back into C source code. Thus the tool can be used from the
command line, taking the name of the C file to transform as only argument. After the
successful transformation a C file named ‘output.c’ is generated. This file is suitable to be
used for automated test case generation in conjunction with an evolutionary testing tool.

Kiran Lakhotia MSc Individual Project Report September 2005

 41

8.0 Future Work

During the design stage of the project a number of assumptions about the syntax allowed in
the source code had to be made. These were mainly based on identifying ‘real’ flags in
predicates and ensuring a valid path condition could be computed for the fitness function.
While this has not been found to be a problem for the majority of files transformed, lifting
these assumptions would improve the tool even further as less manual ‘interference’ is
required.

Enumeration type variables can cause identical problems for genetic algorithms as flags. Like
flags, they can also be loop assigned and have a use outside the body of the loop. The
testability transformations described in this paper can not handle such variables as their
range is not restricted to just two numbers. However transforming enumerations used as
flags, briefly described in Section 3, having only two values ON and OFF where ON is defined
as 2 and OFF as 3 for example, would only require a small modification to the transformation
algorithm. The biggest obstacle would be determining all the possible states this type of
variable can have and to ensure there are only two.

Finally another possible area of research would be how to transform predicates which check if
loop assigned pointers are NULL or if they ‘point’ to something. Such predicates have been
found commonly during testing of open source programs. Again they inhibit genetic
algorithms and no solution to this problem has been found to date.

Kiran Lakhotia MSc Individual Project Report September 2005

 42

9.0 References

[1] AppLabs Inc., White Box Testing. Philadelphia, USA

[2] A. Baresel. Automatisierung von Strukturtests mit evolutionären Algorithmen. Diploma
Thesis, Humboldt University, Berlin, Germany, July 2000

[3] A. Baresel, D. Binkley and M. Harman. Evolutionary Testing in the Presence of Loop
Assigned Flags: A Testability Transformation Approach. Transactions on Software
Engineering, (12):1085-1110, 2001

[4] A. Baresel, H. Sthamer and M. Schmidt. Fitness Function Design to improve Evolutionary
Structural Testing. Proceedings of the Genetic and Evolutionary Computation Conference,
GECCO-2002, New York, USA, 9-13th July 2002

[5] A. Baresel and H. Sthamer. Evolutionary Testing of Flag Conditions. Proceedings of the
Genetic and Evolutionary Computation Conference - GECCO 2003, Chicago, Illinois, USA,
pp.2442 - 2454 July 2003

[6] D. Berndt, J. Fisher, L. Johnson, J. Pinglikar, and A. Watkins. Breeding Software Test
Cases with Genetic Algorithms. Proceedings of the 36th Hawaii International Conference on
System Sciences (HICSS’03), 2003

[7] S. Bornholdt. Genetic algorithm dynamics on a rugged landscape. Physical Review E,
57(4), April 1998

[8] J. Clarke, M. Harman, R. Hierons, B. Jones, M. Lumkin, K. Rees, M. Roper and M.
Shepperd. The Application of Metaheuristic Search Techniques to Problems in Software
Engineering. SEMINAL-TR-01-2000: August 30th 2000

[9] P. J. Darwen. Search Landscape of a Realistic Single-Machine Scheduling Task: Peaks
With Big Differences

[10] M. Harman, L. Hu, R. Hierons, A. Baresel H. and Sthamer. Improving Evolutionary
Testing by Flag Removal. Proceedings of the Genetic and Evolutionary Computation
Conference, GECCO-2002, New York, USA, 9-13th July 2002

[11] M. Harman, L. Hu, R. Hierons, J. Wegener, H. Sthamer, A. Baresel and M. Roper.
Testability Transformation. IEEE Transactions on Software Engineering, 30(1), January 2004

[12] M. Harman and J. Clark. Metrics Are Fitness Functions Too

[13] M. Harman, H. Lin, H. Robert, C. Fox, S. Danicic, J. Wegener, H. Sthamer and A.
Baresel. Evolutionary Testing Supported by Slicing and Transformation

[14] B. Jones, H. Sthamer and D. Eyres. Automatic structural testing using genetic algorithms.
The Software Engineering Journal, 11:299-306, 1996

[15] B. F. Jones, D. E. Eyres and H. Sthamer. A strategy for using genetic algorithms to
automate branch and fault-based testing. The Computer Journal, 41(2):98-107, 1998

[16] T. Jones. Evolutionary Algorithms, Fitness Landscapes and Search

[17] P. McMinn. Search-based Software Test Data Generation: A Survey. This is a preprint of
an article accepted for publication in Software Testing Veri cation and Reliability,copyright (c)
Wiley 2004

[18] P. McMinn and M. Holcombe. Hybridizing Evolutionary Testing with the Chaining
Approach

Kiran Lakhotia MSc Individual Project Report September 2005

 43

[19] C. Michael, G. McGraw and M. Schatz. Generating software test data by evolution. IEEE
Transactions on Software Engineering, (12):1085-1110, 2001

[20] M. Minsky. Computation: Finite and Infinite Machines. Prentice Hall, Englewood Cliffs,
(page 28), 1997

[21] F. Mueller and J. Wegener. A comparison of static analysis and evolutionary testing for
the verification of timing constraints. In 4th IEEE Real-Time Technology and Applications
Symposium (RTAS ’98), pages 144-154, Washington, 1998

[22] R. Pargas, M. J. Harrold and R. R. Peck. Test-data generation using genetic algorithms.
The Journal of Software Testing, Verification and Reliability, 9:263-282, 1999

[23] N. Tracey, J. Clarke, K. Mauder and J. McDermid. An automated framework for structural
test-data generation. In Proceedings of the International Conference on Automated Software
Engineering, 285-288, Hawaii, USA 1998

[24] J. Wegener, K. Buhr and H. Pohlheim. Automatic Test Data Generation for Structural
Testing of Embedded Software Systems by Evolutionary Testing. Proceedings of the Genetic
and Evolutionary Computation Conference, GECCO-2002, New York, USA, 9-13th July 2002

[25] Automated Software Testing with Metaheuristic Techniques.
http://www.ercim.org/publication/Ercim_News/enw58/diaz_e.html

[26] Background of Software Testing.
http://yoyo.its.monash.edu.au/~adnan/thesis/paper1.html

[27] Bret Pettichord's Software Testing Hotlist. http://www.io.com/~wazmo/qa/

[28] Bridging the gap between black box and white box testing.
http://www-128.ibm.com/developerworks/rational/library/1147.html

[29] C-Kermit.
http://www.columbia.edu/kermit/ck80.html

[30] Data binding framework for Java. http://www.castor.org/

[31] DOM
http://www.w3school.com

[32] Evolutionary algorithm. http://en.wikipedia.org/wiki/Evolutionary_algorithm

[33] General Principles of Software Validation; Final Guidance for Industry and FDA Staff.
http://www.fda.gov/cdrh/comp/guidance/938.html

[34] Hill climbing -- Facts, Info, and Encyclopedia article.
http://www.absoluteastronomy.com/encyclopedia/h/hi/hill_climbing.htm

[35] Mann-Whitney Test. http://faculty.vassar.edu/lowry/utest.html

[36] Metaheuristic Search Techniques
http://www.google.com – define: Metaheuristic Search Techniques

[37] Software Testing and Test Tools Resources. http://www.aptest.com/resources.html

[38] Systematic Testing. http://www.systematic-
testing.com/evolutionary_testing/structural_testing.php

[39] White box considerations. http://www.scism.sbu.ac.uk/jfl/Chapter11/chap11p5.html

[40] XML parsers in Java, C++. http://xml.apache.org/

Kiran Lakhotia MSc Individual Project Report September 2005

 44

10.0 Appendix

10.1 User Manual

All the files needed to start transforming C files have been included in a jar file. A jar file is the
java equivalent to an executable and runs on any machine with a JVM installed. It can also be
used as a container, similar to a zip file. The executable for the transformation tool has been
packaged together with the ANSIC.exe and xml.exe applications into jar container.

To run the application you have to ‘extract’ the contents of the jar file first. To do so you will
need the jar.exe program (for windows platforms). Extracting the files can either be done
via the command line using

jar xf FlagTool.jar

or by a zip tool such as winzip.

Once all the files have been extracted the folder should contain the ANSIC.exe, xml.exe,
java.exe,ast.dtd and FlagRemovalTool.jar files.

The java application has been included to simplify the use from the command line. To start
transforming C files place the file to transform in the directory and execute

java –jar FlagRemovalTool.jar C_file_name

Please note the tool currently only works on windows platforms. Any files to transform HAVE
to be placed into the same directory as the jar file!

If the transformation was successful, the transformed C file (named ‘output.c’) will be placed
in the directory.

