
Issues in Clone Classification for Dataflow Languages

Nicolas Gold, Jens Krinke, Mark Harman
King’s College London

Centre for Research on Evolution, Search and
Testing (CREST)

{nicolas.gold,jens.krinke,mark.harman}@kcl.ac.uk

David Binkley
Loyola University Maryland

Baltimore, MD, USA
binkley@cs.loyola.edu

ABSTRACT
While clone detection and classification research for textual source
code is well-established, clones in visual dataflow languages have
only recently received attention. The accepted existing clone classi-
fication framework does not adequately capture the nature of clones
in the latter kind of programs. In this article, we propose a new clas-
sification framework for clone types that may be found in dataflow
programs. It parallels the scheme for textual languages but ac-
counts for the differences in syntax and semantics present in graph-
ical languages.

Categories and Subject Descriptors
D.2.7 [Software Engineering]: Distribution, Maintenance, and
Enhancement—Restructuring, reverse engineering, and reengineer-
ing

General Terms
Standardization

Keywords
Clone Detection, Clone Classification

1. INTRODUCTION
Code cloning is widespread in software development and be-

cause of the perceived problems that it raises for software mainte-
nance, many methods have been developed to automatically detect
clones in traditional text-based programming languages [1,9]. Non-
textual dataflow-oriented programming languages have received less
attention, the work of Deißenböck et al. [3] and Pham et al. [7] be-
ing the notable exceptions. Their work produced two approaches
(embodied in the tools CloneDetective and ModelCD respectively)
for finding clones in Simulink [6] models.
The development of clone detection methods has been helpfully

informed by the formation of a classification scheme for clone types
[1] that allows the easy description of a clone detection method in
terms of the type of clones that a method can detect. When con-
sidering a new clone detection method, this allows one to answer

the question what kind of clones are detected?, with respect to a
particular approach classified within the framework. When consid-
ering graphical data-flow programming languages, one finds that
the existing classification does not adequately capture all the nec-
essary qualities needed to define a clone (e.g. named variables do
not generally exist in dataflow languages thus clone types allow-
ing variable renaming have no meaning). This paper contributes
a classification scheme for clones in graphical dataflow languages
designed to provide a descriptive capability similar to that already
in existence for textual programming languages.

2. CLASSIFYING TEXTUAL CLONES
The existing framework of four clone types for textual program-

ming languages is succinctly summarized by Bellon et al. [1] and
Roy et al. [9] and described in more detail by Roy and Cordy [8].
Types 1-3 capture notions of textual similarity and Type 4 captures
functional similarity [8]. These authors define the clone types as:
Type 1: Code is copied exactly except for variation in whites-

pace, layout, and comments.
Type 2: Code is syntactically identical except for variations in

identifiers, literals, types, and variations permitted under Type 1.
Type 3: Code is copied but can be further modified by changed,

added, or removed statements, in addition to variations allowed un-
der Type 2.
Type 4: Code fragments undertake the same computation but

using different syntax.
Note that the types classify clones but do not define what a clone

is. This is usually defined to mean that two source code fragments
are clones if they are similar with respect to some defined similarity
measure.

3. CLASSIFYING GRAPHICAL CLONES
In this section, we highlight some of the problems of applying

the existing classification scheme to dataflow programs and define
new clone-type descriptions. We ground our synthesis in the exist-
ing classification, the work of Pham et al. [7] and Deißenböck et
al. [3] on Simulink clone detection, and our own early experiments
using Max/MSP [4]. Simulink is widely used in automotive sys-
tems development [3] and Max/MSP [2] is widely used for digital
music applications. The inclusion of Max/MSP is motivated by our
ongoing work [4] on finding music similarity through clone detec-
tion methods and the language poses additional challenges to those
of Simulink. Note that we do not consider Type 4 clones.
Before actually classifying the clones, we have to define what a

clone is in dataflow languages. This is a straightforward adaption of
the usual definition for textual clones: Two (sub)graphs are clones
if the two graphs are similar with respect to some defined similarity
measure.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
IWSC’10, May 8, 2010, Cape Town, South Africa.
Copyright © 2010 ACM 978-1-60558-980-0/10/05…$10.00.

PREPRESS PROOF FILE CAUSAL PRODUCTIONS1

We start by noting that the textual classification does not in-
clude a clone type for code fragments generated by a straightfor-
ward copy-and-paste with no reformatting. Since this notion could
be more important in graphical clones, we introduce a Type DF0
clone (an equivalent Type 0 could extend the textual classification
if desired) thus:
Type DF0: Exactly-copied code fragments.
Type 1 clones are produced by copy-and-paste. Any subsequent

reformatting must leave the token order unchanged even if the vi-
sual presentation is different. In the context of a visual dataflow
language such as Simulink we can maintain this notion of copy-
and-paste (and can also ignore comments) but must reconsider the
meanings of “token ordering” and whitespace variation. The func-
tionality of Simulink models depends only on the link structure and
functions of the blocks used [3]. Dataflow is thus governed entirely
by the connections between the blocks; whitespace variation (a re-
arrangement of block positions) will have no effect on the execution
order of the model.
A definition of a dataflow clone-type, equivalent to a Type 1 tex-

tual clone, would simply require an exact copy of the original pro-
gram allowing variation in whitespace, layout, and comments: in
other words, an almost direct translation of the original definition.
However, this would be too liberal to capture the “copy-and-paste”
concept of Type 1 clones if applied to languages like Max/MSP
or ProGraph because for these languages, the editing engine de-
termines the execution order [5]. In Max/MSP, the order in which
messages are sent is determined by the relative spatial positions of
the objects in a patch. Therefore information about layout, rightly
dismissed by Deißenböck et al. as irrelevant for Simulink [3], is
semantically meaningful and must be captured in a Type 1 clone
definition for visual dataflow languages. It is however, only the rel-
ative position of the objects that is important. This reasoning leads
to the following definition:
Type DF1: Exactly-copied code fragments except for non semantics-

affecting variations in layout and variations in comments.
The definition of a clone type equivalent to textual Type 2 clones

is easier due to the lack of variables in visual dataflow languages.
The concepts of renaming identifiers and types are not relevant and
thus the only remaining possible variation is in literal values. This
leads to the following definition:
Type DF2: Exactly-copied code fragments except for non semantics-

affecting variations in layout, variations in comments, and changes
to literal values.
A Type 3 clone for visual dataflow languages is defined in terms

of the variations that can be made in such languages (e.g. changes
to connections, addition/deletion of objects). More formally:
Type DF3: Code fragments with modifications allowing addi-

tions, deletions, changes to connections, and free movement of ob-
jects.

4. DISCUSSION
The framework defined above offers a clone-type classification

for visual dataflow languages. Using it we can now classify the
Deißenböck et al. [3] approach as capable of detecting Type DF0,
DF1 and DF2 clones and Pham et al.’s approaches [7] as capable of
detecting Types DF0, DF1 and DF2 (eScan algorithm) and Types
DF0, DF1, DF2, and DF3 (aScan algorithm).
Although the above framework strongly echoes the structure of

the textual clone classification, it is appropriate to consider whether
this is the best approach. It may be better, for example, to remove
the layout-related semantic-invariance condition from DF2. DF1
would be left requiring a strict copy of the original fragment (in se-
mantic terms) and DF2would then require layout-related semantics-

preserving fragment but where layout and/or literals could change.
The approaches of Deißenböck et al. [3] and Pham et al. [7] would
still be classified as capable of detecting both Types DF1 and DF2
since their methods do not appear to consider literal values and op-
erate on a language that attaches no significance to layout position.
Methods operating on Max/MSP however could then be separated
into those that preserve the execution semantics and those that do
not. This approach would offer a finer-grained separation of meth-
ods and clone-types but is less easily compared to the textual clone
classification and therefore potentially less intuitive when consider-
ing clone detection more broadly. It may also be helpful to limit the
amount of modification that can be made for a Type 3 clone to be
classified as such. Such changes might be considered for the tex-
tual classification scheme also. An alternative formulation of the
definitions might use notions of isomorphism with respect to graph
labeling so that Types DF1 and DF2would require isomorphic frag-
ments (rather than "copied fragments"). This kind of isomorphism
is used by both Deißenböck et al. [3] and Pham et al. [7] in their
clone detection methods and offers conceptually stronger, and per-
haps more precise, definitions that could be applied to Simulink
and Max/MSP under an appropriate labeling approach. However,
this dependency on a specific way of labeling may overly restrict
the definitions for the general case.

5. CONCLUSIONS
This paper has proposed a classification framework for clone

types in visual dataflow languages. It is sufficiently general to cap-
ture clone types in the languages considered but specific enough to
allow the differentiation of clones and clone detection methods.

6. REFERENCES
[1] S. Bellon, R. Koschke, G. Antoniol, J. Krinke, and E. Merlo.

Comparison and evaluation of clone detection tools. IEEE
Trans. Softw. Eng., 33(9):577–591, Sept. 2007.

[2] Cycling74. Max/MSP. http:
//cycling74.com/products/maxmspjitter/.

[3] F. Deißenböck, B. Hummel, E. Jürgens, B. Schätz, S. Wagner,
J.-F. Girard, and S. Teuchert. Clone detection in automotive
model-based development. In Proc. 30th Intl. Conf. on
Software Engineering, pages 603–612, 2008.

[4] N. E. Gold, J. Krinke, M. Harman, and D. Binkley. Clone
detection for Max/MSP patch libraries (poster). Digital Music
Research Network Workshop (DMRN+4), London, 2009.

[5] M. R. Karam, T. J. Smedley, and S. M. Dascalu. Unit-level
test adequacy criteria for visual dataflow languages and a
testing methodology. ACM Trans. Softw. Eng. Methodol.,
18(1):1–40, 2008.

[6] Mathworks. Simulink. http:
//www.mathworks.co.uk/products/simulink/.

[7] N. H. Pham, H. A. Nguyen, T. T. Nguyen, J. M. Al-Kofahi,
and T. N. Nguyen. Complete and accurate clone detection in
graph-based models. In Proc. 31st Intl. Conf. on Software
Engineering, pages 276–286, 2009.

[8] C. K. Roy and J. R. Cordy. A survey on software clone
detection research. Technical Report 2007-541, School of
Computing, Queen’s University at Kingston, Sept. 2007.

[9] C. K. Roy, J. R. Cordy, and R. Koschke. Comparison and
evaluation of code clone detection techniques and tools: A
qualitative approach. Sci. Comput. Program., 74(7):470–495,
2009.

2

	Welcome Page
	Hub Page
	Session List
	Table of Contents Entry of this Manuscript
	Brief Author Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X
	Y
	Z

	Detailed Author Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X
	Y
	Z

	Abstracts Book
	Abstracts Card for this Manuscript

	Next Manuscript
	Preceding Manuscript

	Previous View

	Search

	Links to Other Manuscripts by the Authors

	**** PREPRESS PROOF FILE
	**** NOT FOR DISTRIBUTION
	**** BOOKMARKS ARE INACTIVE
