

Department of Computer Science

MSc SSE - Gadgeteer Internet of Things API

Team Members

Pejman Aghili

Marios Constantinides

Sampath A Ramamuniappa

Zheng Gao

Product Owners

Dr. Steven Johnston (Microsoft Research)

Dr. Arjmand Samuel (Microsoft Research)

UCL Supervisors

Dr. Dean Mohamedally

Dr. Graham Collins

September 2013

This report is submitted as part requirement for the MSc Software Systems Engineering degree at

University College London (UCL). It is substantially the result of the team’s own work except where

explicitly indicated in the text.

The report will be distributed to the internal and external examiners, but thereafter may not be copied

or distributed except with permission from Microsoft Research.

NOTE BY THE UNIVERSITY

This project is submitted as an examination paper. No responsibility can be held by UCL and/or

London University for the accuracy or completeness of the material.

Acknowledgement

The team would like to express its deepest gratitude to Steven Johnston for providing his

exemplary guidance, monitoring and constant encouragement throughout the course of this

project. Also, we would like to thank Clare Morgan for providing the team with Gadgeteer

hardware equipment.

The team would also like to especially thank Dean Mohamedally and Graham Collins for

their excellent supervision and guidance regarding the technical and project management

aspects of this project respectively.

Finally, we would like to appreciate the support and cooperation of the MSR1 group during

the integration of two projects.

Executive Summary

Internet of Things (Gershenfeld, 1999) is emerging as a reality as we are moving into an era

where technology and internet connectivity is becoming ubiquitous and pervasive. Internet of

Things has received significant attention from 2008 when Cisco announced that the number

of things connected to the Internet has exceeded the number of people on the world (Evans,

2011). Furthermore, Intel Corporation has predicted that the number of these things

connected to internet will be 31 billion by 2020. Currently, many cloud based services are

offered for Internet of Things, but these platforms do not have native support for the .Net

Gadgeteer platform. Therefore, this project is aimed at providing Internet of Things API and

services for .NET Gadgeteer prototyping platform to ease the development effort involved in

creating IoT based application.

Gadgeteer (Microsoft Corporation, 2011) Internet of Things API (Application

Programming Interface) is developed with having the vision of creating a network of globally

connected devices and providing a rich feature set in the form of APIs to simplify device

discovery, device registration, logging sensor derived data and data retrieval functionality for

Gadgeteer and other hardware platforms. This project offers well-documented APIs and

libraries to developers with medium level programming skills to get them started with

developing applications based on Internet of Things.

Microsoft Research has sponsored this project to investigate the use of Microsoft .NET

Gadgeteer Platform and analyse the difficulties involved in data management, visualization

and privacy issues associated with projects related to IoT and .NET Gadgeteer Platform. The

main deliverable of this project includes Internet of Things APIs which provides data logging

functionality through cloud-based web service and APIs to retrieve the data for performing

big data analytics and visualization. Additionally, another important deliverable of this

project is the Gadgeteer library, which provides functionalities like data buffering in case of

network connectivity failure, data logging and other library methods to facilitate easy and

seamless communication with the cloud services; thus simplifying the process of data

management and application development of a hardware developer. Moreover, the

deliverables also comprise of some use case scenarios which will be discussed further in

section 5.8 of the group report. These use cases demonstrate how to use the APIs and

Gadgeteer library to implement different scenarios with ease. Another stand out feature of

this project is the intuitive design of the website where a lot of effort has been put to make it

as user friendly as possible.

This project contributes to Microsoft .NET Gadgeteer community with APIs and libraries

which developers can use to create a network of connected devices with ease; this includes

device management, device status monitoring, data management, notification management

and library for .NET Gadgeteer platform. A number of students from UCL CS department

work on .NET Gadgeteer platform every year and they spend significant time on setting up

the infrastructure for gathering data from the hardware devices. This project will help in

addressing those difficulties by using our platform and API to reduce their development

effort and let them concentrate more on their application. In addition to .NET Gadgeteer

devices, this system also supports a wide range of other hardware devices such as Engduino,

Arduino and Android by adopting a generic and scalable architecture using REST. This

project is published as an open-source project in Codeplex (Aghili et al, 2013) through which

other developers can contribute to this project and also make use of the services and libraries

that we have developed.

Contents

1. Introduction .. 1

1.1. Project Overview ... 1

1.2. Business Case Overview ... 1

1.3. High Level Report Overview .. 2

2. Background Study .. 3

2.1. Internet of Things .. 3

2.2. Challenges of Internet of Things ... 3

2.2.1. Identity Management of Things ... 3

2.2.2. Big Data ... 3

2.2.3. Internet Connectivity ... 4

2.2.4. Privacy and Security .. 4

2.2.5. Hardware Prototype ... 4

2.2.6. Summary .. 5

2.3. Related Work and Existing Systems ... 5

2.3.1. Microsoft Product .. 5

2.3.2. Microsoft Competitors Products .. 5

3. Project Requirements .. 7

3.1. Project Initiation .. 7

3.1.1. Stakeholders Identification .. 7

3.1.2. Main Goals ... 7

3.1.3. Project Scope ... 8

3.1.4. Risks ... 9

3.1.5. Assumptions and constraints.. 10

3.2. Requirements Elicitation ... 10

3.2.1. Interview .. 10

3.2.2. User Stories using Persona... 11

3.3. Evaluation and Prioritisation ... 12

3.3.1. Evaluation .. 12

3.3.2. Prioritisation ... 13

4. Architecture and Design ... 14

4.1. Architecture Overview .. 14

4.1.1. Architectural Patterns and Styles ... 14

4.1.2. Architecture Views .. 19

4.2. Technology Decisions ... 22

4.2.1. Azure Cloud Services .. 22

4.2.2. Windows Communication Foundation (WCF) .. 22

4.2.3. Databases ... 23

4.2.4. Hardware Platforms ... 24

4.3. UI Style Guide ... 24

4.4. Integration with MSR1 Project ... 25

5. Implementation and Testing ... 26

5.1. Brief Description of Components ... 26

5.1.1. Website .. 26

5.1.2. Web Service ... 26

5.1.3. Gadgeteer Library .. 28

5.2. Use Case Scenarios ... 29

5.2.1. Common Walkthrough... 29

5.2.2. Use Cases Implementation ... 30

5.3. Software Measurement .. 31

5.4. Testing Overview .. 32

5.4.1. Strategy .. 32

5.4.2. Challenges .. 33

5.5. White Box Testing .. 33

5.5.1. Unit Testing ... 33

5.5.2. Integration Testing ... 34

5.6. Black Box Testing ... 35

5.6.1. System and Functional Testing .. 35

5.6.2. Performance Testing .. 36

5.6.3. Load and Stress Testing: .. 37

5.7. Static Analysis ... 38

5.7.1. JavaScript analysis with JSLint ... 38

5.7.2. Static Analysis with Code Analysis (VS 2012) ... 39

6. Project Management ... 40

6.1. Software Development Methodology ... 40

6.2. Sprint Planning .. 40

6.3. Task Distribution and Management .. 42

7. Project Results .. 44

7.1. Achievements .. 44

7.2. Comparison with Existing Systems... 45

7.3. Critical Assessment ... 46

7.4. Further Work ... 46

8. Conclusion .. 47

List of Figures

Figure 1 Project Stakeholders .. 7

Figure 2 Project Scope ... 9

Figure 3 Personas ... 11

Figure 4 Comparison of WS* and REST for IoT applications .. 16

Figure 5 Web Service architecture using REST and Message Bus...................................... 17

Figure 6 Publish-Subscribe design pattern ... 17

Figure 7 Strategy design pattern... 18

Figure 8 API façade pattern ... 18

Figure 9 Observer Pattern .. 19

Figure 10 Enterprise Architecture View .. 19

Figure 11 Layered Architecture View .. 20

Figure 12 IT System View ... 21

Figure 13 Integration with MSR LoT Analytic Engine ... 25

Figure 14 Web Service Components .. 27

Figure 15 Walkthrough of the User Registration and Device Addition 30

Figure 16 Software Metrics for Gadgeteer Library and Web service API........................... 32

Figure 17 Testing Work Flow Process ... 32

Figure 18 Coverage Results of Web Service Components .. 35

Figure 19 Response Time for Data Logging API .. 36

Figure 20 Nth Percentile ‘Response Time’ comparison between data logging and data

retrieval API ... 37

Figure 21 Load Testing Result for Data Logging API for varying load with simulated

virtual users .. 38

Figure 22 Static Analysis Result with JSLint .. 38

Figure 23 Code Analysis Result for Web Service.. 39

Figure 24 Backlogs in TFS... 43

List of Tables

Table 1 Primary risks for the project ... 10

Table 2 User stories.. 13

Table 3 Software Metrics .. 31

Table 4 Code Coverage Results of Data Access Layer Components 34

Table 5 Sprint Planning ... 41

Table 6 Scrum Roles .. 42

Table 7 Comparison of Gadgeteer Internet of Things API with Lab of Things 46

1

1. Introduction

This report outlines the problem statement, background study, existing as well as prospective

solutions, software engineering practices that the team followed, important architectural

decisions and some of the implementation challenges that our team faced during the course of

this project. Our team had comprehended the knowledge gained through this ‘MSc Software

Engineering’ programme and followed the various aspects of software engineering discipline

throughout the course of this project to build a high quality software product. We adhered to

scrum project management and standard software engineering practices while working on

this project.

1.1. Project Overview

Internet of Things (see section 2.1) has been around in the internet world for a while and

possesses endless opportunities. But these opportunities come at the cost of overcoming

several technological challenges. This project has been sponsored by Microsoft Research for

creating APIs to solve some of the existing challenges (see section 2.2) in realising the vision

of Internet of Things (IoT). Furthermore, our project specification also promotes the inclusion

of Microsoft’s .NET Gadgeteer Platform for integrating with the API and help developers to

exploit the benefits and developments in the IoT arena.

We followed the requirements engineering techniques (see section 3.2) to identify the goals

and the requirements of the system. Some of the main objectives of this project includes

creating Web APIs for connecting hardware devices to the Internet, establishing a platform

for device management, addressing privacy issues associated with IoT, enabling

communication between things in the Internet and delivering a generic solution to support a

wide range of hardware devices apart from Gadgeteer. In addition, the objectives also include

some non-functional requirements to make this project extensible and scalable to provision

future improvements to this system. In addition to addressing the above requirements, this

project also investigates the implementation of out of the shell features which is not in the

existing systems. Some of the features are device discovery, custom data repository and

notification management.

1.2. Business Case Overview

IoT is a truly empowering concept which can have a major impact on society and business.

Currently, most of the leading technology companies such as Microsoft, IBM, Vodafone,

Intel and Ericsson have IoT related research projects in their labs. Cisco (2013) has predicted

that Internet of Things has a potential of $14.4 trillion in value at stake. Few examples of

business use cases include efficient resource monitoring, usage pattern tracking, smart power

grids, water management, and smart transport and traffic control, waste and recycling

management.

Microsoft has already ventured into this field and has developed hardware prototyping

platforms, home automation software and cloud services which take advantage of low cost

2

sensors to easily build connected devices. The main business use case of this system is to

build an IoT cloud service platform which can be used by .NET Micro Framework (NETMF)

developers to easily gather data from Gadgeteer devices and able to implement various use

cases. Thus the project’s business value is the promotion of Gadgeteer Platform by

demonstrating that it is useful for IoT by taking advantage of rapid prototyping it offers.

In addition, this project includes some use case scenarios to explain the use of APIs to

achieve business objectives. First use case focuses on IoT in education by demonstrating how

students can use this system to conduct small scale scientific experiments such as

temperature, humidity and atmospheric pressure logging and visualization.

Moreover, IoT has an endless impact on the society in numerous ways; to support this claim

our project includes a use case scenario which is developed in collaboration with Met Police

to ensure safer neighbourhood. These use cases are discussed further in section 5.2.2.

Furthermore, this project introduces new features and concepts that can be used or integrated

to extend the functionality of Lab of Things.

1.3. High Level Report Overview

This project work includes one group report and two supporting documents. The group report

discusses the background study, need and purpose of the project, design and implementation

of the solution, achievements and further work along with the project management aspects of

the project. The first supporting document (Appendix A) lays down the user manual,

technical user guide, a brief description of Gadgeteer library classes and how to use the

library. Moreover, it documents the exposed APIs along with a brief description of how to

invoke them. The second supporting document (Appendix B) solely concentrates on the

testing and contains proper documentation of all the test cases that were created and

executed. On the other hand, the results of testing are discussed in section 5 of this report.

3

2. Background Study

2.1. Internet of Things

“The Internet may already be huge, but it’s about to get a lot bigger.” (Intel Corporation

2011)

The internet has grown rapidly above all our expectations and has been evolving ever since it

began as ARPANET in 1969 (Abbate 1994). Intel Corporation (2011) suggests that today

internet has around 15 billion devices connected to it and estimates show that it is expected to

have 31 billion devices by 2020. Internet of Things is a new evolution of the Internet and

underpinning its development is the ever increasing proliferation of networked ‘smart’

objects to the Internet. A ‘thing’ is any physical object which can be given a unique internet

address and is able to transfer data over the Internet. As more objects are being embedded

with sensors and gaining the ability to send and receive data via the internet, these ‘things’

can make themselves recognizable to others and acquire intelligence by accessing

information aggregated by other things.

2.2. Challenges of Internet of Things

Although IoT promises new business models, and reduce cost and risk; a lot of technical

challenges have to be solved in realising that dream. Some of the existing challenges are

briefly discussed in this section.

2.2.1. Identity Management of Things

It has been argued by Khan et al. (2012), Coetzee and Eksteen (2011) that one of the main

features of IoT is the large number of things being connected to the internet. Therefore, as a

fundamental requirement, an identity management system is vital in order to identify each

thing across the Internet exclusively. These unique identities will also facilitate the

bidirectional communication within IoT. For this purpose, IP addresses can be used to

identify and communicate with these things. Due to the sheer number of these things in the

internet, IPV6 seems to be the ideal solution which supports 128-bit addresses instead of 32-

bit in the current addressing policy, IPV4 (Atzori et al, 2010). Though IPv6’s huge address

space is a great enabler of IoT, it is still a distant dream as there are a lot of challenges

involved in migrating from IPv4 to IPv6. So an alternative way is needed to assign public

static IP addresses in IPv4 to these things using for communication.

2.2.2. Big Data

IoT produces a tremendous amount of multisource and heterogeneous data from all the

connected sensors and devices (Chen 2012). Lawson (2013) describes this data as mega big

data and relates it to the challenges of big data. Therefore, the main dimensions of big data

should be considered throughout the design and implementation phase.

1. Volume: As Lawson (2013) discusses, in IoT the amount of data that needs to be managed

is extremely high. This requires a scalable and robust infrastructure.

4

2. Variety: In IoT the data is generated from different devices and sensors. Therefore, the

data is in different formats and types. Thus, the architecture of the system should be very

generic to support them all.

3. Velocity: the frequency of the data generation in IoT is extremely high. Therefore, the

right tools and architectural patterns should be used to meet the high velocity of incoming

data-- all in real time.

By considering these dimensions, we can conclude that the generated data in IoT does not fit

in standard relational databases and alternatives should be considered. In addition, as

discussed by Coetzee and Eksteen (2011), we should also consider how we can make this

data useful for future use such as big data analytics. Otherwise, as Zhou et al. (2013) discuss,

IoT offers insignificant useful benefits if it not able to produce any meaningful information

from such great amount of data. The MSR1 group (Khandelwal et al. 2013) focuses on this

challenge to extract knowledge from the raw data generated by IoT.

2.2.3. Internet Connectivity

Due to various network related reasons, the connection between the connected device or

sensor and the Internet can disrupt at any certain point. Therefore, a unique mechanism is

needed to buffer the data locally and send it to the Internet when the connection is established

again. This is especially important in data sensitive applications which require a continuous

stream of data.

2.2.4. Privacy and Security

Another inherent challenge with IoT is the security and privacy issues associated with data.

In the domain of security, most of the communication channels are wireless, thus the

transferred data can be simply eavesdropped. Additionally, because of the limits in energy

and computing resources, developers cannot implement complex schemes, such as data

authentication and access control, which normally support security on lightweight

components. In the domain of privacy, IoT is in desperate need of specific technologies

which can exert strict access control over the personal data. What is more, relevant protection

laws also should be enacted (Bandyopadhyay et al, 2011).

2.2.5. Hardware Prototype

Also, there are several issues arising in the hardware development field to support IoT.

Considering that the implementation environment for hardware-based application is still

immature, it is fairly difficult for a developer to quickly build prototypes, thereby preventing

IoT from becoming widespread. Moreover, standards for communication between electronic

devices have been established, such as Constrained Application Protocol (CoAP) which aims

to optimize the use of the RESTful web service architecture in constrained nodes and

networks (Kuladinithi et al, 2011). However, little has been implemented for the various

platforms of prototyping hardware including Gadgeteer, Arduino and so forth. The fact

directly results in the lack of abstraction among devices from different manufacturers and the

increasing complexity of integrating with these devices.

5

2.2.6. Summary

Facing the major challenges in realising IoT, we have managed to address some of the issues

associated with privacy, internet connectivity, identity management of devices and hardware

prototyping by making use of existing technologies and providing a robust solution in

building a scalable Internet of Things application. This will be discussed more in detail in

section 4 and 5.

2.3. Related Work and Existing Systems

As it was discussed in the previous section, in order to understand the difficulties of IoT in

real world scenarios, we studied some of the existing systems that provide IoT based services.

We tried to learn from these systems and designed our system in such a way to complement

the existing systems and also tried to address some of the outstanding issues with these

systems. For this purpose, we have chosen three different systems to discuss in this section,

which provide different kind of IoT Services.

2.3.1. Microsoft Product

2.3.1.1.Lab of Things

Few weeks ago, Microsoft introduced Lab of Things (Beta Version 1), a new research

platform to support real-world data in the cloud as Alex Wilhelm (16th July 2013) stated in

his article. LoT is a research-device platform that boosts Microsoft’s HomeOs on the Azure

Cloud. In a nutshell, it allows researchers to get better field studies and conduct experiments

on connected devices in homes by pushing all the gathered data to the cloud. It just simplifies

the data logging and data management by maintaining a central repository that is easily

accessible via Azure Portal. Digging into more depth of what LoT provides, we can discover

a variety of features such as writing drivers for HomeOS to collect data from houses and store

it in azure storage account. Taking into consideration that LoT is only available to Academia,

someone could count it as a big drawback and wonders why Microsoft doesn’t push it out of

the academic realm. However, through all its capabilities, it lets you interconnect devices and

scale up your field studies in diverse experiments and locations. Finally, it is worth pointing

out that there are numerous of researchers among top universities that use Lab of Things

(Microsoft Research Lab of Things) including UCL.

2.3.2. Microsoft Competitors Products

2.3.2.1.Xively

Xively (formerly Pachube) is a cloud platform that offers a commercial ground for

connecting devices, or even better, letting sensor-derived data such as energy consumption,

temperature, humidity and GPS, to be attached to the Web. It provides RESTful APIs that

allow developers to build application based on the gathered data.

On the upside, Xively provides a broad range of features such as support for different

software and hardware platforms, which establishes Xively as an open platform and offers

end-to-end security across the entire platform. In addition, it provides frictionless developer

6

experience through web-based tools that simplify the complexities of IoT development.

Moreover, it maintains a global IoT cloud infrastructure which leverages external cloud

services such as Facebook and Twitter by enabling connectivity with them.

On the downside, Xively does not provide easy access to raw data as well as the data

visualization is arguably poor. Despite the fact that Xively has an easy to use RESTful API,

it does not include flexible visualization dashboards or a processing engine out of the box.

Especially, the main drawback of Xively is the data policy, i.e. whatever data you publish on

Xively’s data cloud is open and thus is accessible from anyone. If we fall back to 2009

Richard MacManus (2011) described how its business model was based on the willingness of

users to pay for privacy features.

2.3.2.2.IFTTT

IFTTT developed and launched in 2010 by Linden Tibbets with the aim to put the Internet to

work for you. It is a service that enables people to create powerful connections that fit in one

simple statement, the “if this then that”. Basically, for those who have a Computer Science

background IFTTT executes a “simple” IF-STATEMENT. In order to get more clear

understanding how it works we should turn in to more technical aspects. The “this” part is the

trigger whereas the “that” part is the action. Therefore, whenever something satisfies the

trigger condition then the action is executed. An example that shows IFTTT’s functionality

could be the following one. Imagine you are tagged in a photo on Facebook and you have set

your trigger to be Facebook photo tagging, then the action could be sending an SMS or

updating the Facebook status. Few interesting statistics about IFTTT emerged and show its

success through the 400,000 tasks that have been created since its launch (IFTTT Blog).

7

3. Project Requirements

3.1. Project Initiation

Project initiation is the initial and an important step in a project’s lifecycle. It was conducted

during the sprint 0 to define the project’s vision and to study about the project’s viability.

This section discusses the different activities performed during project initiation.

3.1.1. Stakeholders Identification

The stakeholders have been categorised in 3 different areas; Operational Area, Containing

Business and Wider Environment. This is based on the Onion model from requirement

engineering practices (see Figure 1).

Figure 1 Project Stakeholders

Hardware and Software developers are the main users of the system.

 Hardware Developers: They use the Gadgeteer library to speed up their prototyping

process for Gadgeteer platform. For other hardware platforms they can use the API

directly to log data to the cloud.

 Software Developers: They use the API to retrieve the data generated from devices

to create applications

The complete list of the stakeholders and their stakes can be found in Appendix A.

3.1.2. Main Goals

The team has followed KAOS goal modelling to identify and define the main goals of the

system along with their objective functions.

8

3.1.3. Project Scope

Different hardware device can use the generic API to log their data into different repositories.

However, hardware developers who are using Gadgeteer platform for prototyping can use our

lightweight library in order to speed up their development process. In addition, the API can

also be used by software developers to create IoT based applications such as health care

applications. Outside the scope of this project, there are third-party libraries and analytics

tools which can retrieve the data through the API and use it according to their needs, such as

tools that perform big data analytics.

Goal Achieve [Simplified Hardware Prototyping]

Definition

Enhance developer experience by reducing the complexity for programming a

Gadgeteer device to communicate with the API through a documented library

Objective Functions

 Reduce the required number of lines of code to communicate with the API

by using library methods.

 Reduce the debugging time by using fully tested library methods.

Goal Achieve [Hardware Platform Abstraction]

Definition

The API should be generic so that it can be used not only by Gadgeteer but also by

any other hardware device.

Objective Functions

 Support majority of the hardware platforms such as Android, Arduino and

Engduino and create use case scenarios to demonstrate it.

Goal Achieve [Simplified Data Management]

Definition

Develop a web API which allows developers to log and retrieve data generated by

the devices.

Objective Functions

 Accept data from dynamic data sources such as temperature, humidity and

GPS.

 Be able to retrieve logged data within 0.5 second.

 Be able to store the data either in the cloud or in a remote repository based

on user preference.

9

The figure (see Figure 2) below shows the scope of this project and its interaction with other

systems and users.

Figure 2 Project Scope

3.1.4. Risks

During project initiation the team identified the following top level risks associated to this

project (see Table 1).

Risk Name Risk Description

Azure Student

Accounts

The project is hosted on Microsoft Azure Platform using

student accounts. According to Microsoft Azure policies they

can expire at any time.

Azure Cloud

Infrastructure

Failure

The project is mainly hosted on Azure. Therefore, when there

is a failure or maintenance in Azure infrastructure our service

is exposed to unavailability.

.NET Micro

Framework

Gadgeteer is the main prototyping platform for this project.

However, the Micro Framework library for this platform is still

Software

Developers

Hardware

Developers

IoT Cloud Services

Gadgeteer

Devices

Other

Hardware

Devices

Big Data

Analytics

Tools

Visualisation

Libraries

Custom

repositories

Hardware

Developers

IoT based

Applications

Big Data

Applications

Project

Scope

10

(RTM) 4.3

Instability

buggy and there are some known and unknown issues.

Third-party

Libraries Bugs

Since the project uses third-parties libraries such as high chart

and pusher, the project is exposed to defects from the existing

bugs of those libraries.

Table 1 Primary risks for the project

For the complete list of the risks and their associated resolutions please refer to Appendix A.

3.1.5. Assumptions and constraints

The communication between the hardware devices and the API is done through HTTP

protocol. Hence, an assumption has been made that all the hardware devices can support

HTTP request-response protocol.

Additionally, Gadgeteer is used as the main hardware platform for this project. Therefore,

Assumptions have been made that data from Gadgeteer sensors are accurate and reliable and

they do not produce unexpected data.

Azure accounts given by UCL only allow two cores per account. Our project completely

relies on different cloud services such as Virtual Machines and Worker Roles requiring 8

cores in total, which is serious a constraint to this project. Therefore to overcome this

constraint, services and virtual machines were distributed among various azure accounts

which in turn affect the overall performance of the system.

3.2. Requirements Elicitation

3.2.1. Interview

Since the project description was really abstract, we held two face-to-face interviews with our

product owners to understand the project in more depth.

The first interview was held with Dr. Steven Johnston to get the requirements for this project.

He provided us with the general requirements and the expected approach that needs to be

taken. However, he did not provide us any specific requirement and encouraged us to

implement new ideas as long as the project fulfils the below general requirements.

General Requirements:

1. An abstract API should be created which can work with devices from different

hardware manufacturers

2. Users’ privacy of data should be considered

3. The API should not only transmit raw data. But, it should perform some processing on

the data

4. A lightweight Gadgeteer library should be created to help the hardware developers

with their implementation

5. Provide data visualisation by using third-party libraries

11

6. Provide a continuous stream of data by buffering the data locally when there is no

internet connection

7. Use Cases

 Use Case 1: High school students in a biology class logging temperature and

humidity

 Use Case 2: Specified by Dr Dean Mohamedally (using Gadgeteer)

 Use Case 3: SDK Example use case of swapping to another prototyping platform

(Engduino)

The second interview was held with Dr. Dean Mohamedally to get the requirements for a real

world safer neighbourhood use case. His main requirement was to transmit live data from a

device in an emergency situation. An example that he mentioned was to send the GPS

coordinates of a bicycle when it goes outside a certain area to the web service and show the

coordinates on the map (event based triggers). However, he also allowed us to come up with

new ideas for this use case by considering assisting neighbourhoods with security and

personal safety. Section 5.2.2 describes how we combined the requirements of our product

owner with our ideas to create an innovative use case scenario.

3.2.2. User Stories using Persona

In order to tackle the challenges of wide scope, deal with multiple stakeholders and identify

specific project requirements in the given time limit; the team decided to use an innovative

user-centred approach known as persona to create user stories.

As it was discussed by Siricharoen (2012) and Calabria (2004), a successful product should

consider the needs of the future users of the system throughout the development process and

the features should be developed based on different types of end users.

Figure 3 Personas

12

As Calabria describes, Personas represent archetypical users of the future system and embody

the needs and goals of larger groups of people who will use the system. They enabled the

development team to stand in users shoes and focus on one type of users at a time in order to

come up with their requirements. Personas can be created fast; this characteristic makes this

technique suitable for this project because of the short development time. For this purpose,

two personas were created to represent the main users of the system. Alex represents

hardware developers and Alice represents software developers. The Figure 3 describes the

characteristics, main goals and challenges for Alex and Alice.

3.3. Evaluation and Prioritisation

3.3.1. Evaluation

By using Alex and Alice as our personas and RAG format (Role-Action-Goal) different user

stories were created. However, as Leffingwell (2010, p.105) suggests , user stories should be

evaluated against I(Independent) N(Negotiable) V(Valuable) E(Estimable) S(Small)

T(Testable) features. The following table shows the identified user stories after applying the

evaluation model.

ID Title Persona

Name

User Story

1 Device and

Sensor

Registration

Alex As a hardware developer,

I want to register my devices and sensors

so that they will have unique identifiers

2 Device

Management

Alex As a hardware developer,

I want to have the ability to manage my devices

so that I can update or remove them at any time.

3 Data Logging Alex As a hardware developer,

I want to log data from my devices

so that I can extract meaningful information from the

data.

4 Custom

Repository

Alex As a hardware developer,

I want to specify the repository to be used to store my

data

so that I can have more control over my data.

5 Data privacy Alex As a hardware developer,

I want to set the privacy of my data for each device

so that not everyone can have access to my data.

6 Data Sharing Alex As a hardware developer,

I want to share my devices with my friends

so that they can have access to my data.

7 Notifications Alex As a hardware developer,

I want to set triggers for my devices

so that I get notifications when they are triggered.

8 Data Alex As a hardware developer,

13

Visualisation I want to see my data visualised on a graph or map

so that I can monitor the data easily.

9 Real Time

Data

Transmission

Alice As a software developer,

I want to get data from different hardware devices at real

time

so that I can gather data from different sensors and create

applications based on them.

10 Historic data

Retrieval

Alice As a software developer,

I want to have access to historic data of different devices

so that I can gain knowledge by processing that data

later.

11 Device

Discovery

Alice As a software developer,

I want to discover all the devices that I can subscribe to

so that I can get data from those devices and switch

between them in my application.

12 Continuous

Data Stream

Alice As a software developer,

I want a continuous stream of data

so that my application does not suffer from missing data.

Table 2 User stories

3.3.2. Prioritisation

Effort estimation using Planning Poker

The widely used technique for the effort estimation in Scrum is planning poker where all

members in the team are involved to reach to a consensus about effort for each user story in

the product backlog. As Hartman (2009) described the advantages of using planning poker,

the team also followed this technique by using the widely practised method of giving

Fibonacci numbers (1, 2, 3, 5, 8, 13, 21, 34...) to estimate the effort for each user story. We

decided to have 2 as least and 34 as the highest effort needed to complete a user story. For

each user story, every member in the team used cards to write the effort needed to complete

it. Afterwards, the team discussed the estimated efforts to come to agreement about the effort

for each user story.

Business value / effort ratio

As Maurits (2011) discusses, prioritisation based on the ratio between the business value and

the implementation effort (low effort, high value) provides the highest business value for the

product owner within the least number of sprints.

By getting the business value through interviewing the product owner and estimating the

effort by using planning poker, the team prioritised the user stories in the backlog throughout

the development process.

14

4. Architecture and Design

4.1. Architecture Overview

Having done Advanced Analysis and Design as a core course in our master degree the team

has developed a deep understanding regarding the importance and the benefits of having

extensible and robust software architecture. Architecture and design decisions form an

important aspect of any product development since they affect the success and acceptance of

the end product. In this section we describe the architecture of our solution and discuss some

of the important architectural decisions that have been taken and the reasons for making those

decisions in order to address the challenges discussed in section 2.2.

4.1.1. Architectural Patterns and Styles

“An architectural style is a set of principles that lay down a coarse grained pattern that

provides an abstract framework for a family of systems” (Garlan and Shaw, 1994). An

architectural style helps to solve frequently recurring problems by promoting design re-use.

We analysed the characteristics and benefits of the wide range of architectural styles (Meier

et al. 2013) and followed the guidelines laid out by Bauer et al. (2012) for building a concrete

architecture using the Architecture Reference Models (ARM) established for IoT.

4.1.1.1.Combination of SOA and Message-bus Architectural Styles (Mathew, 2007)

Trifa et al. (2010) and Spiess et al. (2009) suggest that the usage of SOA based services is

appropriate for IoT since it reduces cost and effort by reusing real world services for different

business situations. Adopting this argument, we have developed SOA based web service and

a brief description of the services offered by this system is discussed in section 4.1.2.2.

Though we have developed SOA based web service, the project’s general requirement

demands the architecture to be more scalable to support more use case applications which

could plug in to this system effortlessly. Meier et al. (2013, p17) argues that building a

complete application cannot be limited to just one style of architecture and recommends

combining different styles to meet the objectives of a system. Therefore we have decided to

combine SOA with message-bus architectural style (Mathew, 2007).

“A Message-bus architectural style describes the principle of using a software system that can

receive and send messages based on a set of known formats, so that systems can

communicate with each other without having to know the actual recipient of the message”

(Meier et al. 2013, p19). An advantage of this style is that it is extensible, i.e. different

applications can be added to the bus in the future without affecting the existing applications.

This architectural style fits our requirements and likewise IoT in general includes different

types of applications which process the sensor derived data according to the changing

business needs.

In message bus style, usually all the applications are connected to a common message bus

where applications interact through messages over the bus. Since this style provides a

common interface through which all the devices can send and receive messages, it reduces

15

the complexity of sharing information generated by different devices. In addition, this

architecture provides good performance due to the absence of intermediaries between

communicating applications.

Windows Azure Service Bus

We use Windows Azure Service Bus as the common message bus which was discussed in the

previous section. Moreover, Vasters (2012) from Microsoft has also demonstrated how the

service bus is scalable for Internet of Things and how it can handle 250,000 devices and

around 0.25 – 1.5 million events per hour for at least the initial ramp up target. The Service

Bus has “brokered” messaging capabilities that support asynchronous, or decoupled

messaging features for publish-subscribe and load balancing. The bus also provides a secure

network service gateway for messaging which addresses the security requirements of the

project. To be more specific, we use Azure Service Bus Topics of the service bus in this

project. Topics provide the benefits of queues and in addition implement the

publish/subscribe pattern. A topic can have many subscriptions (currently supports 2000

subscriptions for a topic, but can be increased by Auto-Forwarding) and these subscriptions

have filter rules which filters the published messages and sends a separate copy to each of the

subscriptions with matching rules. Azure Topics are a useful messaging solution for

broadcasting messages to many consumers (Salvatori, 2013). As discussed in the earlier

section, the extensibility requirement is addressed by adding more subscriptions to this

service bus.

4.1.1.2.REST Architectural Pattern

REpresentational State Transfer (REST) is an architecture principle in which the web services

are viewed as resources and can be uniquely identified by their URLs (Fielding, 2000). The

fundamental characteristic of a RESTful Web service is the explicit usage of HTTP methods

to denote the invocation of different operations offered by the web service.

As discussed in section 3.2.1, one of the general requirements of our project is to make our

web service generic and scalable enough to support a wide range of devices. Trifa et al.

(2010) discuss about the usage of SOA based Web Services for IoT and recommends the use

of web service standards WS*. Whereas Guinard, D. (2011) study compares REST and WS*

for IoT applications in different domains and the quantitative results (see Figure 4) indicate

that REST is easier and better to be used for embedded devices due to various constraints

such as memory, processing power in low cost devices.

16

Figure 4 Comparison of WS* and REST for IoT applications

Furthermore, REST is considered to be generic since it is based on HTTP and most of the

devices support the above HTTP methods (see section 3.1.5). Hence, we decided to make our

Web Service to be RESTful in order to support a variety of hardware devices and prototyping

platforms.

The web service was designed to be RESTful and at the same time include the message bus

for exchanging messages between different applications. Although the devices can send data

directly into Windows Azure Service Bus Topics instead of sending to a REST URI, the

memory constraint of small hardware devices make it harder to initiate a straight HTTPS

connection to the service bus where even HTTP can sometimes become heavy. Thus, we

have utilised REST endpoints in combination with WCF services to receive events and data

from the devices. Afterwards we transform the message from the device to a brokered

message and push it into the service bus topic. The Figure 5 shows a WCF service which

receives data from various devices and pushes it into an azure topic, which then has two

subscriptions. One of these subscriptions is responsible for storing data in the database and

another for pushing real-time data to the subscribed users. Hence, we have achieved the

publish/subscribe functionality using azure topics. Moreover, the service bus also has a

buffering ability which results in the additional advantage to buffer incoming data during

components failure or scheduled maintenance.

17

Figure 5 Web Service architecture using REST and Message Bus

4.1.1.3.Design Patterns

Design patterns have been great enablers for our project to deliver a highly scalable,

maintainable and reusable system. The team adopted different design patterns to address

well-established problems, which will be discussed further in this section.

Publish-Subscribe

The publish-subscribe messaging pattern fits in our architecture due to its loose coupling

between publishers and subscribers and its scalability compared to the traditional client-

server paradigm. Publishers could be any hardware devices pushing data into the data logging

API, whereas subscribers are any third-party applications that subscribed to receiving

updates-messages regarding to the context of the publisher. In our case publish-subscribe

pattern has been implemented in the live feed of data into IoT website. The website

subscribes to HTML5 Web Socket Channel and the pusher worker role is responsible for

delivering publishers’ messages on the fly.

Figure 6 Publish-Subscribe design pattern

18

Strategy

A feature that distinguishes our project from similar ones is the flexibility provided for users

to specify their own custom repositories. Obviously, this functionality indicates a definition

of a family of algorithms which are interchangeable and encapsulated with each other. Hence,

the strategy pattern has been utilised to switch between the user’s custom repository and IoT

Cloud Database based on his/her preference. Furthermore, another example of the usage of

the strategy design pattern is dynamic routing to the nearest device in case of the device

failure. As RTMA keeps track of the device’s status, it can identify the disconnected device(s)

and report the failure to the subscribed users and applications.

Figure 7 Strategy design pattern

Façade

A façade pattern allows designing a unified interface and provides an easy-to-use capability

by hiding the complexity of the system and its subsystems behind the interface. Since the

main deliverable of our project is a set of APIs, it was required to adopt this design pattern

and moreover we used the guidelines for designing API Façade Pattern (Mulloy, 2012). Data

Logging API provides a single interface, but hides the complexity of two different interfaces

exposed by the pusher and Database worker roles. Thus a unified interface can be used to

access to multiple sub systems based on the context of the incoming message.

Figure 8 API façade pattern

19

Observer

This is a behavioural design pattern which delegates the change in data to all observers. This

design pattern has been used by RTMA for observing the state of a device as offline or online

and updating this information to show the current status of devices on a live chart, device info

page and notification page. All the observers will be notified when the status of the device

changes.

Figure 9 Observer Pattern

4.1.2. Architecture Views

4.1.2.1.Enterprise Architecture View

Figure 10 Enterprise Architecture View

20

The system is designed to be platform independent. The concise and well-defined RESTful

API which is hosted on Microsoft Azure Cloud (see Section 4.2.4) makes the system

extendable in the maximum extent. The Gadgeteer Internet of Things website and any other

systems such as data analytics tools can easily interact with the API because of its simplicity

and scalability. Taking the hardware’s point of view, the Gadgeteer Library offers a

lightweight communication with the API as well as the API is generic enough to be used by

other hardware platforms such as HomeOS and Engduino.

4.1.2.2.Layered View

Figure 11 Layered Architecture View

The system is built on the basis of a multi-tier architecture which originates from the well-

known three-tier architecture (Schulte 1997). Since the main goal of the project is to provide

an abstract API to support different hardware platforms with RESTful API services, the need

of multi-layering has emerged. Moreover, the multi layered architecture offers loose coupling

between distinct layers and this significantly improves maintainability. At the top of the

architecture is the presentation layer which is responsible for presenting data received from

the service layer. The communication between the presentation and service layer is achieved

through RESTful APIs and Microsoft Azure Message Bus. Furthermore, presentation layer

includes the visualization components which are responsible to display data coming from the

21

service layer. The service layer includes a set of components to provide the following

services:

 Data Querying: retrieves the data through the data access layer.

 Data Logging: transmits the sensor-derived data to data access layer.

 User and Device Management: sends and retrieves user and device information to

and from the data access layer.

 Auditing and reporting: sends notifications to the users based on the defined

triggers

 Device/Sensor Subscription: is responsible for associating sensors with devices

 Device Monitoring: tracks the status of the devices

 Real time push notification: is responsible for creating a virtual channel between

the devices and the third party applications to feed live data

 Device API key generation: is in charge of identity management

Moving down the architecture stack is the Gadgeteer Library Layer. It defines a lightweight

library that communicates directly with the service layer through HTTP protocol. Next is the

data access layer which is responsible to access the data directly. This layer hides the

complexity of accessing the data from the service layer and decouples it from the other

layers; this improves the maintainability, reusability and scalability. At the bottom, we have

the data persistence layer which is comprised of two distinct databases to deal with different

type of data in the system.

4.1.2.3.IT System View

Figure 12 IT System View

22

IT system view shows the main nodes of the system in more details as it was mentioned by

Mitra (2008). It was used as the starting point to create the component model as well as the

entry point for our implementation (see Section 5). It contains the Azure Load Balancer

which scales and balances the load between different IoT Web Server instances. In addition

to that, the Pusher and the Real-time monitoring nodes (see Section 5) are worker roles that

are running on the cloud. Finally, the Database instances are hosted on a Virtual Machine

node which is also hosted on the cloud.

4.2. Technology Decisions

4.2.1. Azure Cloud Services

Gubbi et al. (2013) argue that internet services are the best solution for establishing Internet

of Things and cloud centric approach is more viable than other alternative solutions. This

approach utilizes the advancements in cloud computing to provide more reliable, scalable and

cost efficient solution for our web service. Further, using a cloud service also avoids the need

to maintain separate infrastructure to host our applications. We have chosen to use the

Windows Azure cloud platform and obtained azure passes to register for Microsoft’s Azure

Cloud Services. Among various cloud computing services, we have utilised the Platform as a

Service (PaaS) and Infrastructure as a Service (IaaS) offering from Windows Azure

Platform. Specifically, we have used PaaS to host the IoT web service application and IaaS

for hosting MongoDB on a virtual machine. The web service application has been hosted

using azure cloud service since it provides an easy way to package our applications and run it

in the cloud. The IoT service APIs have been developed using WCF framework and created

as Web Roles to be hosted as a cloud service. Apart from that, this project comprises of three

more worker roles which perform background operations such as pushing real-time data,

storing data to the repository and performing live monitoring of incoming data to flag

malfunctioning devices respectively.

4.2.2. Windows Communication Foundation (WCF)

WCF is a framework for building service-oriented application and boasts the advantage of

loose coupling, since it can communicate with clients created on any platform. The only

constraint for this communication is that the essential contracts have to be satisfied. Yang et

al. (2012) have shown how WCF can be used as IoT communication middleware for building

dynamic, loose coupled, robust, scalable and flexible communication layer for supporting

heterogeneous devices. As one of our main objectives has been to support a wide range of

platforms, WCF was one of the obvious choices because of its loose coupling nature and the

ease of hosting it as an azure cloud service. It is also capable of sending asynchronous

messages between service endpoints and all the IoT service APIs are created as REST

endpoints using ‘WebHttpBinding’. WCF provides a simple and neat solution for exposing

REST URIs. Furthermore, WCF is also considerably flexible and allows us to create our own

security, transportation and authentication components which have proved to be

extraordinarily useful while authenticating API Keys in the incoming messages to the web

service. The WCF service application is hosted using Internet Information Services (IIS)

which provides two unique features such as automatic activation, i.e. hosting the service only

23

on demand and process recycling when a service is unhealthy. This makes our web service

fairly reliable and robust. WCF can also be programmatically self-hosted which simplifies the

process of testing the service application by using MS Unit test framework for retrieving code

coverage results.

4.2.3. Databases

There are two types of data that our system needs to deal with, first of which is the data

required for the user and device management. This data is relational, therefore an obvious

choice for the system was to use Azure SQL Database to store the data since it is a relational

cloud database service and provides high availability and scalability. In order to provide a

higher abstraction level in Data Access Layer in terms of database tables and columns, the

team have used ADO.NET Entity framework which is an object relational mapper. The

main advantage of using this framework has been the reduction of the amount and complexity

of data accessing code; in addition to making the code easier to understand for others as it

was discussed by Castro, Melnik and Adya (2007). Apart from the previous advantages,

LINQ is also supported by Entity Framework. Thus, to query the database, LINQ query

syntax was used (This is known as LINQ to Entities). The data model for this system can be

found in Appendix A.

The second type is data generated by all the ‘things’ connected to the system. In order to

tackle the challenges mentioned in section 2.2.2 we considered using a NoSQL database

which has significant scalability and performance advantages over a relational database as

discussed by Liu, Wang and Jin (2012). After researching about the available NoSQL

databases the team has decided to use MongoDB mostly because of the following features

that it offers.

 Document-oriented storage: the data is stored as BSON (Binary JSON) documents

with flexible schemas. Hence, different hardware devices can send the data in their

own schemas.

 Replication: as described in MongoDB Documentation Project (2013), the data can

be duplicated on a different number of replica sets. One server becomes the primary

server responsible for writing and the other servers are responsible for reading. This

feature provides redundancy and raises data availability. In addition, it protects the

data from a single point of failure and can be used in maintenance and backup

procedures. More importantly, since in IoT the number of writing to and reading from

the database is extremely high, it is possible to assign read and write operations to

different servers and balance the load effectively.

 Autosharding: as described by Chodorow and Dirolf (2010, pp. 143-145), any

database can be used for manual sharding. However, MongoDB handles it

automatically which means it is abstract from the application layer. Sharding is about

partitioning the data and storing each partition on a separate machine. The data

growth in IoT is very fast, therefore, in order to make the data storage scalable,

autosharding can be used to separate the data onto different machines and handle the

load without having powerful hardware.

24

In this system, the MongoDB database is hosted on Azure Virtual Machine.

4.2.4. Hardware Platforms

4.2.4.1.Microsoft .NET Gadgeteer

Microsoft .NET Gadgeteer is a newly-produced hardware platform for rapid prototyping on

Microsoft .NET Micro Framework within the concept of Internet of Things, upon which

applications fulfilling the business value of specific scenarios are able to be implemented.

Gadgeteer contains three critical elements: modular electronic devices which can be

effortlessly connected to make sophisticated systems; object-oriented software library which

conceals the complexity of low-level programming; and 3D design and construction tools

supporting for quick physical form factor (Villar et al, 2012).

Gadgeteer has been chosen as the main prototyping platform partly because of the

requirements specified in section 3.2 and also for the following reasons. (a) Gadgeteer is an

emerging platform and this project can contribute to its development; (b) Compared to other

platforms, Gadgeteer provides flexibility in using different modules and faster prototyping.

4.2.4.2.Engduino

The Engduino is an educational device designed in the Department of Computer Science at

UCL, which is based on Arduino LilyPad in terms of hardware. The Engduino is programmed

using the standard Arduino IDE through a normal USB connection.

The decision to use Engduino has been a result of the following reasons: (a) Engduino is built

in the Department of Computer Science at UCL, therefore we can easily collect the devices

and consult related staff; (b) The intention of Engduino is for teaching and IoT can be

significantly used in this field; (c) The Engduino has a thermistor which satisfies the

requirement of the third use case; (d) The Engduino can be used to prove the statement that

our web service is generic enough to support different hardware platforms.

4.2.4.3.Android

Smart phones will undoubtedly play vital roles in the future of IoT. Among the popular

mobile operating systems, we have handpicked Android, based on the following arguments:

(a) According to research firm IDC’s statistics between Q2 2012 and Q2 2013, Android

accounts for 73.5% market share in the global Smartphone shipments; (b) Android is an open

source platform which is compatible with the spirit of our project; (c) Android is another

proof of the statement that our web service can support different hardware platforms.

4.3. UI Style Guide

The website has been developed upon a fully responsive and sophisticated modern UI

bootstrap to deliver a great user experience. Harnessing the fundamental key properties of the

modern UI style, the website meets all the standards to ensure secure navigation, stability,

robustness and scalability. The fact revealed by Tami Reller, the CFO of the Windows

division, that an estimation of 59M Windows 8 devices are in use as Gregg Keizer (9th May

25

2013) stated in his article reinforced our decision of building upon modern UI guidelines. As

Microsoft’s vision is to offer computer and mobile users the same interfaces, we have

adopted the same strategy for our website. Therefore, users are able to visit the website either

on their desktop or on mobile/tablet devices. In combination with that other up-to-date

technologies such as jQuery and Ajax have been used to add responsiveness to the website.

Moreover, user satisfaction and user experience have been our highest priority for UI design.

4.4. Integration with MSR1 Project

MSR LoT Analytic Engine team (Khandelwal et al. 2013) concentrate mainly on the data

analytics part and uses Microsoft’s HomeOS to gather data from Z-wave devices. HomeOS

uses PC abstraction for the home technology and provides built in drivers for a very less

number of hardware devices; therefore the other team used data from Z-wave device to

perform the analytics. Even the newly released Lab of Things supports only Z-wave and

Gadgeteer devices natively. To perform efficient data analytics it is necessary to gather data

from a wide range of devices and this restriction can be overcome by using our system since

it is generic and supports a wide range of hardware devices. Figure 13 describes how their

data analytics application can integrate with our system. Therefore, their application can use

our system to retrieve the raw data directly through an adapter to convert this raw data to the

required format. The adapter can be written by developers who want to perform an analytic

operation on their data. Hence these two systems can integrate with each other to provide an

end-to-end functionality from device management, data logging to data analytics.

Gadgeteer Internet of Things API

Engduino Arduino

Adapater

Analytic
Facade

Analytic
Engine

send
RAW Data

Our Project Scope

Convert to corresponding format

MSR1 HomeLab API for
Big Data Analytics

Project Scope

Gadgeteer

Library
.

Figure 13 Integration with MSR LoT Analytic Engine

26

5. Implementation and Testing

5.1. Brief Description of Components

In this section, we will discuss about the key components of our system. Since this project is

split into different decoupled layers, it is necessary to focus on all of the layers and the

components it consists of. The three important layers of this project include the website, web

service and the Gadgeteer library. A brief description of components included in these layers

is described in the following sections.

5.1.1. Website

The Gadgeteer IoT website is developed to deal with user and device management. It also

contains additional components such as visualisation and device discovery which can be seen

as a third-party application that interacts with our API.

To start with, the user management component is responsible for managing the user’s profile

by providing common functionalities such as sign up, login and update/edit/delete user

profile. In the same manner, device management deals with devices and sensors. It

implements device administration functionality such as add new devices, update/edit/delete

device’s details and retrieving device’s API Key (see Section 5.1.3) and download

configuration file.

The visualisation component defines two types of data presentation, charts and maps. The

former uses an off-the-shelf charting tool, the highcharts, which has been customised and

extended to fit our context. The latter integrates Google Maps API v3 and provides features

such as the device discovery page where the user is able to identify devices on a map. The

live data transmission between the front end and the API has been achieved through Pusher, a

third-party plugin. The following code snippet shows how the visualisation component

subscribes to receive live data feed.

Code Snippet 1 Subscribing to real-time data feed

5.1.2. Web Service

The web service comprises of a number of components to provide abstraction between

different layers. The component based implementation increases maintainability of the code

27

and improves easy extensibility in the future. Some of the important components are

discussed in this section.

5.1.2.1.Real Time Monitoring Agent

RTMA (Real Time Monitoring Agent) is a specially designed component which inspects all

the incoming messages and also monitors the status of every device in the system. When a

device fails to send data over a time period defined by the owner of the device, this

component will try to ping the device using the IP address of the device. Thus, RTMA can

report the status of the device as online or offline, and if the device is offline it further verify

whether it is the network connectivity issue or sensor malfunction.

5.1.2.2.Web Service API Controller

WSAC component is developed using WCF and exposes RESTful URIs for accessing

various resources created in the system. This component routes the incoming requests to

corresponding service components based on the URI and operations invoked by users. This

component is easily scalable and extendable to include more operations in the future. A

detailed list of APIs with their explanations is described in the Appendix A. Figure 14 shows

the interaction of this component with other components in the web service layer.

Figure 14 Web Service Components

5.1.2.3.API Key Authentication Component

This component extends the ‘ServiceAuthorizationManager’ class of the WCF framework

and this class is triggered before calling the service method according to the sequence of

28

WCF lifecycle events. All the incoming requests will be checked and authenticated for a valid

API key existence in the ‘Authorization header’ of HTTP messages.

5.1.2.4.Pusher Component

Pusher Component is an azure worker role whose sole responsibility is listening to the

Windows Azure Service Bus and sending push notifications to corresponding channels based

on filter rules. This component is implemented using publish/subscribe design pattern which

observes to newly published data from the registered devices and send it across to subscribed

users of these devices.

5.1.2.5.Database Storage Component

DB component in turn has two sub components which are responsible for SQL Server and

Mongo respectively. The Mongo component is a worker role which processes incoming

messages and store the data in the corresponding repository based on user preference. The

default configuration stores data in public cloud but this configuration can be changed to

support user’s custom database by providing valid connection string for remote database

server.

5.1.3. Gadgeteer Library

Gadgeteer library consists of the following three major components. The class level

description of these components and explanation of library API can be found in section 2.1.3

of Appendix A.

5.1.3.1.REST Client Component

This component is responsible for handling the communications between devices and the

RESTful web service. Given the intention of communication such as sensor registration, live

data delivering and heart-beat notification, it creates HTTP request accordingly and also

parses the response returned by the web service. Additionally, the REST Client Component is

also in charge of distinguishing the sensor types and passing raw data to corresponding JSON

serialiser, thereby constructing correct JSON data in the request payload.

5.1.3.2.Data Buffering Component

Considering the fact that existing network technologies need to be improved to support IoT,

there is a high possibility that the devices encounter connectivity issues. Data Buffering

Component is designed to store the data temporarily to the local storage such as SD Card,

which guarantees that no data is lost when devices are disconnected to the network. This

buffered data will be sent automatically when the network connection is re-established.

5.1.3.3.Configuration Manager

To register a sensor or send generated data, settings such as API Key, device ID and current

UTC time are required. The major purpose of implementing Configuration Manager is to

automatically read configuration file downloaded from the web site and synchronise the local

29

time with UTC time from an NTP (Network Time Protocol) server, which prevents

developers from manually configuring these settings.

5.2. Use Case Scenarios

5.2.1. Common Walkthrough

Having briefly described the main components of the system in the above section, we would

like to present a walkthrough of how these components are interacting with each other. To

utilise the offered services, developers need to first login as valid users at the web site. Once

logged in, at the device management page, developers can perform different actions such as

addition, updating and deletion. Under the same user account, device names should be

distinctive for easy identification. Each existing device is assigned a unique API key and a

device ID, both of which will be used further in communication between sensors and the API.

The device description is displayed in a tabular form on the web page. To proceed, the

developers then have to register the sensors such as temperature and humidity, to the web

service. In the sensor registration, developers need to specify the device ID and insert the API

Key as an Authorization header in the HTTP request, which will be verified by the web

service for authentication. The required information can either be retrieved automatically by

the method ReadConfiguration() in the Gadgeteer library based on the associated XML file

downloaded from the web site, or manually typed in the hardware application. By importing

the library, developers simply invoke the methods such as RegisterSensor(),

SendCurrentData() and SendHistoricData(), which hide the complexities of communicating

with the API, to complete the registration and data logging operations. The following code

snippet illustrates how a sensor can be registered easily by using the library.

Code Snippet 2 Sensor Registration

Code snippet below demonstrates how to send real time data by invoking the method from

the library.

Code Snippet 3 Data Logging

30

Figure 15 briefly describes this work flow process through a walkthrough diagram.

Figure 15 Walkthrough of the User Registration and Device Addition

5.2.2. Use Cases Implementation

We have designed and implemented three use case scenarios by making use of the API and

library mentioned in the previous section. The main reasons behind these use cases are to

show that our system meets the requirements of our product owners in addition to

demonstrate how it can be used in different areas of the real word.

The first use case focuses on the applicability of our system in education and how it can be

used by high school students. In this use case, science students log the temperature and

humidity of their classes by using the Gadgeteer platform and through our provided API and

Gadgeteer library. Afterwards, they use the website to share their devices with each other.

Finally, by using the visualisation section of the website they see the data on a graph thus,

they can compare the temperature and humidity of their classes with other classes or between

different periods of time.

The second use case has concentrated on providing safety and security to people and the

environment which was discussed under general requirements in section 3.2. The general idea

of the use case is to create a network of devices that are physically close to each other, such

as the devices that a person carries with him on a daily basis and make an alert when any

device gets disconnected from that network. More importantly, provide the user the ability to

see the real time location of the missing device on a map. Therefore, in this use case, we

created a network using Bluetooth between 3 devices; the alerting device (Gadgeteer) which

31

is the Bluetooth host in the network; a mobile phone running on Android OS and another

device (Gadgeteer) as the Bluetooth clients. When a client gets disconnected from the host,

the host device starts to produce an alarm sound and sends the information of the lost device

to the API. Then, through our website, the user logs in to his account and use the map to see

the real time location of his missing device.

The third use case has focused on the device discovery feature of the API. This feature

enables users to receive data from other devices with similar capabilities. In this use case we

have considered a radioactive zone and a sensor that logs the data for that area. However, the

sensor breaks down due to hardware failure. Since fixing the sensor by human intervention is

not practical in this scenario, the system suggests the receiver of the data to switch to the

nearest device that is sending the same type of data. Yet, since Gadgeteer does not have any

sensor to measure the radioactivity level we have used temperature sensor to mock the

scenario. In this use case the first sensor is on the Gadgeteer platform and the second one is

an Engduino device.

5.3. Software Measurement

Because of our intention to develop software with high quality in terms of reusability and

maintainability, along with implementation, we have been measuring the existing code to

gain an insight into the current state of the project. Among various code metrics, according to

the user guide (Microsoft Developer Network, 2012) focusing on the code metric tool

embedded in VS 2012, we calculated the following ones:

Metrics Definition Indication

Maintainability

Index

An index value on a scale of 0

to 100 which indicates the

relative ease of maintaining the

code

A higher value indicates better

maintainability

Cyclomatic

Complexity

The structural complexity of the

code generated by computing

the number of various code

paths in the flow of the program

A higher value indicates less

maintainability, which requires

more test cases to achieve ideal

coverage

Inheritance

Depth

Maximum depth of a class in

the inheritance tree

A higher value indicates greater

difficulty to locate the definition

or redefinition of particular

methods or fields.

Class Coupling The number of classes that a

particular class is coupled to

A higher value indicates less

reusability and maintainability

due to the interdependencies on

other classes

Lines of Code The approximate number of

lines in the Intermediate

Language (IL) instead of the

original code

A higher value indicates less

maintainability, which requires

the class or method to be split up

Table 3 Software Metrics

32

Figure 16 Software Metrics for Gadgeteer Library and Web service API

Based on the result shown in the figure above, we are able to assess the achievements of the

goals and plans, build models based on relationships between observable attributes, identify

potential risks and predict the complexity of subsequent testing. Moreover, by measuring

these metrics, we have been able to refactor the code to achieve superior maintainability and

reusability.

5.4. Testing Overview

5.4.1. Strategy

Every project should have a proper test strategy outlining about how and which artefacts will

be tested along with test criteria and attributes. Since we followed Scrum project management

methodology, all our testing efforts were aligned with values of agile manifesto. In Sprint 0,

we laid out a master plan about how testing activities has to be carried out and the work flow

to be followed. Figure 17 shows the testing process that we created and it was aligned with

testing practices followed in Scrum. All the testing activities were carried out by following

this process cycle.

Sprint

Start

End

Test Environment
Setting

Planning Test
Activities Review Test Cases

Create/ Update
Test Cases for
sprint backlog

Create/ Update
Automated Test

Scripts

Incremental Test
Execution

Defect Found ?

Report or Update
of Defects

Defects Fixed ?

End of Iteration ?

Generate Execution
Test Report

End of Backlog Stories ?

Yes

Yes

No

No

No

No

Yes

Figure 17 Testing Work Flow Process

Crispin and Gregory (2008) suggest that code coverage to be a good metric for testing in the

Agile environment and furthermore Sommerville (2010) in his book describes that all-path

33

testing as one of the oldest structural testing method to achieve higher code coverage.

Therefore high code coverage was selected as the test quality attribute and decided to achieve

it through all path testing wherever possible. The software metrics described in section 5.3

were used to perform testing efficiently and Black and Mitchell (2011) describes cyclomatic

complexity as effective metric for performing path testing. Moreover, according to Scrum

practice, all the code should be unit-tested during development, so the test strategy included

performing unit testing as and when an artefact was developed.

Since all the artefacts produced in a software system cannot be tested in a similar way, we

have adopted different techniques for testing different layers of the architecture mentioned in

section 4.1.2.2. Hence it was decided to perform unit testing on the data access layer and the

Gadgeteer library; Integration testing by integrating the web service layer and data access

layer components. The reasons for this decision are discussed further in the section 5.5.1 and

5.5.2 respectively. Fewster and Graham (1999) explain test automation is very critical to

testing in their book. Therefore it was decided to perform all the above testing procedures

through automated test scripts by making use of automation test tools such as MS unit test

framework (Microsoft Developer Network, 2005). Further, it was decided to perform system

or functional testing from the UI to test all the use case scenarios and user stories. In addition

to above automated testing, we also decided to perform manual testing to test the use case

implementations since it was not possible to create automated test scripts.

5.4.2. Challenges

We faced many challenges in obtaining the code coverage results and writing automated test

scripts while testing the web service application. Most of the testing tools invoke REST URIs

like a black box function and it is impossible to acquire coverage results and automate the

testing process. Finally, we found a way around by self-hosting the service application within

IIS programmatically and invoking the service methods just like any other C# library

methods. Test cases were written using MS Test and code coverage results were generated by

the MS unit test framework.

5.5. White Box Testing

5.5.1. Unit Testing

All path testing with k=1 has been used as the main approach to perform unit testing for data

access layer. As it was described by Schligloffm and Roggenbach (2007), this type of testing

is a white box structural testing that aims to find all the possible executable paths within the

code.

The test suites have been created based on the classes that include the methods to be tested in

different test cases. Each test case was defined by using the control flow graph. The team has

set the target for code coverage to 90% in order to produce thoroughly-tested software.

The table below shows the code coverage for different test suits within data access layer. For

the complete list of the test cases please refer to Appendix B.

34

Name Not

Covered

(blocks)

Not

Covered(%Blocks)

Covered

(blocks)

Covered(%Block

s)

User Entity

Suite

51 8.69 536 91.31

Device Entity

Suite

57 5.25 1028 94.75

Sensor Entity

Suite

56 8.55 599 91.45

Mongo Suite 17 6.88 230 93.12

Shared Entity

Suite

6 6.12 92 93.88

Sensor Access

Time Entity

Suite

9 6.52 129 93.48

Notification

Entity Suite

6 3.87 149 96.13

Table 4 Code Coverage Results of Data Access Layer Components

Owing to the limitation of .NET Micro Framework, the inbuilt testing tool in Visual Studio

2012, Unit Test Framework, cannot be executed. This indicates that there is no native support

for unit-test on the Gadgeteer platform. Having realised that, in order to provide a

thoroughly-tested Gadgeteer library, we decided to write test cases manually and execute

them, because subsequent research revealed that no fully compatible external tools have been

implemented for this relatively new prototyping platform. Additionally, considering that

testing for the library requires extensive involvement of Gadgeteer devices and hardware-

based applications, to build the test harness has been considerably time-consuming. (Please

refer to Appendix B for the complete list of test cases over the Gadgeteer library)

5.5.2. Integration Testing

Integration testing is usually done by combining individual modules; test cases are executed

on the integrated module. Although integration testing is generally black box, we have

performed a white box testing to obtain code coverage. The web service component exposes

REST URIs for accessing user, device and sensor resources; in addition allows CRUD

operation on these resources through HTTP methods. As described in the layered

architecture, these URI operations are wrapper around the data access layer operations.

Therefore, there was no need to perform unit-testing for the web service layer since the data

access layer was highly unit tested. Hence, the team decided to perform only the integration

testing on the web service operations to test both the web service and the data access layer

together. Since high code coverage is selected as the quality attribute, the WSAC component

(see section 5.1.1.1) was tested using all-path testing with k=1 criteria and the figure 14

shows the code coverage results for this component. We were able to get only 71.73% code

35

coverage due to restrictions of WCF Self-Host in covering some parts of the code, the

remaining parts of code could be executed only by running the application inside IIS.

Figure 18 Coverage Results of Web Service Components

5.6. Black Box Testing

5.6.1. System and Functional Testing

It is obvious that our API could be invoked by any third-party application. Due to this fact, a

functional testing which is classified as a black-box testing was the only option available to

exercise our APIs in a third-party application. Our system, apart from the API also consists of

a website which contains components that can be seen as implementation of the

aforementioned third-party applications. Therefore, the website has been tested using

automated tests through the user interface (UI) also known as Coded UI Tests by taking into

consideration the acceptance criteria for all the user stories (see Section 6.2). Coded UI Tests

are automated tests that drive the application through its user interface. They provide a

mechanism to automatically execute and drive the application by simulating users’ actions.

The UI Testing consists of four categories of test suites; users, devices, charts and others.

Each category exercises different functionalities, for example, ‘users’ classification deals

with every request to the API that is responsible for user management. The rest of the

categories were also defined in the same manner. (Please refer to Appendix B for the

complete list of the test cases).

Apart from the functional testing which exercised particular isolated functions of the system,

we also considered system testing. In a nutshell, someone could call it as a “bigger Functional

Testing” because functionalities are exercised in sequence or even better in a logical order as

the user would perform them. Therefore, harnessing Visual Studio’s Testing Framework

which provides “ordered tests”, system testing was achieved for the most common

functionalities such as first login to the system, then move to my devices page, then add a

new device and finally get the configuration file of a specific device.

36

5.6.2. Performance Testing

All projects have non-functional requirements and these requirements greatly influence the

acceptance of the system. Performance is one of those requirements and this testing is usually

done at the early stages and very often, in order to meet the performance requirements of

clients by measuring the response time of critical functionalities and high frequency

operations.

Carrying out performance testing is a mandate to our project since it encompasses a large

number of users and devices. Any testing should have a test criterion, therefore we have

chosen response time as ours since it is so far the most widely accepted and requested metric

for performance testing (Meier et al. 2007).

In this project, one of the primary functional requirements is the ability to log data from a

variety of devices and retrieve this data from the cloud, but this requirement has performance

constraints for the system to be accepted. Data logging is a highly frequent operation as an

enormous number of devices can send data at a single point of time to the API. Advanced

REST Console tool has been used to measure the end to end response time (benchmarking) of

data logging API.

Figure 19 Response Time for Data Logging API

Figure 18 shows the response time of data logging API, but this response time is just one call

or service invocation. Performance testing should usually consider different test cases with

different data values and measure the average response time all the requests. But then

Molyneaux (2009) states that average response time should be used in conjunction with Nth

percentile to get the best performance results. Percentiles are used to determine approximate

response time at any given instance of time. Hence, we measured percentile for response time

for both data logging and data retrieval APIs. The figure below shows the peak values at

more than 90th percentile due to automatic on demand service activation of IIS discussed in

section 4.2.2.

37

Figure 20 Nth Percentile ‘Response Time’ comparison between data logging and data retrieval API

5.6.3. Load and Stress Testing:

Load testing is all about testing the performance behaviour of a system under varying load

conditions. Performance testing usually measures the response time at low load or varying

load level for benchmarking purposes whereas load testing usually evaluates the performance

at heavy load levels and checks if the system is still functioning properly. Load testing is

usually performed by automated tools to increase the load to a system constantly till it

achieves a peak load. We have used WCF Storm to simulate the virtual load on data logging

API to see how many concurrent devices it can handle. Figure 17 shows how average

response time increases and response rate decreases as the load increases on the system.

Although the response time is 1278 msec. at 100 virtual users, it stabilised on that level for

the given load and the system continued to function normally.

Stress testing usually tries to break the system and see how the system gracefully fails and

recycles. It is usually performed by simulating an extreme load and removing resources away

from the system and monitor how the system functions under these conditions. When we

simulated extreme load levels, we received bad responses for the request and dropped further

incoming messages. However, the web server continued to function and took some time to

recycle in order to accept further requests. DB worker role (see section 5.1) was removed

from the system to test tested if data logging works under resource failure condition.

However, the API still worked owing to the queuing capability of the service bus and

continued to accept a new request from the devices even under resource failure condition.

When the worker role was started again, it continued to process the queued messages.

38

Figure 21 Load Testing Result for Data Logging API for varying load with simulated virtual users

5.7. Static Analysis

Static analysis is a critical part of software testing and complements the above tradition

testing practices. This allows delivering a better quality code by identifying vulnerabilities in

the code which may not be exposed by tradition test runs. Therefore it provides opportunities

to improve the security and performance of the code, in addition to find the potential software

quality issues that were not exposed by the above testing methods.

5.7.1. JavaScript analysis with JSLint

The website was built in JavaScript, CSS and HTML. Due to the weak typing nature of

JavaScript, numerous errors and warnings are usually hidden. Therefore, the team used

JSLint, a static analysis tool to assist us in revealing hidden errors in order to improve the

overall code quality. Figure 22 shows an example of warning revealed by JSLint. An

interesting warning related to equals operator is due to lack of strong data types present in

high level programming. In this case, the variable is compared to ‘undefine’ data type,

therefore, the correct usage should have included the directive typeof which the return type is

a string literal. Thus, JSLint helped to improve code quality and readability.

Figure 22 Static Analysis Result with JSLint

39

5.7.2. Static Analysis with Code Analysis (VS 2012)

Code Analysis feature in Visual Studio 2012 provides static analysis functionality based on

different inbuilt rules (Esposito, 2011). The code analysis rules engine, analyses the code

statically without executing the project. We performed this code analysis on Data Access

Layer in order to find the security vulnerabilities. This layer interacts with the databases

directly therefore, finding security issues such as buffer overflow was critical. In addition,

code analysis was performed on the web service components to analyse for any hidden

security vulnerabilities that were not revealed in the unit and functional testing. Figure 21

shows an example of warning generated by this tool and it also suggested the corrective

action to preserve stack details in order to avoid buffer overflow vulnerability. We used these

suggestions from the tools to fix the vulnerabilities in the system.

Figure 23 Code Analysis Result for Web Service

40

6. Project Management

This section briefly discusses the software development methodology that we have adopted to

carry out this project and the reasons behind it. Likewise, how this methodology was useful

to approach our project demands and distribute work among the team members is described.

6.1. Software Development Methodology

Typically, the software development can be represented as three models: the waterfall model,

the incremental model and the reuse-oriented model (Sommerville, 2011). These generic

models are abstractions of the process that can be practiced by different approaches to

software development. Among all these methodologies, we have chosen Scrum (Takeuchi et

al, 1986) for the following reasons:

 (1) Part of the requirements was unclear at the beginning of the project. The second use case

was sponsored by the Metropolitan Police, but the team was informed that we could not meet

them in person until late July, which was the middle of the development.

(2) The requirements for the project were subjected to change. During the development, a

similar platform from Microsoft Research named Lab of Things was announced. Due to its

release, we modified the requirements after thorough research, because it was beneficial and

critical for us to integrate with LoT.

(3) Prioritisation of the features we decided to implement initially kept changing while the

development was in process. Based on client’s feedback, we increased the priorities of some

features, such as continuous data streaming and device discovery.

(4) Compared to traditional waterfall development methodology, Scrum tends to be more

efficient. Features such as daily Scrum meetings, Sprint retrospective, intense collaboration

with Product Owner and Burndown charts significantly enhanced the team’s productivity.

(5) Scrum encourages developers to communicate frequently with others. According to the

instructions of Scrum, we developed a communication plan and strictly followed it, which

helped the team to maintain a shared understanding of the project throughout the

development and also massively reduced the time wasting on waiting for other team members

to complete their task.

6.2. Sprint Planning

The project development consists of four sprints, the first of which was spent in project

initiation. The team focused on planning for the Scrum process, related system study,

requirements elicitation, high-level design and setting up development environment (see

Appendix A).

After the initial sprint, the team has started the actual implementation of user stories (see

Section 3.2.2), which lasted for three sprints and Table 5 illustrates that.

41

Sprint User Story Acceptance Criteria

Sprint 1:

June 20 - July

10

 Device and Sensor

Registration

 Data Logging

 Real Time

Data Transmission

 Historic

Data Retrieval

 Device and sensor registration cannot be

completed without all the mandatory fields

filled

 Device with an existing name cannot be

added

 Information from the registration is stored in

the database

 Logging data with missing information

cannot be completed

 Data sent by devices is stored in the database

Sprint 2:

July 11 - July

31

 Device Management

 Data Privacy

 Data Visualisation

 Continuous

Data Stream

 Information from the updated device is

changed accordingly in the database

 Information from the removed device is

deleted in the database

 Data from private devices cannot be retrieved

by anyone but the owner

 Time shown on the visualisation graph

remains in accordance with the current UTC

time

 Historic data visualisation cannot be

completed with ending time earlier than

starting time

 Historic data visualisation cannot be

completed without data stored in the database

for the selected timespan

 After the device starts to log data, there

cannot be missing records in the database

Sprint 3:

August 1 -

August 21

 Custom Repository

 Data Sharing

 Notifications

 Device Discovery

 The specification of repositories with

missing mandatory fields cannot be

completed

 Data sent by devices is stored in the personal

repository

 Data from private devices cannot be retrieved

by unauthorised users

 An Email is sent to the user after condition

for the trigger is satisfied

 Private devices cannot be discovered

Table 5 Sprint Planning

42

6.3. Task Distribution and Management

In Scrum, each team member, along with the client, has to be assigned a specific role. Table 6

shows the roles of different individuals involved in this project.

Name Roles

Pejman Aghili Scrum Master

Steven Johnston and

Dean Mohamedally
Product Owner

Marios Constantinides,

Ayyappan Sampath,

Pejman Aghili and

Zheng Gao

Core Development Team

Table 6 Scrum Roles

Throughout 12 weeks, the development team has strictly adhered to the discipline of Scrum.

Team members came to the university at dedicated time and fully participated in the

development together. Each sprint starts with a sprint planning and features to be

implemented for this project have been registered as backlog items. The daily Scrum

meetings have been conducted consecutively in a stand-up style, in which team members

coordinated their work and specified what they had done yesterday, what they would be

doing today and what problems were blocking them. Typically, for the team to proceed in

development, the impeding issues would be addressed later by the Scrum master, Pejman

Aghili. A sprint review meeting was held routinely after implementation, where the team

reviewed the work that had been completed or not completed and presented the work to the

Product Owner, Steven Johnston. Feedback was collected based on the prototype version

which resulted in the potential change of feature prioritisation and creation of new backlog

items. At the end of every sprint, the Scrum master would facilitate a retrospective meeting,

which typically concentrated on inspecting how the last sprint went regarding to people,

relationships and process; identifying the major items that went well and potential

improvements; specifying the activities or habits that should be terminated; and creating a

plan to enhance the team which would be enacted during the next sprint. Please refer to

Appendix A for the list of retrospectives and minutes.

Team Foundation Service (TFS), as shown in the figure below, has been selected as the tool

guiding the team to use Scrum for the following reasons: First, TFS provides native support

to Microsoft projects, especially in cooperation with Visual Studio. Secondly, TFS offers an

easy-to-use capability in the practice of Scrum such as sprint planning, backlog item

management and remote feedback. Apart from team collaboration and Agile planning,

features such as Git supporting are highly appropriate to the project. Furthermore, TFS has

great accessibility and usability without infrastructure to manage.

43

Figure 24 Backlogs in TFS

In terms of implementation, based on the architecture, the project has been split into four

separate parts: the front-end, the web service, the data access layer and the Gadgeteer library,

which have been assigned to Marios Constantinides, Ayyappan Sampath, Pejman Aghili and

Zheng Gao respectively, according to personal interest and individual competence.

44

7. Project Results

7.1. Achievements

This project helps users and developers who are trying to experience the potential and

opportunities within IoT by providing a platform to simplify the data management. As it was

discussed in section 3.1.2, simplified data management was one of our top level goals for this

project. The team has achieved this goal along with extended and innovative features to

provide a better experience for the users. As it was mentioned in section 2.2.4 the privacy of

the data generated in IoT is one the main concerns currently challenges IoT. Therefore, we

have introduced innovative features such as the custom repository as well as extended

features such as sharing and privacy status for every device. In addition, as it was described

in section 5.2, we have also considered people who are not experts in programming such as

high school students to explore the opportunities in IoT. Therefore, we have developed a

responsive web site not only to deal with user and device management, but also to provide

data visualisation and comparison based on different time ranges and sensors. Moreover,

notification management has been included in this system to help the developers to set

triggers on their data.

As it was discussed in section 5.2 we demonstrated how our API can be used in different use

case scenarios and real life applications. Through these scenarios we have proved that the

implemented API is generic and can be used by other platforms such as Android and

Engduino which effectively shows our second main goal has also been achieved.

The device discovery feature is one of the highlights of this project since it does not exist in

any other IoT platform before and has been designed and implemented by our team. This

feature makes use of the fact that IoT connects more and more devices to the Internet every

day; therefore, among all these devices, there are many sensors that log similar type of data

such as temperature and humidity. Therefore, in situations where a sensor is broken or has

lost connectivity to the Internet this feature can become handy by switching the data source

from the broken device to the nearest sensor which is logging the same type of data. We have

showed an example of the applicability of this feature in the last use case scenario in section

5.2. In addition, device discovery feature also enables the developers to explore all the

available and accessible devices on a map and make use of their data by subscribing to them.

It is worth mentioning that this feature has been implemented by considering the privacy of

each device and sensor.

Along with the API we have also developed a lightweight Gadgeteer library as our third main

level goal to ease the communication with the API. This includes sensor management and

data logging library methods. In order to make the platform even easier to use for Gadgeteer

developers, we have also provided the capability for the developers to download their device

configurations as an XML file and use it in the library to prevent any hard-coding in their

program.

45

7.2. Comparison with Existing Systems

Undoubtedly, Our Gadgeteer IoT API and libraries extend and improve aspects that existing

systems lack to do by providing robust message bus architecture, discovery features and so

on. Equally important is the fact that our API provides features that existing systems also

offer without losing its uniqueness. Thus, this section will examine these features that

distinguish our system from related and at the same time will point out functionalities that our

system tackle in a better way.

To begin with, the option of choosing your own custom repository for data storage is one of

the powerful features that differentiate our system from others. Compare it to Lab of Things

which only allows storing data in your Azure Cloud Storage; our API gives you flexibility

regarding your database choice which also might expose privacy issue if the data is stored in

the cloud. Moreover, by storing data in your own private database you are able to perform

any operation in that database at a later point and implement any business case using that

data.

Furthermore, Gadgeteer IoT API provides high extensibility and can be easily integrated with

other systems as shown in the example in Section 4. It allows the developers to subscribe to

the Gadgeteer IoT Azure service bus directly and plug in more applications to their projects.

The table below shows, some of the main features that our system provides in comparison

with Lab of Things. Due to the fact that our project has been sponsored by Microsoft

Research, this section is dedicated in the comparison between both systems.

 Gadgeteer IoT API Lab of Things

Who can use it Everyone It is only available to

Academia

Data Storage Either on our database which is

hosted on Azure or can be stored in

a custom repository

Data is stored only to your

Azure Cloud Storage account

Hardware Support Gadgeteer as the main platform but

it supports any hardware platform

They provide drivers for Z-

Wave and Gadgeteer

platforms but for other

platforms you should write

your own drivers

Big Data analysis It does not provide natively, but it

could be integrated with existing

big data analytics tools easily

Not built-in functionality but

you can integrate any third-

party big data analytics tool.

Device

Discovery/Switching

It provides discovery feature by

identifying devices’ failure and

automatically switch to the nearest

one

No built-in functionality

Notification Channels It provides a generic API for

setting/getting Notifications such as

triggers when the temperature

Yes, it provides such as

sends email after an event

occurred.

46

exceeds a threshold.

Device Monitoring Yes Yes

Create Apps You can directly use the device to

send data

You should write drivers for

HomeOS that use these

devices.

Table 7 Comparison of Gadgeteer Internet of Things API with Lab of Things

7.3. Critical Assessment

Having discussed the achievements in the previous section, we critically assess the results of

this project work in this section. Although data logging is made easy through APIs and

libraries provided, it still enables only one way communication from the device to the web

service. Although the requirement was just to address data logging problem, but in a wider

sense it lacks two way communications which is important to send commands to devices such

as power on/off, control thermostat etc. The main reason behind this drawback is the dynamic

IP addressing mechanism in IPv4. As discussed in section 2.2.1, IPv6 will solve this problem;

but currently in IPv4, the internal IP address and IP address couldn’t be resolved while

communicating to device using its IP address.

In addition, we have used HTTP protocol to create RESTful web service in order to support a

wide range of devices. In general, high level protocols such as HTTP is frequently used for

request/response type of communication, but they consume more power resources in

embedded devices. Protocols such as MQTT consume less power than HTTP and offer

publish/subscribe pattern using a central broker. Collina, Corazza and Vanelli-Coralli (2012)

introduced QEST which is a combination of REST and MQTT for solving this issue.

Although this system provides privacy for the generated data by storing it in custom remote

repositories of user’s choice or allowing users to set privacy status for their sensors, but it

lacks to provide security to this data. Data in transmission can be eavesdropped or altered and

this system will not be aware of these attacks. Some of the new protocols such as light weight

Constrained Application Protocol (CoAP) which use Datagram Transport Layer Security

(DTLS) can ensure security to this data by providing extra encryption even in low cost

embedded devices (Raza et al., 2013).

The Gadgeteer library provides some useful functionality like buffering data generated by the

device in case of network connectivity failure. However, this additional feature comes at an

expense of featuring a SD card in the device.

7.4. Further Work

Having in mind the time allocated to this project, undoubtedly there are improvements that

can be considered in extending and enhancing its functionalities.

As an immediate work, this project will be used by the next academic year students under

Dean Mohamendally’s supervision. In general, the idea is to create a hierarchy of hardware

47

devices and manage them through the Gadgeteer API along with the implementation of some

business use cases.

With regards to long term improvements we have considered ideas such as including

Machine Learning models in our APIs to enable data prediction and creating libraries for

other hardware platforms especially for Arduino which is popular and more mature. The

former could be used to keep the models learning about the gathered data through the API.

By harnessing the knowledge gained from the models the device discovery feature could be

enhanced by predicting the future data. The latter idea can speed up the development process

for other platforms as the Gadgeteer library does. By doing so, it adds extra value to the

project and establishes Gadgeteer IoT API as a universal platform that can be integrated with

any hardware device platform.

8. Conclusion

Gadgeteer Internet of Things API is the result of 3-month painstaking work by four bright

software engineers, proved to be useful in different areas such as education and safer

neighbourhoods. Microsoft Research can publish it in their website and integrate it with their

existing systems.

Within the time and budget constraint, the team has managed to meet all the requirements

proposed by the stakeholders, achieve great client satisfaction and deliver a completely-

working system which will be extended by the students from UCL in the following years.

Every team member has fully participated in the development with great passion and equally

contributed to the outcome of this project.

Given this opportunity, by strictly following the discipline of software engineering, team

members have been able to critically assess and actually apply what they have learnt through

the master programme, from development techniques to project management methodologies,

from requirements engineering and advanced design to implementation and testing.

Considering that the majority of the team had not implemented API-based systems in .NET,

we have enhanced the skills and gained rich experience from this project. More importantly,

we have the chances to attend workshops and access to cutting-edge technologies, such as

Internet of Things, Windows Azure and MongoDB, which has considerably broadened our

vision and kept us in pace with the current technology trends.

Acronyms

Term Definition

IoT Internet of Things

LoT Lab of Things

IFTTT If this then that

UI User Interface

NTP Network Time Protocol

HTTP Hypertext Transfer Protocol

SDK Software Development Kit

GPS Global Positioning System

ARM Architecture Reference Model

SOA Service-oriented architecture

URL Uniform Resource Locator

WS* Web Service Standards

WCF Windows Communication Foundation

HTML5 Hypertext Mark-up Language 5

SQL Structured Query Language

IIS Internet Information Services

LINQ Language-Integrated Query

IDE Integrated development environment

CFO Chief financial officer

DB Database

IP Internet Protocol

JSON JavaScript Object Notation

UTC Coordinated Universal Time

CRUD Create, read, update and delete

CSS Cascading Style Sheets

TFS Team Foundation Service

NETMF .NET Micro Framework

SD Card Secure Digital Card

IPV6 Internet Protocol version 6

IPV4 Internet Protocol version 4

NoSQL Not Only Structured Query Language

References

Abbate, J. E. (1994) From ARPANET to Internet: A history of ARPA-sponsored computer networks, 1966--1988,

Ann Arbour: University of Pennsylvania.

Aghili. P., Constantinides. M., Ramamuniappa. S.A. and Gao. Z. (2013) MSc SSE - Gadgeteer Internet of Things

API, Available at: https://gadgeteeriot.codeplex.com

Alex Wilhelm (16th July 2013) Microsoft releases Lab of Things, a new research platform to support real-world

data in the cloud, Available at: http://thenextweb.com/microsoft/2013/07/16/microsoft-releases-lab-of-things-a-

new-research-platform-to-support-experiment-data/?fromcat=all (Accessed: 19th August 2013)

Atzori, L., Iera, A., & Morabito, G. (2010). The internet of things: A survey. Computer Networks, 54(15), 2787-

2805.

Basili, V. R., Briand, L. C., & Melo, W. L. (1996). A validation of object-oriented design metrics as quality

indicators. Software Engineering, IEEE Transactions on, 22(10), 751-761.

Bauer, M., Bui, N., Carrez, F., Giacomin, P., Haller, S., Ho, E., Jardak, C., Loof, J. D., Magerkurth, C.,

Nettsträter, A., Serbanati, A., Thoma, M., Walewski, J.W. and Meissner, S. (2012) Introduction to the

Architectural Reference Model for the Internet of Things, Barcelona, Spain: Internet of Things - Architecture

(IoT-A).

Black, R. and Mitchell, J.L. (2011) Advanced Software Testing, 3 edn., : Rocky Nook.

Boehm, B. W. (Ed). (1989). Software Risk Management, DC: IEEE Computer Society Press.

Calabria, T. (2004) An introduction to personas and how to create them, Available

at:http://www.steptwo.com.au/papers/kmc_personas/index.html (Accessed: 21 June 2013).

Castro, P., Melnik, S., Adya, A. (2007) 'ADO.NET entity framework: raising the level of abstraction in data

programming', Proceeding SIGMOD '07 Proceedings of the 2007 ACM SIGMOD international conference on

Management of data, (), pp. 1070-1072.

Chen, Y. K (2012) 'Challenges and opportunities of internet of things', Design Automation Conference (ASP-

DAC), 2012 17th Asia and South Pacific, (10.1109/ASPDAC.2012.6164978), pp. 383 - 388.

Chodorow, K., Dirolf, M. (2010) MongoDB: The Definitive Guide, : Reilly Media,January.

Cisco (2013) Embracing the Internet of Everything To Capture Your Share of $14.4 Trillion, Available

at:http://www.cisco.com/web/about/ac79/docs/innov/IoE_Economy.pdf(Accessed: 19th August 2013).

Coetzee, L. and Eksteen, J. (2011) 'The Internet of Things - promise for the future? An introduction', , (978-1-

905824-26-7), pp. 5.

Collina, M., Corazza, G.E., Vanelli-Coralli, A. (2012) 'Introducing the QEST broker: Scaling the IoT by bridging

MQTT and REST', IEEE 23rd International Symposium on Personal Indoor and Mobile Radio Communications

(PIMRC), (), pp. 36 - 41.

Dingsøyr, T., Hanssen, G. K., Dybå, T., Anker, G. and Nygaard, J. O. Developing Software with Scrum in a Small

Cross-Organizational Project. In Proceedings of the 13th European Conference on Software Process Improvement

(Joensuu, Finland, Oct, 2006). Springer Verlag, 5-15.doi=10.1007/11908562_2

Esposito, D. (2011) 'Cutting Edge - Static Code Analysis and Code Contracts', MSDN Magazine, (), pp. [Online].

Available at: http://msdn.microsoft.com/en-us/magazine/hh335064.aspx (Accessed: 4th September 2013).

Evans, D. (2011) The Internet of Things. How the Next Evolution of the Internet Is Changing Everything, : Cisco

Internet Business Solutions Group.

Faily, S., Flechais, I. (2011) Persona Cases: A Technique for Grounding Personas, Canada: .

Fielding R.T. (2000) Architectural Styles and the Design of Network-based Software Architectures, Irvine:

University of California.

Garlan,D. and Shaw, M. (1994) An Introduction to Software Architecture, 1st edn., Pittsburgh: Carnegie Mellon

University.

Google (2013) Google Maps JavaScript API v3, Available

at:https://developers.google.com/maps/documentation/javascript/ (Accessed: 28 August 2013).

Gregg Keizer (9th May 2013) Estimates peg 59M Windows 8 devices in use, Available

at:http://www.computerworld.com/s/article/9239047/Estimates_peg_59M_Windows_8_devices_in_use(Accessed:

21st September 2013).

Gu, G., Li, Q., Wen, X., Gao, Y., Zhang, X (2012) 'An Overview of Newly Open-Source Cloud Storage

Platforms', International Conference on Granular Computing, (), pp. .

Gubbi, J., Buyya, R., Marusic, S. and Palaniswami, M. (2013) ' Internet of Things (IoT): A vision, architectural

elements, and future directions', Future Generation Computer Systems, 29(7), pp. 1645-1660.

Guinard, D. (2011) A Web of Things Application Architecture – Integrating the Real-World into the Web, Zurich,

Switzerland: ETH Zurich.

Haller, S., Karnouskos, S., & Schroth, C. (2009). The internet of things in an enterprise context. In Future

Internet–FIS 2008 (pp. 14-28). Springer Berlin Heidelberg.

Hartman, B. (2009) An Introduction to Planning Poker, Available at:http://agile.dzone.com/articles/introduction-

planning-poker (Accessed: 15 June 2013).

Highcharts (2013) , Available at: http://www.highcharts.com/ (Accessed: 28 August 2013).

Hodges, S., Taylor, S., Villar, N., Scott, J., & Helmes, J. (2013, February). Exploring physical prototyping

techniques for functional devices using. NET gadgeteer. In Proceedings of the 7th International Conference on

Tangible, Embedded and Embodied Interaction (pp. 271-274). ACM.

Hodges, S., Taylor, S., Villar, N., Scott, J., Bial, D., & Fischer, P. (2013). Prototyping Connected Devices for the

Internet of Things

HP Solutions (2012) Managing the Internet of things, United States: HP Solutions.

IFTTT Blog () IFTTT Blog, Available at: http://blog.ifttt.com/page/2 (Accessed: 19th August 2013).

Intel Corporation (2011) Rise of the Embedded Internet, Available at: http://newsroom.intel.com/docs/DOC-2297

(Accessed: 18th August 2013).

Jones, C. (1994). Assessment and Control of Software Risks. NJ: Yourdon Press.

Kafura, D., & Reddy, G. R. (1987). The use of software complexity metrics in software maintenance. Software

Engineering, IEEE Transactions on, (3), 335-343.

Khan, R., Khan, S.U., Zaheer, R. and Khan, S. (2012) 'Future Internet: The Internet of Things Architecture,

Possible Applications and Key Challenges', , (), pp. 4.

Khandelwal, S., Misra, C., Kim, H.S. and Demirtsoglou, G. (2013) MSR LoT Analytic Engine, UK: UCL.

Kuladinithi, K., Bergmann, O., Pötsch, T., Becker, M., & Görg, C. (2011). Implementation of coap and its

application in transport logistics. Proc. IP+ SN, Chicago, IL, USA.

Lawson, L. (2013) 'Big Data Gets Bigger as Internet of Things Awakens', , (), pp. [Online]. Available at:

http://www.itbusinessedge.com/blogs/integration/big-data-gets-bigger-as-internet-of-things-awakens.html

(Accessed: 23 August 2013).

Leffingwell, D. (2010) Agile Software Requirements: Lean Requirements Practices for Teams, Programs, and the

Enterprise, : Addison-Wesley Professional - Publisher.

Li, J., Moe, N. B., & Dybå, T. (2010, September). Transition from a plan-driven process to Scrum: a longitudinal

case study on software quality. InProceedings of the 2010 ACM-IEEE international symposium on empirical

software engineering and measurement (p. 13). ACM.

Liu, Y., Wang, Y., Jin, Y. (2012) 'Research on The Improvement of MongoDB AutoSharding in Cloud

Environment ', , (), pp. .

Mathew G. (2007) 'Implementing Service Oriented Architecture', SETLabs Briefings, 5(2), pp. [Online].

Available at: http://www.infosys.com/infosys-labs/publications/Documents/SETLabs-briefings-implementing-

SOA.pdf (Accessed: 2nd September 2013).

Maurits (2011) A simulation to show the importance of backlog prioritization, Available at:

http://maurits.wordpress.com/2011/06/08/a-simulation-to-show-the-importance-of-backlog-prioritization/

(Accessed: 16 June 2013).

McConnell, S. (1996). Rapid Development: Taming Wild Software Schedules. Microsoft.

Meier, J., Homer, A., Hill, D., Taylor, J., Bansode, P., Wall, L., Boucher Jr, R. and Bogawat, A. (2013)

'Architectural Patterns and Styles', in Meier, J., Homer, A., Hill, D., Taylor, J., Bansode, P., Wall, L., Boucher Jr,

R. and Bogawat, A. (ed.) Microsoft Application Architecture Guide. United States: Microsoft Corporation, pp. 19-

35.

Meier, J.D., Farre, C., Bansode, P., Barber, S. and Rea, D. (2007) 'Performance Test Reporting Fundamentals', in

Microsoft Patterns & Practices. United States: Microsoft Corporation, pp.

Microsoft Corporation (2011) Gadgeteer, Available at: http://www.netmf.com/gadgeteer/(Accessed: 3rd

September 2013).

Microsoft Developer Network (2005) Unit Testing Framework, Available at:http://msdn.microsoft.com/en-

us/library/ms243147(v=vs.80).aspx (Accessed: 4th September 2013).

Microsoft Developer Network (2012) Code Metrics Values, Available at: http://msdn.microsoft.com/en-

us/library/bb385914.aspx (Accessed: 27th August 2013).

Molyneaux, I. (2009) The Art of Application Performance Testing, 1st edn., : O'Reilly Media.

MongoDB Documentation Project (2013) 'Replication and MongoDB', , (), pp. [Online]. Available

at: http://docs.mongodb.org/master/MongoDB-replication-guide.pdf(Accessed: 26 August 2013).

Mulloy, B. (2012) API Facade Pattern. Apigee [Online]. Available

at:http://pages.apigee.com/rs/apigee/images/api-facade-pattern-ebook-2012-06.pdf(Accessed: 26th August 2013).

Project Management Institute. (2004). A Guide to the Project Management Body of Knowledge (PMBOK

Guide) [3rd Edition]. Author.

Raza, S., Shafagh, H., Hewage, K., Hummen, R., & Voigt, T. (2013). Lithe: Lightweight Secure CoAP for the

Internet of Things. Sensors Journal, IEEE, 3711 - 3720 .

Richard MacManus (2011) Pachube Acquired: Why Did It Sell So Early?,Available

at:http://readwrite.com/2011/07/20/pachube_acquired#awesm=~oeYdusIhZ9arYQ(Accessed: 19th August 2013).

Rising, L., & Janoff, N. S. (2000). The Scrum software development process for small teams. Software, IEEE,

17(4), 26-32.

Salvatori, P. (2013) Managing and Testing Topics, Queues and Relay Services with the Service Bus Explorer

Tool, Available at: http://msdn.microsoft.com/en-us/library/windowsazure/hh532261.aspx (Accessed: 5th

September 2013).

Schligloffm H., Roggenbach, M. (2007) 'Path Testing', , (), pp. [Online]. Available

at:http://www.cs.swan.ac.uk/~csmarkus/CS339/dissertations/GregoryL.pdf (Accessed: 26 August 2013).

Siricharoen, W.V. (2012) 'User Persona Roles in the End-user Web Developing Approach', , (), pp. .

Sommerville, I. (2011). Software engineering. Pearson Higher Ed.

Spiess, P., Karnouskos, S., Guinard, D., Savio, D., Baecker, O., Souza, L. and Trifa, V. (2009) 'SOA-Based

Integration of the Internet of Things in Enterprise Services', Web Services, 2009. ICWS 2009. IEEE International

Conference, (), pp. 968-975.

Stoneburner, G., Goguen, Alice., Feringa, A. (2002) 'Risk Management Guide for Information Technology

Systems', , (), pp. .

Sundmaeker, H., Guillemin, P., Friess, P., & Woelfflé, S. (2010). Vision and challenges for realising the Internet

of Things. Cluster of European Research Projects on the Internet of Things, European Commision.

Takeuchi, H., & Nonaka, I. (1986). The new new product development game.Harvard business review, 64(1),

137-146.

Trifa, V., Guinard, D., Karnouskos, S., Spiess, P. and Savio, D. (2010) 'Interacting with the SOA-Based Internet

of Things: Discovery, Query, Selection, and On-Demand Provisioning of Web Services', Services Computing,

3(3), pp. 223-235.

Vasters, C. (2012) 'Using Windows Azure Service Bus for ... Things!', The Microsoft Journal For

Developers, 27(6), pp. [Online]. Available at: http://msdn.microsoft.com/en-

us/magazine/jj133819.aspx (Accessed: 21st August 2013).

Villar, N., Scott, J., Hodges, S., Hammil, K., & Miller, C. (2012). . NET gadgeteer: a platform for custom devices.

In Pervasive Computing (pp. 216-233). Springer Berlin Heidelberg.

Weber, R.H (2010) 'Internet of Things – New security and privacy challenges', Computer Law & Security

Review, 26(1), pp. 23-30.

Windows Azure (2013) Service Bus Topics, Available at: http://msdn.microsoft.com/en-

us/library/windowsazure/hh532029.aspx (Accessed: 21th August 2013).

Xively (2013) Public Cloud for the Internet of Things, Available at: https://xively.com/(Accessed: 19th August

2013).

Yang, Y., Wang, Z., Liu, Q. and Wang, L. (2012) 'Building a Pervasive SOA Based IOT Communication

Middleware Using Runtime Compilation and Reflection', Services ComputingJournal of Computational

Information Systems, 8(2), pp. 643-654.

Zhao, M., Wohlin, C., Ohlsson, N., & Xie, M. (1998). A comparison between software design and code metrics

for the prediction of software fault content. Information and Software Technology, 40(14), 801-809.

Zhou, J., Hu, L., Wang, F., Lu, H., Zhao, K. (2013) 'An Efficient Multidimensional Fusion Algorithm for IoT Data

Based on Partitioning', , 18(1007-0214), pp. 369-378.

Bibliography

Castellani, A. P., Gheda, M., Bui, N., Rossi, M., & Zorzi, M. (2011, June). Web Services for the Internet of

Things through CoAP and EXI. In Communications Workshops (ICC), 2011 IEEE International Conference

on (pp. 1-6). IEEE.

Erich Gamma, Richard Helm, Ralph Johnson, John Vlissides (1994) Design Patterns: Elements of Reusable

Object-Oriented Software, : Addison-Wesley.

Lamsweerde, A van (Axel) (2009) Requirements Engineering : From Goals to UML Models to Software

Specifications, England: John Wiley & Sons Ltd.

Michahelles, F. (2010) The Internet of Things How it has started and what to expect , Switzerland:

Mike Cohen (2010) Succeeding with Agile: Software Development Using Scrum, : Addison-Welsey.

Neil A. Gershenfeld (1999) When Things Start to Think, : Henry Holt & Company.

Schwaber, K. (2004). Agile project management with Scrum. O'Reilly Media, Inc..

Shelby, Z., Hartke, K., & Bormann, C. (2013). Constrained application protocol (coap).

Sundmaeker, H., Guillemin, P., Friess, P., Woelfflé, S. (2010) Vision and Challenges for Realising the Internet of

Things, : European Commission Information Society and Media.

Watson, K., Nagel, C., Pedersen, J. H., Reid, J. D., & Skinner, M. (2010). Beginning Visual C# 2010. Wiley. com.

