
Regularized Multi-task Learning

by

T.E.M.P.

1



Setup and Notation

T learning tasks, m data points per task:

{(x1t, y1t),x2t, y2t) . . . , (xmt, ymt)}
sampled from Pt on X × Y . Pt’s are related.

Goal: Learn T functions f1, f2, . . . , fT such that ft(xit) ≈ yit.

(T = 1 is the standard (single–task) learning problem.)

First assume: ft(x) = wt · x
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Some Examples

- Same “y’s”, different “x’s”: integrating information from het-

erogeneous databases (Ben-David et al 2002)

- Same “x’s”, different“y’s”: “function heterogeneity”, multi-

class classification

- (x, y) belong to different Xt × Yt: learning–by–components,

general multi–task learning
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Hierarchical Bayesian Methods

Assume wt are samples from a Gaussian with mean w0 and co-

variance Σ.

Use some (Gibbs sampling) iterative approach to estimate simul-

taneously:

{w0, Σ, wt}
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A simple idea

Assume wt = w0 + vt, with vt “small”. Solve:

min
w0,vt,ξit

T∑
t=1

m∑
i=1

ξit +
λ1

T

T∑
t=1

‖vt‖2 + λ2‖w0‖2

yit(w0 + vt) · xit ≥ 1 − ξit

ξit ≥ 0

for ∀i ∈ {1,2, . . . , m} and t ∈ {1,2, . . . , T}
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Optimal Solution is an Average

The optimal solution of the multi–task optimization method sat-

isfies the equation

w∗
0 =

λ1

λ2 + λ1

1

T

T∑
t=1

w∗
t

That is, w∗
0 is the average of the individual task models w∗

t .
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Equivalent Optimization Problem

min
wt,ξit




T∑
t=1

m∑
i=1

ξit + ρ1

T∑
t=1

‖wt‖2 + ρ2

T∑
t=1

‖wt − 1

T

T∑
s=1

ws‖2



yitwt · xit ≥ 1 − ξit

ξit ≥ 0

for ∀i ∈ {1,2, . . . , m}, t ∈ {1,2, . . . , T}

For appropriate ρ1, ρ2.
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Also Equivalent

For µ = Tλ2
λ1

, define the feature map:

Φ((x, t)) = (
x√
µ

, 0, . . . , 0︸ ︷︷ ︸
t−1

,x, 0, . . . , 0︸ ︷︷ ︸
T−t

)

Then we are solving a single–task problem of estimating:

w = (
√

µw0,w1, . . . , wT).

By construction we have that w · Φ((x, t)) = (w0 + wt) · x and

‖w‖2 =
T∑

t=1

‖wt‖2 + µ‖w0‖2.
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Dual Formulation

Let C := T
2λ1

, µ = Tλ2
λ1

. Define the kernel:

Kst(x, z) :=

(
1

µ
+ δst

)
x · z, s, t = 1, . . . , T.

The dual problem is:

max
αit




m∑
i=1

T∑
t=1

αit −
1

2

m∑
i=1

T∑
s=1

m∑
j=1

T∑
t=1

αisyisαjtyjtKst(xis,xjt)




0 ≤ αit ≤ C for ∀i ∈ {1,2, . . . , m}, t ∈ {1,2, . . . , T}

→ A single–task SVM with a kernel parameterized by µ (the

“task-relatedness” parameter).
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Modeling consumer heterogeneity: Few tasks

There are 30 tasks (individuals). RMSE and hit errors reported.

Noise Similar HB µ = 0.1 SVM
H L 0.85 0.81∗ 0.84

26.14 25.86∗ 26.22
H H 0.90 0.86 0.97

31.03 30.58 31.60
L L 0.60 0.58∗ 0.65

14.34 14.12∗ 16.00
L H 0.48 0.46∗ 0.68

13.42 13.19∗ 17.11
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High simlarity tasks (individuals)

Left: Low nose; Right: High noise
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Low similarity tasks (individuals)

Left: Low nose; Right: High noise
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Modeling consumer heterogeneity: Many tasks

There are 100 tasks (individuals). RMSE and hit errors reported.

Noise Similar HB µ = 0.1 SVM
H L 0.81 0.79 0.82

24.65 24.24 24.98
H H 0.90 0.90 1.01

31.49 31.48 33.13
L L 0.59 0.58 0.66

13.97 14.02 15.57
L H 0.47 0.46 0.66

13.05 13.28 16.98
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High similarity tasks (individuals)

Left: Low nose; Right: High noise
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Low similarity tasks (individuals)

Left: Low nose; Right: High noise
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Multi-company Information Integration

School Data: first column is with C = 0.1 and second with C =

1. Bayesian stands for the task clustering method of (Bakker

and Heskes 2003)

µ = 0.5 34.30 ± 0.3 34.37 ± 0.4
µ = 1 34.28 ± 0.4 34.37 ± 0.3
µ = 2 34.26 ± 0.4 34.11 ± 0.4
µ = 10 34.32 ± 0.3 29.71 ± 0.4

µ = 1000 11.92 ± 0.5 4.83 ± 0.4
Bayesian 29.5 ± 0.4 29.5 ± 0.4
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A simple generalization

Assume

ft = g + gt

Then the kernel becomes:

Kst(x, z) :=
1

µ
K1(x, z) + δstK2(x, z), s, t = 1, . . . , T.
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Other directions

- Kernels can be defined so that tasks are clustered (Bakker and

Heskes 2003): use w01, w02, . . . w0K for K clusters.

- Consider many tasks that share similar features: learn com-

mon features among tasks by defining the kernel matrix (Baxter

2000).

- Assume

ft = g(0) + g
(1)
t + g

(2)
t + . . .

where the higher index i of g(i) is, the higher the “resolution”

we use to learn the tasks.
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Concluding remarks

• Multi-task approach can lead to significant improvements

(when tasks are related (?))

• Many possible directions for future theoretical research: rig-

orous definition of task relatedness, common features across

tasks, multi–resolution multi–task learning, task clustering,

single-task theory extensions, etc

• Many applications: integration of information sources, learning-

by-components, multi–modal learning, etc
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