Regularized Multi-task Learning

by

T.E.M.P.

Setup and Notation

T learning tasks, m data points per task:

$$\{(\mathbf{x}_{1t}, y_{1t}), \mathbf{x}_{2t}, y_{2t}) \dots, (\mathbf{x}_{mt}, y_{mt})\}$$

sampled from P_t on $X \times Y$. P_t 's are related.

Goal: Learn T functions f_1, f_2, \ldots, f_T such that $f_t(\mathbf{x}_{it}) \approx y_{it}$.

(T = 1 is the standard (single-task) learning problem.)

First assume: $f_t(\mathbf{x}) = \mathbf{w}_t \cdot \mathbf{x}$

Some Examples

- Same "y's", different "x's": integrating information from heterogeneous databases (Ben-David et al 2002)
- Same " \mathbf{x} 's", different "y's": "function heterogeneity", multiclass classification
- (\mathbf{x},y) belong to different $X_t \times Y_t$: learning-by-components, general multi-task learning

Hierarchical Bayesian Methods

Assume \mathbf{w}_t are samples from a Gaussian with mean \mathbf{w}_0 and covariance Σ .

Use some (Gibbs sampling) iterative approach to estimate *simultaneously*:

$$\{\mathbf{w}_0, \quad \mathbf{\Sigma}, \quad \mathbf{w}_t\}$$

A simple idea

Assume $\mathbf{w}_t = \mathbf{w}_0 + \mathbf{v}_t$, with \mathbf{v}_t "small". Solve:

$$\min_{\mathbf{w}_0, \mathbf{v}_t, \xi_{it}} \sum_{t=1}^{T} \sum_{i=1}^{m} \xi_{it} + \frac{\lambda_1}{T} \sum_{t=1}^{T} \|\mathbf{v}_t\|^2 + \lambda_2 \|\mathbf{w}_0\|^2$$

$$y_{it}(\mathbf{w}_0 + \mathbf{v}_t) \cdot \mathbf{x}_{it} \ge 1 - \xi_{it}$$

$$\xi_{it} \geq 0$$

for $\forall i \in \{1, 2, \dots, m\}$ and $t \in \{1, 2, \dots, T\}$

Optimal Solution is an Average

The optimal solution of the multi–task optimization method satisfies the equation

$$\mathbf{w}_0^* = \frac{\lambda_1}{\lambda_2 + \lambda_1} \frac{1}{T} \sum_{t=1}^T \mathbf{w}_t^*$$

That is, \mathbf{w}_0^* is the average of the individual task models \mathbf{w}_t^* .

Equivalent Optimization Problem

$$\min_{\mathbf{w}_{t},\xi_{it}} \left\{ \sum_{t=1}^{T} \sum_{i=1}^{m} \xi_{it} + \rho_{1} \sum_{t=1}^{T} \|\mathbf{w}_{t}\|^{2} + \rho_{2} \sum_{t=1}^{T} \|\mathbf{w}_{t} - \frac{1}{T} \sum_{s=1}^{T} \mathbf{w}_{s}\|^{2} \right\}$$

$$y_{it}\mathbf{w}_t \cdot \mathbf{x}_{it} \ge 1 - \xi_{it}$$

$$\xi_{it} \geq 0$$

for
$$\forall i \in \{1, 2, \dots, m\}, t \in \{1, 2, \dots, T\}$$

For appropriate ρ_1 , ρ_2 .

Also Equivalent

For $\mu = \frac{T\lambda_2}{\lambda_1}$, define the feature map:

$$\Phi((\mathbf{x},t)) = (\frac{\mathbf{x}}{\sqrt{\mu}}, \underbrace{0, \dots, 0}_{t-1}, \mathbf{x}, \underbrace{0, \dots, 0}_{T-t})$$

Then we are solving a single—task problem of estimating:

$$\mathbf{w} = (\sqrt{\mu}\mathbf{w}_0, \mathbf{w}_1, \dots, \mathbf{w}_T).$$

By construction we have that $\mathbf{w} \cdot \Phi((\mathbf{x}, t)) = (\mathbf{w}_0 + \mathbf{w}_t) \cdot \mathbf{x}$ and

$$\|\mathbf{w}\|^2 = \sum_{t=1}^T \|\mathbf{w}_t\|^2 + \mu \|\mathbf{w}_0\|^2.$$

Dual Formulation

Let $C:=\frac{T}{2\lambda_1}$, $\mu=\frac{T\lambda_2}{\lambda_1}$. Define the kernel:

$$K_{st}(\mathbf{x}, \mathbf{z}) := \left(\frac{1}{\mu} + \delta_{st}\right) \mathbf{x} \cdot \mathbf{z}, \quad s, t = 1, \dots, T.$$

The dual problem is:

$$\max_{\alpha_{it}} \left\{ \sum_{i=1}^{m} \sum_{t=1}^{T} \alpha_{it} - \frac{1}{2} \sum_{i=1}^{m} \sum_{s=1}^{T} \sum_{j=1}^{m} \sum_{t=1}^{T} \alpha_{is} y_{is} \alpha_{jt} y_{jt} K_{st}(\mathbf{x}_{is}, \mathbf{x}_{jt}) \right\}$$

$$0 \le \alpha_{it} \le C \text{ for } \forall i \in \{1, 2, \dots, m\}, t \in \{1, 2, \dots, T\}$$

 \rightarrow A single—task SVM with a kernel parameterized by μ (the "task-relatedness" parameter).

Modeling consumer heterogeneity: Few tasks

There are 30 tasks (individuals). RMSE and hit errors reported.

Noise	Similar	НВ	$\mu = 0.1$	SVM
Н	L	0.85	0.81*	0.84
		26.14	25.86*	26.22
Н	Н	0.90	0.86	0.97
		31.03	30.58	31.60
L	L	0.60	0.58*	0.65
		14.34	14.12*	16.00
L	Н	0.48	0.46*	0.68
		13.42	13.19*	17.11

High simlarity tasks (individuals)

Low similarity tasks (individuals)

Modeling consumer heterogeneity: Many tasks

There are 100 tasks (individuals). RMSE and hit errors reported.

Noise	Similar	HB	$\mu = 0.1$	SVM
Н	L	0.81	0.79	0.82
		24.65	24.24	24.98
Н	Н	0.90	0.90	1.01
		31.49	31.48	33.13
L	L	0.59	0.58	0.66
		13.97	14.02	15.57
L	Н	0.47	0.46	0.66
		13.05	13.28	16.98

High similarity tasks (individuals)

Low similarity tasks (individuals)

Left: Low nose; Right: High noise

Multi-company Information Integration

School Data: first column is with C=0.1 and second with C=1. Bayesian stands for the task clustering method of (Bakker and Heskes 2003)

$\mu = 0.5$	34.30 ± 0.3	34.37 ± 0.4
$\mu = 1$	34.28 ± 0.4	34.37 ± 0.3
$\mu = 2$	34.26 ± 0.4	34.11 ± 0.4
$\mu = 10$	34.32 ± 0.3	29.71 ± 0.4
$\mu = 1000$	11.92 ± 0.5	4.83 ± 0.4
Bayesian	29.5 ± 0.4	29.5 ± 0.4

A simple generalization

Assume

$$f_t = g + g_t$$

Then the kernel becomes:

$$K_{st}(\mathbf{x}, \mathbf{z}) := \frac{1}{\mu} K_1(\mathbf{x}, \mathbf{z}) + \delta_{st} K_2(\mathbf{x}, \mathbf{z}), \quad s, t = 1, \dots, T.$$

Other directions

- Kernels can be defined so that tasks are clustered (Bakker and Heskes 2003): use $\mathbf{w}_{01},\ \mathbf{w}_{02},\ \dots\ \mathbf{w}_{0K}$ for K clusters.
- Consider many tasks that share similar features: learn common features among tasks by defining the kernel matrix (Baxter 2000).
- Assume

$$f_t = g^{(0)} + g_t^{(1)} + g_t^{(2)} + \dots$$

where the higher index i of $g^{(i)}$ is, the higher the "resolution" we use to learn the tasks.

Concluding remarks

- Multi-task approach can lead to significant improvements (when tasks are related (?))
- Many possible directions for future theoretical research: rigorous definition of task relatedness, common features across tasks, multi-resolution multi-task learning, task clustering, single-task theory extensions, etc
- Many applications: integration of information sources, learningby-components, multi-modal learning, etc