A Recoverable Robust Approach for the Next
Release Problem

Matheus Henrique Esteves Paixao and Jerffeson Teixeira de Souza

Optimization in Software Engineering Group, State University of Cear4,
1700 Avenida Paranjana, 60.714-903, Fortaleza, Brazil
{matheus.paixao,jerffeson.souza}@Quece.br

Abstract. Selecting a set of requirements to be included in the next
software release, which has become to be known as the Next Release
Problem, is an important issue in the iterative and incremental software
development model. Since software development is performed under a
dynamic environment, some requirements aspects, like importance and
effort cost values, are highly subject to uncertainties, which should be
taken into account when solving this problem through a search technique.
Current robust approaches for dealing with these uncertainties are very
conservative, since they perform the selection of the requirements consid-
ering all possible uncertainties realizations. Thereby, this paper presents
an evolution of this robust model, exploiting the recoverable robust opti-
mization framework, which is capable of producing recoverable solutions
for the Next Release Problem. Several experiments were performed over
synthetic and real-world instances, with all results showing that the re-
covery strategy handles well the conservatism and adds more quality to
the robust solutions.

Keywords: Recoverable robustness, next release problem, search based
software engineering.

1 Introduction

In an iterative and incremental software development model, the selection of a
set of requirements to be added to the next software release is known as the
Next Release Problem (NRP). In such problem, each requirement is represented
by an importance, which refers to the value aggregated to the client when the
requirement is included in the next release, and a cost value, related to the effort
required to implement the requirement. In that context, the next release problem
consists in selecting a subset of requirements in such a way that the sum of their
importance is maximized, with the cost needed to implement those requirements
respecting the release’s available budget [1].

Therefore, in order to employ a search technique to solve the NRP, it is
necessary to obtain the importance and cost values of each requirement. The
importance values could be indicated by the client and the costs determined by

2 A Recoverable Robust Approach for the Next Release Problem

the development team. In both cases, these values are acquired through esti-
mations, which can be hard to make due to the dynamic environment in which
software development takes place.

In fact, changes in the requirements characteristics can be fairly dangerous
for the whole system development. As can be perceived in the sensitivity analysis
by Harman et. al [2], small changes in the requirements features may have a high
impact on the requirements selection. Thereby, it is paramount to consider the
uncertainties related to the requirement’s importance and cost when solving the
NRP through optimization techniques [3].

The robust optimization is an operational research framework that identifies
and quantifies uncertainties in generic optimization problems [4]. It started to
gain more visibility after the first works in [5] and [6]. The robust optimization
framework consists of two steps. The first step seeks to identify and quantify all
uncertainties related to the problem. Using these information about the uncer-
tainties, the second step consists of building a model which seeks robust solutions,
that is, solutions which are feasible for every realization of the uncertainties.

The robust optimization framework has been previously applied to the NRP
[7]. In that paper, it was considered that the requirements importance could
assume different values due to the occurrence of certain events. The require-
ment’s importance was then calculated by taking into account all these possible
values and the respective occurrence probabilities. In order to examine the cost
uncertainties, it was defined a robustness control parameter, which indicated the
expected level of failure in the team cost estimations. This parameter actually
stipulates how many requirements will have their real cost higher than the orig-
inal estimate. Since there is no way to know in advance which requirements
will have different real cost values, this approach guaranteed that, even if the
team missed the cost of the most expensive requirements, the produced solution
would still be feasible. Experiments showed that the penalization with regard to
solution quality due to robustness is relatively small. This approach, however,
can still be considered conservative, because it assumes that, invariably, some
requirements are wrongfully estimated, and their real costs will be as high as
possible. Since the requirements selection is made considering the worst possible
cost uncertainty values, any different requirements’ cost realization will cause a
waste of resources.

In the work by Liebchen et. al [8], seeking to handle the conservatism of
the “classical” robust optimization, named strict robustness, it was introduced
a new concept of robustness, the recoverable robustness. A recoverable robust
solution is the one which, for a limited set of uncertainties realizations, can be
made feasible or recovered, by a limited effort [9]. Accordingly, the recoverable
robustness framework can improve the model in [7], producing a more “realist”
requirements selection for the next release problem.

In this context, this papers aims at answering the following research ques-
tions:

— RQp: How to model the Next Release Problem considering the recoverable
robustness framework?

A Recoverable Robust Approach for the Next Release Problem 3

— RQ>: How much is gained in solution quality with the new recoverable robust
model when compared with the strict robust model?

Consequently, the original and main contribution of this paper relates to the
tackling of the uncertainties in the Next Release Problem using the recoverable
robustness framework.

The remaining of this paper is organized as follows: in Section 2 the recover-
able robustness framework is explained in more details, while in Section 3, the
recoverable robust NRP model is evolved. Section 4 exhibits and examines the
experiments designed to evaluate the proposed formulation. Finally, Section 5
concludes the paper and points out some future research directions.

2 The Recoverable Robustness Framework

The recoverable robustness framework is composed of three main steps, as dis-
cussed in [9] and presented next:

1. Identify the uncertainties related to the problem (step 2)
2. Develop a model which produces recoverable solutions (step M)
3. Define a set of possible recovery algorithms (step A)

These three steps are intrinsically connected. The model M is developed by
considering the uncertainties identified in £2. The recovery algorithms A recover
solutions generated by M. Therefore, the triple (£, M, A) does not only states
that recovery is possible, but explicitly demonstrates how this recovery can be
performed.

For steps 2 and M, different modeling techniques can be employed from
the strict robustness literature, however, step A is a little trickier and can be
formalized as follows:

Definition 1. Let F, be the set of feasible solutions under uncertainties real-
ization w. A recovery algorithm A is the one which for every solution z under
realization w, it generates a feasible solution, i.e., A(z,w) € Fu,

Therefore, the output of a recoverable robust problem is genuinely a pair
(x, A), called precaution, which is composed of the solution z and a recovery
algorithm A. In the case where some uncertainty realization makes the solution
= unfeasible, it can be recovered by applying the algorithm A.

A generic recoverable robust problem can then be stated as follows:

optimize: f(z)
subject to: Vw C 2: A(z,w) € Fu

In a practical context, one way to limit the effort needed to recover a solution
is to consider the number of changes to that solution during the recovery pro-
cess. Employing this bound in the recovery phase, the concept of k-recoverable
robustness was proposed by Biising et. al [10][11]. This new approach is an at-
tempt to control the recovery phase. The recovery control parameter k acts as a

4 A Recoverable Robust Approach for the Next Release Problem

limit to the recovery algorithm, i.e., A(x,w,k) must recover the solution making
at most k changes to the original solution. A k-recoverable robust problem can
be stated as:

optimize: f(z)
subject to: Vw C 2: A(z,w, k) € Fo

In the next section, this framework will be employed to the Next Release
Problem.

3 Evolving a Recoverable Robust Next Release Problem
Formulation

Given a set of requirements R = {r{,rs,...,ry}, the requirement r; importance
and cost values are represented by v; and ¢;, respectively. A classic formulation
of the Next Release Problem is presented next:

N

maximize: Y v;z; (1)
i=1
N

subject to: ez <b (2)
i=1

where b is the release budget. The solution X can be represented as a vector
{z1,9,...,xx} Where z; = 1 indicates that the requirement r; is included in the
next release, x; = 0 otherwise.

As discussed earlier, the occurrence of certain events can change some re-
quirements’ characteristics, including the importance value. Thereby, this type
of uncertainty seems adequate to be treated in a discrete and probabilistic way,
using the concept of scenarios, as in [7].

A scenario can be defined as a set of importance values due to the occur-
rence of certain event. Thus, it is defined a set of scenarios S = {s1,s2,...,5a:1},
where each scenario is represented by s C S|s = {v§,v5,...,v%}, with +f indicat-
ing the importance of requirement r; under scenario s. The range a requirement
importance value can vary is discrete and depends on the set of scenarios. In
the assignment of these importance values, the probability of each event taking
place can be considered. Thus, for each scenario s it is defined an occurrence
probability ps, with Zé‘il ps = 1. The requirement importance value v; is then
defined as:

M
v; = Z vips (3)
s=1

The uncertainty related to the requirement’s cost is different. Usually, the
cost variation is different from one requirement to another and this difference
may not be discrete. Thus, it is unlikely that one would be able to raise a set of

A Recoverable Robust Approach for the Next Release Problem 5

scenarios based on possible events. Thereby, the requirement’s cost uncertainty
will be quantified in a continuous and deterministic way. Let ¢; be the estimated
requirement cost. It is defined a value ¢;, which indicates the maximum expected
cost variation. These values are used to generate lower and upper bounds to the
real requirement cost ¢;, so that ¢; — ¢; <¢; <¢; + ¢;.

An alternative robust formulation to the release total cost is presented next:

N

N
Z ciz; + Z Gz (4)
i=1

i=1

In the above case, besides the requirements’ costs, it is also considered the
cost variation of all requirements selected to the next release. This approach
guarantees that, even in the worst possible case, i.e., when all requirements will
cost their upper bounds (¢; +¢;), the budget constraint will be satisfied. Clearly,
this model is very conservative since it assumes that the development team will
miss all cost estimates by the maximum amount.

In order to minimize this conservatism, the release cost considered in the
NRP robust formulation proposed in [7] can be seen below:

N

Zciwi + mangRJWlSF Z élwl (5)
i=1 ieW

In this model, a control parameter I' is defined, indicating the maximum
number of requirements that may have real costs different from the original
estimates. For instance, in a situation where the development team estimates
are historically 20% incorrect, in a project with 50 requirements, the control
parameter would be I' = 10. In order to calculate the release total cost, the
variation of all requirements will no longer be considered, but only the variation
of the I requirements in which the cost variation sum is maximum, represented
by the subset W C R. This model guarantees that, even if the team misses the
costs of the requirements with highest variations, the generated solution would
still be feasible.

Both robust approaches assume that some requirements cost estimates are
wrong, and the real cost of these requirements will be the highest possible. From
these assumptions, these models find solutions to all possible uncertainties real-
izations, which characterize them as strict robust approaches. As stated earlier,
these kind of robust solutions are still conservative and may waste a considerably
amount of resources.

This paper evolves the formulation in [7] by proposing a k-recoverable robust
model to the NRP. This improved model would be able to find non-conservative
solutions when the requirements costs are correctly estimated, i.e, solutions as
close as possible to the classic NRP model. At the same time, if some cost
uncertainty realization makes the solution unfeasible due to budget constraints,
the solution would be recovered by removing at most & requirements. In order to
model the release total cost so that the produced solution has the aforementioned
characteristics, the following functions are defined:

6 A Recoverable Robust Approach for the Next Release Problem

N
basicCost(X) = Z CiT; (6)
i=1
uncertaintyLoss(X,I") = MATW CR,|W|<T Z &z (7
ieW
recoveryGain(X, k) = miny CR|y|=k Z T, (8)

ieY

The function basicCost() returns the classic NRP release total cost, i.e, the cost
sum of all requirements selected to the next release. The function uncertaintyLoss(I")
represents the robustness level [7] and calculates the sum of the I' maximum re-
quirements cost variations. Finally, recoveryGain(k) is controlled by the recovery
parameter k and can be considered as the recovery level. It represents the sum of
the k¥ minimum requirements cost estimates. For a certain solution, this recovery
level indicates the minimum cost that can be removed from the release in case
of recovery.

Thus, in the recoverable robust NRP model proposed in this paper, the re-
lease total cost is computed as:

maz(basicCost(X), basicCost(X) + uncertaintyLoss(X, I') — recoveryGain(X,k)) (9)

The robustness parameter I' indicates how many requirements could have
been wrongfully estimated while the recovery parameter k£ denotes the num-
ber of requirements that can be removed during the recovery operation. De-
pending on the robustness and recovery paramaters configuration, the value of
recoveryGain(k) may be bigger than the wuncertaintyLoss(I") value, which would
cause a robust release cost smaller than the classic release cost. Such solution
would be necessary to recover even if all requirements costs were correctly es-
timated, which does not make sense in a practical next release planning envi-
ronment. In order to avoid this situation, the above release cost formulation
guarantees that a solution will not have its total cost lower than the classic NRP
model.

Interestingly, this recoverable robust formulation for the release cost can be
seen as a generalization of the strict robust and classic models. When considering
the recovery parameter ¥ = 0, meaning that recovery is not allowed, we get the
same robust formulation present in [7]. Using k = 0 and I = N, there is no recovery
and all cost variations will be considered, characterizing the conservative case
shown in Equation (4). Finally, considering k = I = 0, the model falls back into
the classic NRP model in Equation (2).

Accordingly to the importance and cost uncertainties quantification (step w)
presented above, it is presented next the proposed formal model that seeks k-
recoverable solutions to the Next Release Problem (step M), partially answering
the research question RQ.

The proposed formulation generates a feasible solution to the NRP, guaran-
teeing that, even if some cost uncertainty realization makes this solution unfeasi-
ble due to budget constraints, by removing at most & requirements, the solution

A Recoverable Robust Approach for the Next Release Problem 7

will be recovered to be once again feasible. To perform this recovery, the pro-
posed algorithm (Algorithm 1) can recover a solution by losing the minimum
importance amount.

N M

maximize: Z Z Vi ps;

i=1s=1
subject to: max(basicCost(),
basicCost() + uncertaintyLoss(I") — recoveryGain(k)) < b

N
where, basicCost() = Z ;T

i=1

uncertaintyLoss(I") = MATY CR,|W|<T Z [
iEW
recoveryGain(k) = miny CR |y |=k Z T,
i€Y

z; € {0,1}
R is the set of requirements
N is the number of requirements
M is the number of scenarios
ps is the scenario s occurrence probability
v{ is the value of requirement r; in scenario s
¢; is the cost of requirement r;
¢; is the cost variation of r;
I" is the robustness control parameter
k is the recovery control parameter

b is the release budget

Algorithm 1 Minimum Value Loss Recovery Algorithm
while release is unfeasible do
remove the less valuable requirement
if new release cost < b then
return recovered solution
end if
end while

This recovery algorithm is straightforward and consists in removing less valu-
able requirements until the solution becomes feasible once again. As the model
guarantees that any k& requirements can be removed, the model can recover the
release by losing the minimum importance value as possible.

8 A Recoverable Robust Approach for the Next Release Problem

This proposed recovery algorithm represents the last step (step A) in the
application of the recoverable robustness framework to the NRP, fully answering
the research question RQ.

4 Experimental Evaluation

In order to ensure robustness to a solution, some loss regarding quality is in-
evitable. This measure of loss has become to be known in the literature as the
“price of robustness” [12]. As mentioned earlier, strict robust models are conser-
vative approaches that usually waste a significant amount of resources. Under
specific conditions, these models may present a relatively high “price of robust-
ness”. The research question RQs is related to how much is gained in solution
quality when we employ the proposed recoverable robustness model instead of
the strict model presented in [7].

In order to permit the full replication of all experiments, all synthetic and
real-world instances are available at the paper supporting webpage - http://
www.larces.uece.br/~jeff/recoverablenrp -, which also contains all results
that have to be omitted from this paper due to space constraints.

4.1 Settings

Experiments were performed over 7 synthetic and 14 real-world instances. In the
synthetic instance set, each instance has 3 scenarios in which the requirements
importance values v$ can assume integer values between 1 and 10. The effort cost
also varies from 1 to 10. The instances were generated with different numbers of
requirements, from 50 to 200. In this paper, the synthetic instance name is in the
format I_.S_R, where R is the number of requirements. The instance 1.S_120, for
example, is a synthetic one and has 120 requirements. The real-world instances
were adapted from the work by Xuan et. al [13]. These instances were extracted
from bug repositories of two big open source projects, Eclipse (a java integrated
development environment) [14] and Mozilla (a set of web applications) [15]. Each
bug is considered a requirement. Its importance is calculated by the number of
users that commented on that bug report. The bug severity is mapped to the
requirement’s cost. Both importance and cost values were normalized to the
1 to 10 interval. Seven instances were extracted from each bug repository. The
instances are formed by the most important requirements and contain from 50 to
200 requirements. The real-world instance name is in the format I_Re_P_R, where
P represents the project (E for Eclipse and M for Mozilla) and R indicates the
number of requirements. The instance I_Re_-M_200, for example, was extracted
from the Mozilla bug repository and has 200 requirements.

For all instances, synthetic and real, the cost variation ¢; of each requirement
was configured as a random number between 0 and 50% of the respective re-
quirement cost ¢;. To make the selection problem more complex, we ensure that
it is not possible to select all requirements to the next release by setting the
release available budget to 70% of the sum of all requirements’ costs.

Different configurations of the robustness parameter I and the recovery
parameter k& were evaluated. For each instance, the parameter I was set to

A Recoverable Robust Approach for the Next Release Problem 9

I = {0,0.2N,0.4N,...,N}, where N is the number of requirements, while the re-
covery parameter k was set to k= {0,0.1N,0.2N,...,N}.

In [7], both Genetic Algorithm and Simulated Annealing were employed to
solve the NRP strict robust model. Since the Genetic Algorithm [16] achieved
better results overall, in this paper we apply only this metaheuristic. In our
GA, the population is composed by N (number of requirements) individuals.
The initial population is randomly generated. All individuals that have a re-
lease cost bigger than the available budget are discarded and new individuals
are randomly generated. This process is repeated until the initial population
is composed only by feasible individuals. Crossover probability is set to 0.9,
using one point crossover. Mutation is performed for each requirement with a
1/(10N) probability. It consists of a single requirement inclusion/exclusion. Both
crossover and mutation operators might generate invalid individuals. Therefore,
a repairing method was designed, randomly removing requirements from the in-
dividual until the solution becomes feasible. The implementation employs the
elitism strategy, with 20% of the best individuals in the population being au-
tomatically included in the next generation. The algorithm returns the best
individual after 10000 generations. These parameters were all set based on the
results of experiments specifically designed to this purpose.

All results, including fitness value averages and standard deviations, were
obtained from 10 executions of the algorithm for each instance.

As mentioned early, ensuring robustness to a solution causes some loss regard-
ing quality. In order to measure this “price of robustness”, a ‘reduction metric’
is introduced, which indicates the percentage of loss in fitness value in a certain
configuration of the parameters k£ and I, when compared with the classic NRP
model (k = I =0). Thus, assuming o/ as the fitness value average for k = i.N and
I' = j.N, the ‘reduction metric’ 6;. is calculated as follows:

Q
e

8% =100 x (1— =) (10)

Q
co

4.2 Results and Analysis

Table 1 presents the fitness values computed by the Genetic Algorithm for some
of the synthetic instances. The I = 0 rows represent the classic NRP while the
k =0 column presents the results for the strict robust model in [7].

Considering the results for the strict robust model in [7], as the robustness
parameter I" increases, there is a loss in solution quality. By allowing recovery, the
proposed recoverable model improves the solutions. As the recovery parameter
k increases, there is a gain in solution quality when compared with the strict
model fitness values. For a recovery level of 20%, for example, the generated
solutions are in average 2.9% better in terms of quality. Also, in average, a 10%
recovery level represents a 1.5% improvement in fitness value, when comparing
the proposed recoverable model with the strict model in [7].

As the recovery level grows, the fitness values converge to the classic NRP
model. The recovery stability point is around 40% for most instances. Thereby,

10 A Recoverable Robust Approach for the Next Release Problem

Table 1. Fitness values results for some of the synthetic instances, regarding different
values for both robustness and recovery parameters

k

Instance Ir

0 0.2N 0.3N 0.5N 0.7TN N

0 |256.83 + 0.30[256.83 &+ 0.30(256.83 =+ 0.30(256.83 + 0.30({256.83 &+ 0.30|256.83 =+ 0.30
0.2N [243.69 =+ 0.00{251.78 4+ 0.43[256.93 + 0.00{256.81 4 0.36|256.93 %+ 0.00(256.93 =+ 0.00
0.4N |237.31 £ 0.55|246.08 & 0.00[253.61 + 0.41|256.83 =+ 0.30|256.93 + 0.00(256.93 + 0.00
0.6N |233.93 £ 0.41|242.33 & 0.49|250.34 + 0.53|256.69 £ 0.48256.93 + 0.00|256.93 £ 0.00
0.8N |233.03 £ 0.25(241.13 4 0.30(249.05 + 0.00{256.93 =+ 0.00|256.93 + 0.00|256.93 + 0.00

N |233.08 * 0.26(241.25 &+ 0.07|249.05 = 0.00|256.93 % 0.00[{256.93 + 0.00|256.93 =+ 0.00

I_S_50

0 [581.21 & 0.38[581.21 &£ 0.38[581.21 £ 0.38[581.21 & 0.38[581.21 £ 0.38[581.21 £ 0.38
0.2N [544.49 =+ 0.70|563.05 + 0.75[578.32 + 0.49|581.37 4 0.31|581.34 + 0.46|581.53 £ 0.25
0.4N |531.82 £ 0.62|549.96 + 0.28]564.25 + 0.66|581.37 £ 0.34|581.24 + 0.58(581.45 + 0.19
0.6N |526.27 £ 0.70|544.28 + 0.53|559.02 + 0.41|581.45 4 0.44|581.08 + 0.76|581.51 + 0.32
0.8N |525.98 =+ 0.49|543.27 4 0.56(557.17 + 0.61|581.54 £ 0.29|581.32 =+ 0.48|581.15 + 0.60

N |525.58 + 0.58(543.51 &+ 0.43|557.70 £ 0.31|581.43 & 0.53[581.55 + 0.43|581.46 =+ 0.40

I1.S_120

0 [946.62 1.24[946.62 £ 1.24]/946.62 £ 1.24[946.62 + 1.24[946.62 £ 1.24[946.62 £ 1.24
0.2N [886.95 £ 0.69(923.70 + 1.12(947.08 + 1.05|947.37 4 0.76|946.96 + 1.04|947.92 &+ 0.58
0.4N |861.32 £ 1.51(|898.55 4 1.13]928.37 + 1.15|947.55 £ 1.12|946.56 + 0.96]/946.95 + 0.80
0.6N |851.83 £ 0.97|887.56 + 1.44|917.67 £ 0.68|947.54 4 0.86]947.36 + 1.33|947.61 + 1.05
0.8N |850.16 £ 1.17|885.93 4 0.90[915.04 + 0.93|947.72 £ 1.38|947.08 + 1.17|947.84 + 0.77

N |850.64 * 1.01[{885.93 &£ 1.20|914.99 =+ 1.70|946.94 + 0.79[946.99 + 1.18|946.77 £ 1.27

I1.S_200

a lower robustness parameter (a small quantity of wrongfully estimated require-
ments) reaches the classic NRP model with a lower recovery parameter.

It is also noteworthy the considerably low standard deviation presented by
the Genetic Algorithm. For most experimental results shown in the table, the
standard deviation is less than 1, reaching no more than 1.7.

Figure 1 presents the fitness results for some of the instances that were not
shown in Table 1. The solutions clearly converge to the classic NRP as k increases,
as stated above. Since k = 0 represents the fitness value for the strict model in [7],
for all robustness parameters values, every recovery level increase adds quality
to the solution.

Fig. 1. Fitness value results for synthetic instances I_.S_70 and 1_.S_170

Instance I_S_70 Instance |_S_170

345 T T

Fitness Value
Fitness Value

I
0.
0.
0.

2)
ar
6
r=

coom
z22%2c

I r
I r
I r

omuw

2
i
o

z22%c

omxt

L L L L L L L L f 760 L L L L L L L L =N
0 0AN 02N 03N 04N 05N 06N 07N 08N 09N N 0 0IN 02N 03N 04N 05N 6N 07N 08N 0N N

Recoverv Parameter (k) Recoverv Parar%eter (k)

305

Table 2 presents the reduction factors for some of the synthetic instances. As
it has been mentioned, this value indicates the percentage of fitness value loss
of some robust solution when compared to the classic NRP (I' =k = 0).

A Recoverable Robust Approach for the Next Release Problem

11

Table 2. Reduction factor results for some of the synthetic instances, regarding dif-
ferent values for both robustness and recovery parameters

%
Instance| I’ 0 02N 03N 05N 07N N
02N 5.12 1.97 0.04 0.01 0.04 0.04

2 04N 7.60 4.19 1.25 0.00 0.04 0.04

@ |06N 8.92 5.65 2.52 0.06 0.04 0.04

- |o0.sN 9.26 6.11 3.03 0.04 0.04 0.04
N 9.25 6.07 3.03 0.04 0.04 0.04

o (02N .32 312 0.50 0.03 0.02 0.06

8 |o04N 8.50 5.38 2.92 0.03 0.01 0.04
aJoen 9.45 6.35 3.82 0.04 0.02 0.05

A loswn 9.50 6.53 4.14 0.06 0.02 0.01
N 9.57 6.49 4.04 0.04 0.06 0.04

o 02N 6.30 242 0.05 0.08 0.04 0.14

S |oan 9.01 5.08 1.93 0.10 0.01 0.03

o |oen 10.01 6.24 3.06 0.10 0.08 0.10

A losn 10.19 6.41 3.34 0.12 0.05 0.13
N 10.14 6.41 3.34 0.03 0.04 0.02

The conservatism of the strict model in [7] produces a reduction factor higher
than 9% for most of the robustness levels. By allowing recovery, the proposed
model becomes less conservative and there is an improvement in the reduction

factor measure. In average, the reduction factor is 40% lower for each 10% re-

covery level increase. As the recovery stability point is reached, the reduction
factor is almost none, i.e, the solution is virtually equal to the one generated by
the classic NRP model. These results are consistent to state the improvement in

solution quality for all recovery levels, even the small ones.
Figure 2 presents the reduction factors for some of the synthetic instances.

The results are very similar to those presented in Table 2, as the reduction factor

has a 40% decrease for each 10% recovery level increase, in average.

Fig. 2. Reduction factor results for

synthetic instances 1.S_100 and 1_.S_150

Reduction Factor

Instance |_S_100

Reduction Factor

Instance |_S_150

Tooom
[Eyey]
z2220

emx ot

0 01N

Table 3 presents the fitness values for some real-world instances. Due to space

0.2N

03N 04N 05N

0.6N

07N 08N

Recoverv Parameter (k)

0.9N

0.1N

02N

Recoverv Parameter (k)

03N 04N 05N 06N 07N

constraints, only one instance from each bug repository is presented.

As can be seen, the proposed recoverable model performs nearly the same for

08N 09N

N

both synthetic and real-world instances, which helps to validate the first results.

12

A Recoverable Robust Approach for the Next Release Problem

Table 3. Fitness values results for real-world instances I_Re_E_100 and I_Re_M_150

Instance

r

k

0

0.2N

0.3N

0.5N

0.7N

N

I_Re_E_100

0
0.2N
0.4N
0.6N
0.8N

N

296.73 &£ 0.60
270.55 £ 1.01
259.73 £ 1.52
254.45 £ 1.31
254.55 £ 1.35
254.55 £ 1.22

296.73 £ 0.60
286.64 £ 0.71
274.45 £ o.76
268.82 £ 1.08
267.00 £ 1.41
268.36 £ 0.79

296.73 + 0.60
297.00 + o0.42
294.09 + o.61
288.36 + 0.36
286.82 + 0.45
286.82 + 0.45

296.73 &£ 0.60
296.73 £ 0.45
296.91 + o0.60
296.82 + 0.73
296.64 + 0.58
296.73 £ 0.45

296.73 &£ 0.60
296.82 + 0.61
296.36 £ 0.70
296.82 + 0.45
296.82 £ o0.61
296.45 £ 0.76

296.73 £ 0.60
296.82 £ 0.45
296.82 £ 0.73
296.73 £ 0.83
296.55 £ 0.89
296.55 + 0.68

I_Re_M_150

0
0.2N
0.4N
0.6N
0.8N

N

423.64 £ 0.59
394.93 &£ 0.50
379.64 £ 0.73
375.57 £ 0.43
375.43 £ 0.80
374.93 £ 0.67

423.64 £ 0.59
419.00 &£ o.97
402.79 £ 0.87
397.29 £ o.70
396.50 &£ 0.59
396.57 £ 0.83

423.64 £ 0.59
423.93 £ 0.48
423.71 £ o.62
423.43 £ 0.53
422.57 £ 0.65
422.71 £ o.77

423.64 £ 0.59
423.93 £ 0.36
423.93 £ 0.36
424.07 £ 0.46
424.00 £ o0.65
424.00 £ 0.57

423.64 £ 0.59
423.93 £ 0.58
423.79 £ o.56
423.86 £ 0.35
423.79 £ 0.33
424.00 £ 0.65

423.64 £ 0.59
424.00 £ 0.35
423.71 £ 0.62
424.14 &+ 0.43
424.14 £ 0.29
423.86 £ 0.47

When recovery is not allowed, the fitness value tends to get worse as the robust-
ness level increases. As recovery is enabled, this conservatism is handled and the
solutions converge to the classic NRP. Once again, even for small recovery levels,
there is already a gain in solution quality when compared with the strict model
in [7]. The standard deviation remains considerably small, reaching at most 1.41.

Figure 3 presents fitness value results for some real-world instances, where
one instance of each bug repository is presented. The behavior of these real
instance results are very similar to the synthetic ones, as could have been seen
in Table 3. There is a gain in solution quality for all recovery levels under all
robustness parameters values.

Fig. 3. Fitness value results for real-world instances I_Re_E_50 and I_Re_M_200

164

Instance |_Re_E_50
T [.

Instance |_Re_M_200
e g

P — :

510

Fitness Value

Fitness Value

omwk

450

L
0 0.1N

L
02N

L
03N 04N

05N

L L
06N 07N 08N

Recoverv Parameter (k)

L L
01N 02N

L L
03N 04N 05N 06N 07N 08N 0N N

Recoverv Parameter (k)

Table 4 presents the reduction factor results for some real-world instances.
The conservatism of the model in [7], regarding the real instances, produced a
reduction factor even higher than the synthetic instances, reaching more than
14% in some cases. The proposed recoverable robust model behavior was nearly
identical of the synthetic instances, despite the high reduction factor when k = 0,
a recovery level of 20% decreased the reduction almost to the half.

In conclusion, all results are consistent to show that the proposed recoverable
robust model have improved previous robust models to the NRP, in order to
handle the conservatism by allowing a release recovery. Results are very similar

A Recoverable Robust Approach for the Next Release Problem 13

Table 4. Reduction factor results for real-world instances I_Re_E_100 and I_Re_M_150

%

Instance| I’ 0 02N 03N 05N 07N N
S [02N 8.82 3.40 0.09 0.00 0.03 0.03
= 04N 12.47 7.51 0.89 0.06 0.12 0.03
2 |0.6N 14.25 9.41 2.82 0.03 0.03 0.00
g |08N 14.22 10.02 3.34 0.03 0.03 0.06
- N 14.22 9.56 3.34 0.00 0.09 0.06
T T0.2N 6.78 1.10 0.07 0.07 0.07 0.08
= 04N 10.39 4.92 0.02 0.07 0.03 0.02
= |0.6N 11.35 6.22 0.05 0.10 0.05 0.12
g |osN 11.38 6.41 0.25 0.08 0.03 0.12
. N 11.50 6.39 0.22 0.08 0.08 0.05

for both synthetic and real-world instances, pointing out the model’s reliability
and applicability.

Finally, all presented results have helped in answering the research question
RQ>, stating the improvement in solution quality when using the new recoverable
robust model for the Next Release Problem.

4.3 Recovery Analysis

In this section, it will be analysed the fitness value behavior when some require-
ments are wrongfully estimated and, consequently, recovery becomes necessary
to fulfill the budget constraint.

The fitness value before recovery is the same as presented in the early sections.
The fitness value after recovery is computed assuming that the costs of the I
requirements with highest variations were the ones wrongfully estimated, forcing
the recovery algorithm to remove a considerably number of requirements in order
to make the release feasible once again.

Since the proposed model performs nearly identical for both synthetic and
real-world instances, as shown in previous sections, only a synthetic instance will
be considered in the analysis.

Table 5 presents the fitness value results before and after recovery for the
instance 1.S_120, with the results after recovery being highlighted.

Table 5. Before and after recovery fitness values comparison for the instance 1.S_120

Instance| I k

0 0.2N 0.3N 0.5N 0.7TN N
0 581.21 + 0.38{581.21 £ 0.38|581.21 + 0.38[581.21 + 0.38{581.21 £ 0.38(581.21 + 0.38
581.21 + 0.38(581.21 &+ 0.38|581.21 + 0.38581.21 + 0.38|581.21 =+ 0.38|581.21 + 0.38
0.2N 544.49 + 0.70[563.05 £ 0.75[578.32 & 0.49[581.37 £ 0.31|581.34 £ 0.46|581.53 £ 0.25
: 544.49 + 0.70{533.24 £ 3.58(521.99 + 3.95(515.28 + 7.82|517.84 £ 4.76(510.28 + 7.45
g 04N 531.82 &+ 0.62(549.96 £ 0.28(564.25 + 0.66(581.37 £ 0.34581.24 £ 0.58|581.45 + 0.19
= : 531.82 + 0.62]522.84 £ 2.98(510.81 + 5.07|486.17 £ 5.10/484.22 + 6.75|482.69 + 6.01
0 0.6N 526.27 £ 0.70[544.28 £ 0.53[559.02 £ 0.41[581.45 £ 0.44[581.08 £ 0.76[581.51 & 0.32
= : 526.27 £ 0.70|518.04 £ 2.67|509.58 + 4.55(480.49 + 7.82|478.16 £ 5.39|478.11 + 6.70
0.8N 525.98 £ 0.49]543.27 £ 0.56[557.17 £ 0.61|581.54 £ 0.29[581.32 £ 0.48[581.15 &£ 0.60
: 525.98 &+ 0.49|518.07 £ 1.39(509.17 + 3.28(482.48 + 7.41|{478.70 £ 3.40(485.00 * 5.51
N 525.58 £ 0.58[543.51 £ 0.43[557.70 + 0.31[581.43 £ 0.53[581.55 & 0.43|581.46 £ 0.40
525.58 + 0.58/518.89 =+ 2.43[509.38 + 4.35(478.75 £ 4.28|481.24 + 5.74|480.83 + 8.82

Since the fitness values before recovery are the same as in this previous sec-
tions, as the recovery parameter k increases, the fitness values converge to the

14 A Recoverable Robust Approach for the Next Release Problem

classic NRP. However, the fitness values after recovery behaves the opposite,
since as the recovery levels grow, the solutions lose in quality if the recovery is
performed, as can be seen in the table. That behavior highlights an interesting
characteristic of the recoverable robust framework, that is, the recovery possi-
bility can be considered a bet, that is, if the requirements’ costs are correctly
estimated, the solutions will behave very similarly to the ones from the classic
NRP and significantly better than the results produced by the original robust
framework. On the other hand, if the requirements’ costs are wrongfully esti-
mated, the solution after recovery will be worse than the conservative robust
model. The decision maker must be aware of this trade-off to choose the robust-
ness and recovery parameters which fit better in a particular release planning
situation.

It is also worthwhile to highlight the considerable increase in the standard
deviation for the fitness values after recovery. While for the before recovery values
the highest standard deviation is 0.76, when considering the after recovery values,
the highest standard deviation was 8.82.

Due to space constraints, it is not possible to show more after recovery results
and analyis in this paper, but all results and instances are available at the paper
supporting webpage, as mentioned previously.

5 Conclusion and Future Works

The Next Release Problem is an important activity in the iterative and incremen-
tal software development model. Since the requirements’ characteristics, such as
importance and cost, may change during the release development, robust ap-
proaches have been proposed to address this uncertainty in the NRP. However,
the current robust methods to the NRP are very conservative because they select
a subset of requirements in order to fulfill all possible uncertainties realizations.

This paper proposed an improvement to the state-of-art robust models to
the NRP by considering the recoverable robust optimization framework. This
modeling technique can handle the conservatism of the classic robust methods
by adding a recovery possibility to the solution. If some cost uncertainty real-
ization make the solution unfeasible due to budget constraints, the release can
be recovered removing a controlled quantity of requirements.

The improved recoverable robust method was applied to both synthetic and
real-world instances, varying the number of requirements in each instance. The
real-world instances were extracted from bug repositories of two big open source
projects, Eclipse and Mozilla. Experiments were performed in order to measure
how much is the gain in solution quality when using the improved recoverable
model instead of the conservative robust models.

For all instances and for all robustness level configurations, a small recovery
level allows the production of solutions with more quality than the conservative
strict robust models. Furthermore, as the recovery possibility increases, there is
more gain in solution quality. However, if recovery is necessary, depending on
the uncertainty realization, the solution quality after recovery can be worse than
the conservative model. Therefore, the recovery possibility is a risky decision to

A Recoverable Robust Approach for the Next Release Problem 15

make and it is fundamental to perform a deep analysis in order to choose the
best robustness and recovery levels for each situation.

As a future research direction, the recoverable robust optimization framework
can be used to tackle other problems that have to cope with uncertainty in the
SBSE field. Specifically related to the next release problem, the interdependen-
cies between requirements could be considered. Furthermore, other experiments
could be performed, varying the release available budget and using other strate-
gies to cope with the cost uncertainty. Finally, other metaheuristics approaches,
such ant colony optimization or particle swarm optimization could be tried.

References

1. Bagnall, A., Rayward-Smith, V., Whittley, I.: The next release problem. Informa-
tion and Software Technology 43 (2001) 883-890

2. Harman, M., Krinke, J., Ren, J., Yoo, S.: Search based data sensitivity analysis
applied to requirement engineering. In: Proceedings of the 11th Annual conference
on Genetic and evolutionary computation, ACM (2009) 1681-1688

3. Zhang, Y., Finkelstein, A., Harman, M.: Search based requirements optimisation:
Existing work and challenges. Requirements Engineering: Foundation for Software
Quality (2008) 88-94

4. Beyer, H., Sendhoff, B.: Robust optimization—a comprehensive survey. Computer
methods in applied mechanics and engineering 196 (2007) 3190-3218

5. Bai, D., Carpenter, T., Mulvey, J.: Making a case for robust optimization models.
Management science 43 (1997) 895-907

6. Mulvey, J., Vanderbei, R., Zenios, S.: Robust optimization of large-scale systems.
Operations research 43 (1995) 264-281

7. Paixao, M., Souza, J.: A scenario-based robust model for the next release problem.
To appear in ACM Genetic and Evolutionary Computation COnference (GECCO
2013) (2013)

8. Liebchen, C., Liibbecke, M., Mohring, R.H., Stiller, S.: Recoverable robustness.
(2007)

9. Liebchen, C., Liibbecke, M., M&hring, R., Stiller, S.: The concept of recoverable
robustness, linear programming recovery, and railway applications. Robust and
online large-scale optimization (2009) 1-27

10. Biising, C., Koster, A.M., Kutschka, M.: Recoverable robust knapsacks: the discrete
scenario case. Optimization Letters 5 (2011) 379-392

11. Biising, C., Koster, A., Kutschka, M.: Recoverable robust knapsacks: «-scenarios.
Network Optimization (2011) 583-588

12. Bertsimas, D., Sim, M.: The price of robustness. Operations research 52 (2004)
35-53

13. Xuan, J., Jiang, H., Ren, Z., Luo, Z.: Solving the large scale next release problem
with a backbone-based multilevel algorithm. Software Engineering, IEEE Trans-
actions on 38 (2012) 1195 -1212

14. Eclipse. http://www.eclipse.org/ (January, 2013)

15. Mozilla. http://www.mozilla.org/ (January, 2013)

16. Holland John, H.: Adaptation in natural and artificial systems: an introductory
analysis with applications to biology, control, and artificial intelligence. USA:
University of Michigan (1975)

