
Multi-objective Module Clustering for Kate

Matheus Paixao, Mark Harman and Yuanyuan Zhang

University College London, CREST Centre, UK

Abstract. This paper applies multi-objective search based software re-
modularization to the program Kate, showing how this can improve co-
hesion and coupling, and investigating differences between weighted and
unweighted approaches and between equal-size and maximising clusters
approaches. We also investigate the effects of considering omnipresent
modules. Overall, we provide evidence that search based modularization
can benefit Kate developers.

Keywords: Software Module Clustering, Multi-objective Optimization,
Search Based Software Engineering

1 Introduction

This paper reports on experiments with multi-objective search based software
re-modularization through module clustering applied to the system Kate [1], a
C/C++ editor for KDE platforms. Both unweighted and weighted data were
considered, as well as omnipresent modules. We follow the approach initially in-
troduced by Mitchell and Mancoridis [2], in which a Module Dependency Graph
(MDG) is remodularized to improve cohesion and coupling, as more recently
amended and extended by Praditwong et al [3] to the multi-objective optimiza-
tion paradigm. In the unweighted MDG, an edge between two modules denotes
a dependency between these modules. For a weighted MDG, an edge denotes
the strength of the dependency, which is represented by the edge weight [4]. By
using the MDG, the optimization algorithm can then search for a partition of
this graph that optimizes the considered quality metrics.

Cluster_1 Cluster_2

Cluster_3

M1

M5

M4

M2

M3

Fig. 1: Modularization Example

Search based modularization seeks partitions
that cluster modules to favour high cohesion
and low coupling. Consider the simple exam-
ple (shown in Figure 1), in which edges denote
inter-module dependencies. A simple solution
would be X =< 1, 3, 3, 2, 1 >. This vector of
module assignments denotes a modularization
solution of the five modules into three clusters.
Modules m1 and m5 are in cluster c1, m2 and
m3 in c3, and finally m4 in c2. The MDG that
represents these five modules is depicted with
this modularization solution in Figure 1, on
the left.

2 Matheus Paixao, Mark Harman and Yuanyuan Zhang

The set of fitness functions considered by the two approaches are presented next:
– Maximizing Clusters (MCA)

cohesion (max)
coupling (min)
number of clusters (max)
MQ (max)
number of isolated clusters (min)

– Equal-size Clusters (ECA)
cohesion (max)
coupling (min)
number of clusters (max)
MQ (max)
cluster size difference (min)

The metrics of cohesion and coupling are related to the dependencies between
modules. Cohesion is the sum of the weights of all edges that start and finish
in the same cluster. On the other hand, coupling is the sum of the weights of
all edges that start in a cluster and finish in another cluster. MQ means Modu-
larization Quality [2], which is the metric used in the previous single objective
works. An isolated cluster is the one that has only one module inside it. To illus-
trate each fitness function of both MCA and ECA, consider the modularization
example given in Figure 1. The set of metrics would be assigned as cohesion:
2, coupling: 2, number of clusters: 3, MQ: 0.66, isolated clusters: 1, cluster size
difference: 1.

2 Modularizing Kate using SBSE

Kate’s source code is organized in two folders, src and session, where each folder
accommodates some classes. First, the call graph of each function and the inheri-
tance graph between classes were extracted using Doxygen [5]. Kate’s unweighted
and weighted MDGs were created from these graphs, where each class is con-
sidered a module, and a function call or inheritance represents a dependency
between modules. The weight of an edge in the weighted MDG is the number
of functions calls between the classes. For the unweighted MDG, all edges have
the same weight of 1. The clusters are the folders the classes are in. The original
Kate’s unweighted MDG can be seen in Figure 2. Function calls are represented
by black arrows and inheritance relationships by red arrows. As can be seen,
Kate has only two clusters, corresponding to src and session.

We used the Two-Archive Genetic Algorithm [6], configured based on previ-
ous work [3] with crossover probability 0.8 and mutation probability 0.004 log2(M),
where M is the number of modules. The population size used was 10M , and the
algorithm was executed for 10000 generations.

We used both MCA and ECA optimization approaches, each of which was
executed 30 times. Each execution generates a pareto front. In order to com-
pare the two approaches, the solution with highest cohesion was selected as a
representative of each execution. This set of representative solutions was then
used to compute the average and standard deviations of each quality metric. We
also performed non-parametric statistical testing and effect size assessment us-
ing a paired Wilcoxon and Vargha-Delaney tests, respectively, as recommended
in guidance on assessing algorithms differences for SBSE [7, 8]. These tests were
carried out using the systematic metaheuristic comparison tool Astraiea [9].

Space is limited to six pages. Although this paper is self-contained, the in-
terested reader can find more examples of modularization results, analysis and

Multi-objective Module Clustering for Kate 3

src

session

AbstractKateSaveModifiedDialogCheckListItem

GUIClient

MainWindow

KateApp

KateAppAdaptor

KateMainWindow KatePluginManager

KateViewManager

KateSessionManager

KateConfigDialog

KateDocManager

KateConfigPluginPage

KateSaveModifiedDialog

KateMwModOnHdDialog

KatePluginInfo

KateQuickOpen

KateViewSpace

KateRunningInstanceInfo

KateSaveModifiedDocumentCheckListItem

KateTabBar KateTabButton

Main
SideBar

ToolView

TmpToolViewSorterToggleToolViewAction

KateSession

KateSessionChooser

KateSessionManageDialog

KateSessionOpenDialog

KateSessionsAction

Fig. 2: Kate’s original unweighted modularization, where black arrows represent
function calls and red arrows represent inheritance.

discussion in the complementary Technical Report [10]. We also make available
Kate’s modularization data at www0.cs.ucl.ac.uk/staff/m.paixao/kateMod/,
to support replication and further studies. Finally, the multi-objective software
module clustering tool we developed for this work will be made available in the
near future. We pose and answer three research questions, which occupy the
remainder of this paper.

RQ1: How much Kate’s modularization can be improved for the un-
weighted and weighted MDGs? Table 1 presents the results for both MCA
and ECA approaches for the unweighted and weighted MDGs in comparison
to Kate’s original modularization. In case of statistical difference between MCA
and ECA, the value is highlighted and the effect size is presented. As one can see,
both multi-objective approaches were able to find solutions with better quality
metrics than the original modularization for the two different datasets. Regard-
ing cohesion, coupling and MQ, MCA could improve such metrics in 16.3%, 83%

and 7.88% for unweighted data, and 3.93%, 46.8% and 70.41% for weighted data,
respectively. Considering ECA, these values are similar, 16.4%, 83.7% and 1.65%

for unweighted, and 3.49%, 41.57% and 60.35% for weighted.

For the other quality metrics, MCA and ECA also presented similar results
for both datasets, which suggests that these two different approaches did not find
very different results for this case study. In fact, almost no statistical difference
was detected between MCA and ECA, as can be visually seen in the plots of the
solutions found in Figure 3.

RQ2: What difference do omnipresent modules make?

For almost all systems, there is usually a subset of modules that have more
dependencies than the average. These modules have been called omnipresent [11]
because they belong to the whole system, rather than to a single cluster.

4 Matheus Paixao, Mark Harman and Yuanyuan Zhang

Table 1: Quality metrics results for the unweighted and weighted MDGs in com-
parison to Kate’s original modularization

Fitness Kate’s Original MCA ECA Effect Size

U
n
w

e
ig

h
te

d Cohesion 51 59.30 ± 1.10 59.37 ± 1.08 -
Coupling 10 1.70 ± 1.10 1.63 ± 1.08 -

Number of Clusters 2 2.57 ± 0.92 2.37 ± 0.87 -
MQ 1.308 1.42 ± 0.28 1.33 ± 0.36 -

Isolated Clusters 0 0.53 ± 0.76 - -
Difference Modules 11 - 14.03 ± 7.79 -

W
e
ig

h
te

d

Cohesion 250 259.83 ± 4.62 258.73 ± 5.23 -
Coupling 21 11.17 ± 4.62 12.27 ± 5.23 -

Number of Clusters 2 5.90 ± 1.04 6.97 ± 1.54 0.22
MQ 1.69 2.88 ± 0.46 2.71 ± 0.55 -

Isolated Clusters 0 2.27 ± 1.26 - -
Difference Modules 19 - 21.23 ± 2.03 -

 10

 20

 30

 40

 50

 60

 70

 80

 1 1.5 2 2.5 3 3.5 4 4.5 5 5.5 6

C
o
h
e
s
io

n

Modularization Quality

MCA
ECA

(a) Unweighted MDG

 50

 100

 150

 200

 250

 300

 0 1 2 3 4 5 6 7 8

C
o
h
e
s
io

n

Modularization Quality

MCA
ECA

(b) Weighted MDG

Fig. 3: MCA and ECA solutions location for the unweighted and weighted data

Based on previous works [11], omnipresent modules were handled using thresh-
olds. By choosing an omnipresent threshold ot = 3, for example, modules that
have 3 times more dependencies than the average are considered omnipresent.
Two different thresholds were used in this work, ot = 3 and ot = 2. After identi-
fied, the omnipresent modules are isolated from the MDG, and not considered
during the optimization process. Because the results for both unweighted and
weighted datasets when considering omnipresent modules are similar, only the
unweighted results will be discussed. Table 2 presents such results.

For both ot = 3 and ot = 2, the improvements for cohesion and coupling were
small. However, since the MQ metric had improvements of 151.5% and 182.8%,
and the number of clusters was much bigger, a better overall modularization was
achieved. Both approaches had almost the same performance for both thresholds,
for almost no statistical difference was detected.

As an answer to RQ2, there is nearly no difference in the behavior of the
multi-objective approach when omnipresent modules are considered. It tends to
improve all metrics, with both MCA and ECA presenting similar results. How-

Multi-objective Module Clustering for Kate 5

Table 2: Quality metrics results for the unweighted dataset and different thresh-
olds for omnipresent modules

Fitness Kate’s Original MCA ECA Effect Size

o
t

=
3

Cohesion 34 35.60 ± 1.36 35.47 ± 1.54 -
Coupling 5 3.40 ± 1.36 3.53 ± 1.54 -

Number of Clusters 2 5.07 ± 1.44 4.77 ± 1.69 -
MQ 1.32 3.32 ± 1.02 3.11 ± 1.18 -

Isolated Clusters 0 0.27 ± 0.44 - -
Difference Modules 16 - 12.63 ± 4.03 -

o
t

=
2

Cohesion 29 27.20 ± 0.95 27.67 ± 0.91 -
Coupling 0 1.80 ± 0.95 1.33 ± 0.91 -

Number of Clusters 2 5.70 ± 1.04 4.17 ± 1.75 0.73
MQ 1.40 3.96 ± 0.69 2.93 ± 1.17 0.76

Isolated Clusters 0 0.00 ± 0.00 - -
Difference Modules 17 - 6.03 ± 2.99 -

ever, the magnitude of the improvement is smaller. This might happen because
the isolation of omnipresent modules reduces the search space, making the orig-
inal solution closer to the optimal.
RQ3: Can the multi-objective module clustering provide useful advice?

Figure 4 presents an example of solution found for the unweighted dataset
and omnipresent threshold ot = 2. Despite not being shown in this paper, the
solutions for the other scenarios achieved similar modularization. We can see that
this solution does capture intuitive clustering of functionality (even though it is
computed structurally with no knowledge of purpose of intent). For instance,
‘Tool’, ‘Plugins’ and ‘Tab’ all appear to be related, and they were clustered
together by the SBSE approach. Also the ‘session’ cluster, which appeared to
make some sense in the original clustering, has been retained by the algorithm.

Cluster_4

Cluster_0

Cluster_7

Cluster_10

Cluster_6

Cluster_11Cluster_1

Cluster_2Cluster_8

Omnipresent Modules

AbstractKateSaveModifiedDialogCheckListItemKateSaveModifiedDocumentCheckListItem

GUIClient MainWindow SideBar

ToolView

KateConfigDialog

KateDocManager

KatePluginManager

KateSaveModifiedDialog

KateMwModOnHdDialog

KateQuickOpen

KateViewManager

KatePluginInfo

KateRunningInstanceInfoMain

KateTabBar KateTabButtonKateViewSpace

TmpToolViewSorter

ToggleToolViewAction

KateSession

KateSessionChooser

KateSessionOpenDialog

KateSessionsAction

KateApp KateMainWindow KateSessionManager

Fig. 4: Example of solution generated for the unweighted dataset and ot = 2

6 Matheus Paixao, Mark Harman and Yuanyuan Zhang

3 Conclusion and Future Works

This paper demonstrated that, by applying a multi-objective module clustering
approach, it was possible to improve Kate’s original modularization for several
quality metrics. The optimization technique had basically the same performance
for both unweighted and weighted datasets, as well as considering omnipresent
modules. The generated solutions were also able to provide useful advice about
Kate’s modularization. As future research directions, it is expected to apply the
multi-objective module clustering approach to other systems.

References

1. Kate. http://kate-editor.org/ (2015) Accessed in April, 2015.
2. Mancoridis, S., Mitchell, B.S., Rorres, C., Chen, Y.F., Gansner, E.R.: Using au-

tomatic clustering to produce high-level system organizations of source code. In:
IWPC. Volume 98., Citeseer (1998) 45–52

3. Praditwong, K., Harman, M., Yao, X.: Software module clustering as a multi-
objective search problem. Software Engineering, IEEE Transactions on 37(2)
(2011) 264–282

4. Mahdavi, K., Harman, M., Hierons, R.M.: A multiple hill climbing approach to
software module clustering. In: Software Maintenance, 2003. ICSM 2003. Proceed-
ings. International Conference on, IEEE (2003) 315–324

5. Doxygen. http://www.stack.nl/~dimitri/doxygen/index.html (2015) Accessed
in April, 2015.

6. Praditwong, K., Yao, X.: A new multi-objective evolutionary optimisation algo-
rithm: the two-archive algorithm. In: Computational Intelligence and Security,
2006 International Conference on. Volume 1., IEEE (2006) 286–291

7. Arcuri, A., Briand, L.: A hitchhiker’s guide to statistical tests for assessing ran-
domized algorithms in software engineering. Software Testing, Verification and
Reliability 24(3) (2014) 219–250

8. Harman, M., McMinn, P., Souza, J.T., Yoo, S.: Search based software engineering:
Techniques, taxonomy, tutorial. In: Empirical Software Engineering and Verifica-
tion. Springer (2012) 1–59

9. Neumann, G., Swan, J., Harman, M., Clark, J.A.: The executable experimental
template pattern for the systematic comparison of metaheuristics. In: Proceed-
ings of the 2014 conference companion on Genetic and evolutionary computation
companion, ACM (2014) 1427–1430

10. Paixao, M., Harman, M., Zhang, Y.: Improving the module clustering of a c/c++
editor using a multi-objective genetic algorithm. RN 15(02) (2015) 01

11. Mancoridis, S., Mitchell, B.S., Chen, Y., Gansner, E.R.: Bunch: A clustering tool
for the recovery and maintenance of software system structures. In: Software Main-
tenance, 1999.(ICSM’99) Proceedings. IEEE International Conference on, IEEE
(1999) 50–59

