
Spatio-Temporal Communication Primitives for Delay Tolerant Systems

Mirco Musolesi and Cecilia Mascolo
Department of Computer Science, University College London

Gower Street, London, WC1E 6BT, United Kingdom
{m.musolesi|c.mascolo}@cs.ucl.ac.uk

Abstract

Computing and communication devices pervasively sur-
round our daily life and the presence of embedded systems,
including tiny sensors, is increasing exponentially. How-
ever, the software and communication mechanisms used to
network these devices are still the ones that we have been
devised 30 years ago for standard computer systems. Differ-
ent communication and coordination patterns are emerging
for these environments, ranging from those related to delay
tolerant systems [3], where communication happens asyn-
chronously between devices, to location based communica-
tion, where hosts receive information only when they are in
a specific location. In these environments, several concepts,
not captured by the semantics of the programming inter-
faces of traditional systems, such as location or temporal
validity of the disseminated and replicated information, are
fundamental.

In this paper we propose a novel set of communication
primitives for this kind of systems that would allow devel-
opers to better exploit the potential of these environments.
These primitives combine spatial and temporal concerns to
cope with the dynamics and mobility of pervasive systems.
We also discuss a middleware framework that implements
the proposed programming interface.

1 Introduction

The number of mobile phones in Europe is higher than
the number of personal computers. Computing and commu-
nication devices pervasively surround our daily life and the
presence of embedded systems, including tiny sensors, is
increasing exponentially. Thanks to the progress in digital
technologies, mobile computers have processing power and
memory comparable to advanced and extremely expensive
workstations of twenty years ago.

New possible scenarios are enabled by the availability
of such technologies and their internetworking. One of the
more promising is that of delay tolerant networks [3]. De-

lay Tolerant Networks are characterised by long delay paths
and frequent (in some cases also unpredictable) disconnec-
tions and network partitioning. Possible examples may be
intermittently connected mobile ad hoc networks [7], inter-
planetary and satellite communications [5] and mobile sys-
tems to provide transitive connectivity to isolated villages in
rural areas [16, 2, 11]. In the Data Mules Project [15], for
instance, the data of the sensor nodes are collected by a de-
vice (the ”mule”) that travels among them. Another existing
solution is DakNet [11], which aims to provide intermittent
connectivity to the global Internet to rural areas of India
and Cambodia. People in villages access services such as
email in e-kiosks: messages are collected and transported to
(and from) an Internet gateway in the nearest town by buses.
These are equipped with wireless technologies so that they
can download and upload messages from and to the e-kiosks
and the Internet gateways. Another example is the design
of software systems for space exploration [10, 5]: delays in
transmitting information due to the very long distances are
common in this setting. Moreover, satellites, space probes
and rovers may not be directly reachable from the Earth due
to their position since they may be on the non visible side
of a planet or covered by other celestial bodies.

The concept of delay tolerant networks represents a very
general abstraction that includes existing systems relying
on fixed networks, mobile ad hoc networks and hybrid net-
works composed of fixed and mobile nodes. For this reason,
it provides a very general scenario for the design of prim-
itives for a very large number of systems and deployment
settings. On the other hand, communication mechanisms
and algorithms currently used to network modern devices
are still the ones that we have devised 30 years ago for tra-
ditional computer systems. These primitives may be still
effective for a vast class of application scenarios, especially
for business automation and scientific computing, however,
they do not exploit the full potential of the pervasive com-
puting scenarios, such as the one just described. In fact,
classic programming paradigms and, in particular, program-
ming interfaces defined for traditional middleware systems
do not capture the natural communication paradigms typi-

1



cal of intermittently and location based networks; some ex-
amples include the ability to send a message to a number of
hosts in a location or send it to hosts currently not connected
to the same portion of the network (also with the possibility
of specifying their location).

The contribution of this paper is the design of novel
primitives for communication in delay tolerant mobile sys-
tems that fully exploits the potential of the environments
considered, by combining spatial aspects with temporal
ones. These primitives allow, for example, to specify that
a message has to be sent (in a synchronous or asynchronous
ways) to a recipient, only when this is in a specific location;
or to all the devices that are in a specific location (i.e., geo-
casting). They also allow to express the fact that the deliv-
ery has to happen only when the sender is located in a spe-
cific point of the geographical space. Simmetrically, similar
constraints and requirements in terms of space and time can
be also specified by the recipients, for instance, by saying
that the recipient will only want to receive a message from a
certain sender, when reaching a specific location. Existing
work in the area has focussed more on the pure network-
ing aspects [3], rather than on the analysis and the design of
programming paradigm and interfaces. To our knowledge,
there are no works on these issues. We have also designed a
general architecture and developed a prototype that imple-
ments the semantics of the proposed middleware interface.
To summarise, the contribution of this paper is twofold:

• we propose a set of primitives that can be used to spec-
ify various spatio-temporal aspects of communication
in settings where these issues are fundamental, such as
in delay tolerant networked systems;

• we present a middleware architecture that gives seman-
tics to this programming interface and briefly discuss
the implementation of a prototype.

The paper is organized as follows. In Section 2 we analyse
the challenges and the requirements of the design of com-
munication primitives in delay tolerant mobile networks. In
Section 3 we describe the communication primitives and we
outline an architecture of the middleware offering them as
an API. The proposed model is then discussed in Section 4,
where we also outline our current research directions.

2 Communication in Delay Tolerant Mobile
Networks: A Scenario

In order to define the design requirements of the primi-
tives for delay tolerant mobile systems, we start from a re-
alistic example, considering the case of providing commu-
nication to a village in a poor area, distant from the nearest
main town and therefore connected to the global Internet
by means of a bus that acts as message carrier (as in the
DakNet project [11]). We suppose that the village is com-
posed of three main locations covered by a local network

that is disconnected from the Internet1: the residential area,
the local administrative offices and the rural area near the
village. We also assume that all nodes in the village are
connected by a LAN attached to a WiMAX network that
covers the rural area outside the village, providing connec-
tivity to all the farmers. In a sense, the village can be seen
as a connectivity island. When the bus is in proximity of
the main town, it is connected to the Internet by a wireless
gateway, whereas, when it is in the village, it is connected
in a similar way to the local network.

In this setting, the ability to send messages to a location,
to exploit the asynchronous communication through the use
of the bus as a store and forward engine for messages, or
to deliver messages to all hosts in a location, are exam-
ples of communication patterns difficult to express by us-
ing the synchronous and asynchronous primitives exploited
by most middleware for traditional systems. The argument
of this paper is that middleware should provide support for,
for instance, sending a message from a host in the global In-
ternet to a recipient in the isolated (or better, intermittently
connected) village and viceversa. A host in the global In-
ternet should also be able to send a message to all the hosts
that are in a specific geographical region. Messages may
have an expiration time, in order to express the validity of
the information. In fact, a message containing weather fore-
cast about a certain day, for instance, would not be so useful
if received on the same day (or after).

Let us envisage some more specific scenarios: for ex-
ample, the central meteorological office in the near big city
should be able to send a weather alert to all farmers in the
rural area. Let us further assume that the computer system
of the offices is managed by technicians remotely from the
near city: a system administrator should be able to specify
his/her interest in receiving only requests from clerks of the
offices in the villages that he/she manages and supervises.
What is needed in this case is a send() primitive that allows
developers to specify that a message has to be delivered to
a certain recipient, in a certain area of the village, or to all
the recipients that are in that area, or to a certain recipient
only if he/she is in that particular area and so on. A sym-
metric semantics should be made available to indicate the
recipients and/or their locations in the receive() primitive.

As far as the message reliability is concerned, a critical
weather alert should be sent with high reliability, whereas
an ordinary hourly update of the wheather forecast may be
characterised by a lower one. Let us consider again our sce-
nario. Let us suppose that a sensor network is deployed in
the fields in the rural area outside the village, in order to
measure environmental indicators such as humidity, pollu-
tion and so on. We suppose that the data are collected by

1As discussed in [11], considering the user requirements in these sce-
narios, the connectivity to the Internet by means of a satellite link or a
wired line is not convenient in most of the cases.

2



means of motorbikes and helicopters. We would also like to
be able to express the fact that the collection of the data
will be performed only in certain locations (i.e., receival
should only happen in these locations). In other words, we
would like to be able to specify not only the locations of the
senders and the receivers of the message, but also where the
send() and the receive() should be fired.

To summarise, there is a need to provide primitives that
enable and combine:

• synchronous/asynchronous communication (i.e., the
sender and/or the receiver are or are not blocked await-
ing for the successful execution of the primitives);

• delay tolerant/non delay tolerant communication (i.e.,
it is admissible or not that messages will be delivered
with a delay that may not be negligible);

• spatial/non spatial communication (i.e., there is the
support for geo-casting and location-awareness or not).

In the following section we will present a set of primitives
that allows developers to specify these dimensions and we
will discuss a middleware architecture that supports them.

3 Middleware Support for Spatio-Temporal
Delay Tolerant Communication

3.1 Definition of the Primitives

We now present a detailed definition of the communica-
tion primitives. The primitives incorporate spatio-temporal
concepts which, for instance, allow the description of the
operations sketched in Section 2. The novelty of these prim-
itives resides in their expressiveness and their flexibility,
since, by using them, the software engineer can specify a
wide range of requirements and constraints for the commu-
nication process. More specifically, we define a new set
of primitives for sending and receiving messages. In order
to meet the requirements defined in Section 2, the send()
primitive has the following signature:

send (m, recipient, recipientLocation, senderLocation, tExp,
tBlock, reliability)

By using this primitive, developers are not only able to
define the recipients of the message m (in recipient), but
also to express spatial concepts, such as the location where
the message has to be delivered to (in recipientLocation)
and the location where the effective sending has to be per-
formed (in senderLocation) (i.e., the sending is performed
only when the host is in the location expressed in sender-
Location).

Moreover, the recipient field can assume two values, the
identifier of the receiver, a list of receivers or ∗, to indicate

that the message is sent to every host. Similarly, develop-
ers can specify one recipient location or a generic location
(using the same symbol ∗)2.

In order to clarify these concepts, let us consider some
examples:

• send (m, *, *,...) has to be used to send a message to
all the hosts, independently of their position;

• send (m, 32, *,...) indicates that the messages is to be
sent to host 32; host 32 can receive it independently of
its position;

• send (m, 32, ruralArea,...) indicates that the message
is to be sent to host 32; host 32 can receive the message
only when it is in location ruralArea;

• send (m, *, ruralArea,...) indicates that the message is
to be sent to all hosts in location ruralArea.

By using the tExp field, developers are able to set the expi-
ration time of the message, whereas tBlock defines the inter-
val of time during which the application is blocked waiting
for the correct delivery of the message. The expiration time
indicates the validity of the message. The corresponding ac-
knowledgment message will have the same expiration time.

Through these timers it is possible to specify synchronic-
ity and asynchronicity on top of the possible location based
operations specified above; for example, send (m, 32, *,..,
20, 20,...) indicates that the message is to be sent to host
32, independently of its position, but that the message ex-
piration time is set to 20 time units and that the application
is blocked for 20 time units while waiting for this to be de-
livered and acknowledged. On the other hand, send (m, 32,
*,.., 20, 0,...) will be used for the asynchronous delivery of
a message with an expiration time equal to 20 time units.

Finally, the desired reliability of the delivery process can
be specified as a percentage in the reliability field. Since,
in many cases, the evolution of the deployment scenarios
cannot be predicted with accuracy (i.e., it is not determin-
istic), the reliability value specified in the sending primi-
tives is evaluated in probabilistic terms. The middleware
driven delivery process associated to the primitives depends
on the dissemination strategy used to replicate or forward
the messages to the other hosts. If messages cannot be de-
livered immediately (i.e., when the recipients are not in the
same connected portion of the network), they are stored in
intermediate buffers that we call Message Buffers. The dis-
semination strategy is composed by a set of algorithms and
protocols used to transfer and disseminate the information
in the system in order to deliver the information as close as

2It is clearly possible to extend the syntax and the semantics of these
primitives in order to specify a list of senders and receivers in different
locations, by using a list of tuples with the format (hostId,LocationId).

3



possible to the recipient(s) and/or to the the locations spec-
ified in the send() primitive.

Messages are transferred from the Message Buffer of
a host HA to that of a host HB using forwarding mecha-
nisms (i.e., the message is transferred from HA to HB then
the message is deleted from the Message Buffer of HA) or
replication mechanisms (messages are copied from HA to
HB and the copy on HA is maintained).

We define, in a symmetric way, the receive() primitive
as follows:

m=receive (sender, senderLocation, receiverLocation, tBlock)

Similarly to the send() primitive, developers can specify
the sender (in sender), its location (in senderLocation), the
location where the receiving needs to happen (in receiver-
Location) and the time interval during which the receiving
application is blocked waiting for a message (in tBlock).

3.2 Implementing the Middleware Interface

The primitives have to be embedded in a middleware
framework that supports the dissemination and the persis-
tence of the information as shown in Figure 1. These as-
pects are key in delay tolerant networking. In fact, if a mes-
sage cannot be delivered immediately as the recipient is not
in the same connected portion of the network, the message
might have to be stored in intermediate Message Buffers.
For this purpose, intelligent and reliable replication and for-
warding strategies must be devised. Clearly, the reliability
of the system is strictly dependent on the use of the available
resources, especially in terms of memory, bandwidth and
computational power. These issues are extremely relevant
in the case of mobile devices. Therefore, there is a trade-
off between the reliability of the system and the resource
consumption. The reliability value will be used by the un-
derlying delivery protocols in order to make decisions about
the exploitation of the available resources. In this sense, the
reliability value is interpreted as a sort of message priority.

We envisage a middleware that deliver messages by us-
ing different dissemination and message forwarding strate-
gies that form a Protocols Library. These will be selected
and tuned to ensure the expected reliability by the Protocol
Selector component. There are many possible ad hoc solu-
tions that suit best depending on the application scenarios.
We believe that the middleware should be able to select the
best suitable protocol according to the values assigned to
the parameters of the primitives. It is outside the scope of
the paper to describe the different dissemination strategies
that can be used to implement specific delivery probabil-
ities. Possible solutions which could be plugged into the
framework can be gossip-style dissemination algorithms,
based on epidemic techniques [9] or intelligent forwarding
protocols based on the history of the system [7]. Let us

Network Layer

Middleware Interface

P

Package
Protocols 
Library

Middleware 
Controller

Message 
Buffer

Protocol 
Selector

Figure 1. Middleware Architecture.

briefly consider the case of the availability of three dissem-
ination and forwarding protocols, a synchronous routing
protocol (like DSDV [12]), a pure epidemic protocol [17]
and a generic geo-routing protocol based on geographical
information. A reasonable selection policy might consist in
using the synchronous protocol only if the recipient is in
the same connected portion of the network. In our example,
this is the case of messages that are exchanged by two hosts
that are inside the village. If the recipient is not directly
reachable and if the developer has specified the location, the
geo-routing algorithm might be chosen. If this information
is not available, the epidemic protocol has to be selected to
try to reach the recipient by spreading replicas of the mes-
sage across the system (in our case study, for example, by
disseminating a copy in every device in the rural area).

With respect to the reliability issues, as far as the geo-
routing protocol is concerned, the number of forwarding
paths towards the location can be proportional to the value
expressed by the developer. In the case of the epidemic pro-
tocol, if for example the reliability value is 100, the message
might be replicated on every host, whereas if it is lower, it
might be copied only on a subset of nodes. In general, the
epidemic-style replication mechanism in terms of number
of copies can be tuned according to the desired reliability
with good accuracy. The number of replicas will be propor-
tional to the desired reliability.

We are developing a first prototype of a middleware that
implements the communication primitives presented in Sec-
tion 3.1. The middleware will rely on the Context-aware
Adaptive Routing (CAR) protocol [7] and a tunable epi-
demic protocol based on models of epidemic spreading in
complex networks [8], to support asynchronous communi-
cation in case of disconnection. Location information is
used in this case only to check the geographical locations
of senders and receivers and not to drive the delivery pro-
cess. In fact, it is important to note that the underlying pro-
tocols may only partially support the general semantics of
the primitives 3.

3In general, this is the case of the protocols that do not support geo-

4



4 Discussion and Future Work

In the recent years, the research community has proposed
new paradigms and architectures for communication and
coordination in the general area of pervasive computing.
The proposed solutions have been founded on several dif-
ferent mechanisms and abstractions such as the sharing of
tuple spaces [13] and events [6], which go beyond the tra-
ditional synchronous communication mechanisms imposed
by standard middleware systems. Other works have been
focussed on other aspects of the communication in per-
vasive environments, such as context-awareness [14] and
location-awareness [1]. In general, the pervasive comput-
ing scenario seems to offer more opportunities than those
exploited for more complex communication primitives.

This is even more true if we extend to study delay toler-
ant networked systems. The challenges posed by this sce-
nario were firstly discussed by Fall in [3]. Some exam-
ples of existing prototypes of delay tolerant systems have
been presented in Section 1, such as DakNet [11] and Data
Mules [15]. However, in these works, the authors do not
discuss the potential of these systems in terms of primitives
and the set of operations which could be performed on such
systems. To our knowledge, our work represents the first at-
tempt to the design and the specification of communication
primitives in delay tolerant networks.

In general, the current work in delay tolerant networking
propose ad hoc solutions targeting particular problems in
specific deployment scenarios. Moreover, they are more fo-
cussed on networking issues rather than on the definition of
application-level abstractions and programming paradigms.
The contribution and the novelty of our work resides in
the definition of a flexible and expressive set of primi-
tives and high-level abstractions for this challenging class
of networks and in general for systems for which spatio-
temporal aspects are important. We plan to investigate pos-
sible integration with existing delay tolerant network tech-
nologies [3] in order to provide a common programming
interface for systems that rely on different delivery mecha-
nisms.

In this paper, we have presented a novel set of prim-
itives for communication in delay tolerant networks. We
consider this work as the foundation and the starting point
of our investigation on the design of middleware for delay
tolerant systems and, in general, for systems where spa-
tial and temporal aspects are relevant. In fact, the primi-
tives presented in this paper may be used to design more
complex distributed systems. Namely, the middleware ar-
chitecture could be extended with the addition of a layer
for publish/subscribe systems for delay tolerant networks.

casting. On the other hand, there may be situations where geographical in-
formation are not available (also temporarily) so that location-aware rout-
ing is not achievable.

Subscriptions and notifications may be delivered by means
of mechanisms similar to those described in this paper. In
fact, by considering and learning from past experiences in
designing building publish/subscribe systems for delay tol-
erant mobile ad hoc networking [9], we really believe that
the existing programming interfaces (such as the JMS inter-
face [4]) are not able to capture the essential aspects of the
interaction in these settings.

References

[1] M. Bauer, C. Becker, and K. Rothermel. Location Models from the Perspec-
tive of Context-Aware Applications and Mobile Ad Hoc Networks. Journal of
Personal and Ubiquitous Computing, 6(5/6), December 2002.

[2] A. Doria, M. Uden, and D. P. Pandey. Providing Connectivity to the Saami
nomadic community. In Proceedings of the Second International Conference
on Open Collaborative Design for Sustainable Innovation, December 2002.

[3] K. Fall. A delay-tolerant network architecture for challenged internets. In
Proceedings of SIGCOMM’03, August 2004.

[4] M. Hapner, R. Burridge, R. Sharma, J. Fialli, and K. Stout. Java Mes-
sage Service Specification Version 1.1. Sun Microsystems, Inc., April 2002.
http://java.sun.com/products/jms/.

[5] Internet Society. Interplanetary Internet Project. http://www.ipnsig.org.

[6] R. Meier and V. Cahill. STEAM: Event-Based Middleware for Wireless Ad
Hoc Networks. In 22nd International Conference on Distributed Computing
Systems Workshops (ICDCSW ’02), pages 639–644, June 2002.

[7] M. Musolesi, S. Hailes, and C. Mascolo. Adaptive routing for intermittently
connected mobile ad hoc networks. In Proceedings of the 6th International
Symposium on a World of Wireless, Mobile, and Multimedia Networks (WoW-
MoM 2005). Taormina, Italy. IEEE press, June 2005.

[8] M. Musolesi and C. Mascolo. Controlled Epidemic-style Dissemination Mid-
dleware for Mobile Ad Hoc Networks. Technical report, Dept. of Computer
Science, University College London, November 2005.

[9] M. Musolesi, C. Mascolo, and S. Hailes. EMMA: Epidemic Messaging Mid-
dleware for Ad hoc networks. Journal of Personal and Ubiquitous Computing,
2005. To appear.

[10] NASA. Mars Exploration Program Website. http://marsweb.jpl.nasa.gov/.

[11] A. S. Pentland, R. Fletcher, and H. Hasson. Daknet: Rethinking connectivity
in developing nations. IEEE Computer, 37(1):78–83, January 2004.

[12] C. E. Perkins and P. Bhagwat. Highly Dynamic Destination-Sequenced
Distance-Vector Routing (DSDV) for Mobile Computers. In Proceedings of
SIGCOMM 94, pages 234–244, August 1994.

[13] G. P. Picco, A. L. Murphy, and G.-C. Roman. LIME: Linda Meets Mobility.
In D. Garlan, editor, Proceedings of the 21st International Conference on Soft-
ware Engineering (ICSE’99), pages 368–377, Los Angeles, CA, USA, May
1999. ACM Press.

[14] M. Roman, C. Hess, R. Cerqueira, A. Ranganathan, R. H. Campbell, and
K. Nahrstedt. Gaia: a Middleware Platform for Active Spaces. ACM SIG-
MOBILE Mobile Computing and Communications Review, 6(4):65–67, 2002.

[15] R. C. Shah, S. Roy, S. Jain, and W. Brunette. Data MULEs: Modelling a
Three-Tier Architecture for Sparse Sensor Networks. Technical Report IRS-
TR-03-001, Intel Corporation, January 2003.

[16] I. T. Union. Connecting remote communities. Documents of the World Summit
on Information Society, 2003. http://www.itu.int/osg/spu/wsis-themes.

[17] A. Vahdat and D. Becker. Epidemic routing for partially connected ad hoc
networks. Technical Report CS-2000-06, Department of Computer Science,
Duke University, 2000.

5


