
STRUDEL: Supporting Trust in the Dynamic Establishment
of peering coaLitions

Daniele Quercia, Manish Lad, Stephen Hailes, Licia Capra, and Saleem Bhatti
Department of Computer Science, University College London, London, WC1E 6BT, UK.

{D.Quercia, M.Lad, S.Hailes, L.Capra,S.Bhatti}@cs.ucl.ac.uk

ABSTRACT
The Coalition Peering Domain (CPD) is a recent innova-
tion within the field of mesh networking. It facilitates the
management of community-area networks in a distributed
and scalable form, allowing devices to pool their network
resources (particularly egress links) to the common good.
However, as in P2P systems, this form of cooperative shar-
ing architecture raises significant concerns about the effect
of free-riders: nodes that utilise the bandwidth of others
without providing an adequate return to the community.
To address this problem, we propose STRUDEL, a distrib-
uted framework that tackles the problem of free-riders and
consists of: (i) a mechanism for the detection of malicious
peers; (ii) a formal Bayesian trust model, to assess peers’
trustworthiness; (iii) a forwarding mechanism based on the
maximisation of trust-informed utility.

Categories and Subject Descriptors
D.2.0 [Software Engineering]: General—protection mech-
anisms; C.2.4 [Computer-Communication Networks]:
Distributed Systems—distributed applications

General Terms
Algorithms, Security

Keywords
Distributed Reputation Systems, Mesh Networks, Distrib-
uted Trust Models

1. INTRODUCTION
Sophisticated network applications demand considerable

bandwidth, but the current Internet connectivity available
to many (especially mobile) devices does not satisfy such de-
mand. Increasingly sophisticated network applications are
being offered to a diverse spectrum of users. As a result,
the bandwidth demand imposed on networked devices has

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
SAC’06,April, 23-27, 2006, Dijon, France.
Copyright 2006 ACM 1-59593-108-2/06/0004 ...$5.00.

increased dramatically over the last few years. Although the
data rates offered by local-area connections are usually suffi-
cient to meet this demand, the opposite is true with respect
to Internet connectivity for many mobile devices.

A new entity in the routing landscape, the Coalition Peer-
ing Domain (CPD), has been proposed to better cope with
increasing bandwidth demands. We may observe that com-
munities of users may between them have considerable In-
ternet bandwidth in the form of the summed set of relatively
low bandwidth GPRS connections. As a consequence, the
CPD concept has been put forward to facilitate the exploita-
tion of under-utilised local-area bandwidth in such a way as
to enhance both Internet connectivity and connection sur-
vivability [9].

Intrinsically, CPDs rely on cooperative bandwidth shar-
ing, which poses a “tragedy of the commons” dilemma [8]:
if too many people exploit others’ connections, the excess of
free-riders drives away the people that make the coalition
viable.

To address the “tragedy of the commons” in CPDs, we
propose STRUDEL, a distributed adaptive framework that
combines trust-informed selection of the forwarding path for
packets with a mechanism for identifying and isolating mis-
behaving peers. It makes use of reputation evidence (i.e.,
direct experience evaluations and recommendations) to sup-
port trust and, consequently, the formation and mainte-
nance of Coalition Peering Domains. It consists of:

• an approach for detecting malicious nodes based on
the 2-ACK scheme, whose application to bandwidth
sharing scenarios is innovative;

• a Bayesian formalization for trust formation and trust
evolution that possesses a range of desirable properties
(i.e., (i) support for fine-grained discrete trust metrics,
as opposed to the binary metrics currently used by
current Bayesian trust models; (ii) use of recommen-
dations that are weighted according to recommenders’
trustworthiness and recommenders’ subjective opinion
- to distinguish honest and dishonest recommenders
and to resolve the different ontological views of the
world honestly held by different peers; (iii) incorpo-
ration of the time dimension to prevent nodes from
capitalizing excessively on past behavior);

• a forwarding mechanism that integrates the Bayesian
trust model and locally maximizes each peer’s utility.

This is achieved by minimizing the use of heavyweight mech-
anisms, and by removing the assumption of having a public

key infrastructure (PKI) in place. In fact, the most heavy-
weight mechanisms (e.g., per packet signatures) are only
activated when there is evidence to suppose that misbehav-
ior is occurring. In addition, to support the 2-ACK scheme,
STRUDEL does not require a trusted binding between a real
identity and corresponding public key, but rather only be-
tween a peer address and its public key. This can be achieved
by means of Cryptographically Generated Addresses [3], with-
out the need for a PKI.

The remainder of the paper is structured as follows. Sec-
tion 2 discusses prior work about trust management frame-
works and their application to bandwidth sharing scenarios.
Section 3 introduces the idea of the Coalition Peering Do-
main. Section 4 describes a peer’s state machine consisting
of a Bayesian trust model and a forwarding mechanism. Sec-
tion 5 draws the conclusions.

2. RELATED WORK
A broader concept of trust in the computer science arena

began with work in the early 1990s by Marsh [11]. Abdul-
Rahman and Hailes first proposed the use of recommenda-
tions for managing trust [1] and then introduced a compre-
hensive distributed trust model for online environments [2],
based on Marsh’s model. From direct experiences and rec-
ommendations, each entity forms its trust, and it is also
able to deal with false recommendations. Although founda-
tional, the previous approach suffered from being rather too
architectural in style: they lacked processes for trust evolu-
tion, for example. To fill the gap, Mui et al. [12] proposed
a Bayesian formalization for a distributed rating process.
However, two issues remained unsolved: they considered
only binary ratings and did not discount them over time.
Buchegger and Le Boudec [4] tackled the latter issue, but
not the former: they proposed a Bayesian reputation mech-
anism in which each node isolates malicious nodes, ages its
reputation data (i.e., weights past reputation less), but can
only evaluate encounters with a binary value (i.e., encoun-
ters are either good or bad). Using a generic n-level discrete
trust metric, our Bayesian model addresses the issue. Fur-
thermore, each peer discounts its trust beliefs over time (i.e.,
it decreases the confidence level it has in its trust beliefs).

Since that time, numerous papers have described either
ad-hoc or more formal distributed trust models, but their in-
tegration with decision-making mechanisms, though funda-
mental, is less well developed. Within the SECURE project,
Carbone et al. [5] proposed a formal model for trust forma-
tion, evolution, and propagation based on a policy language
whose output (trust values) feeds a decision-making mech-
anism [6]. More recently, Quercia and Hailes [13] proposed
a decision model for reputation-based interactions that, on
input of reputation assessments, estimates the probability
of potential risks associated with an action based on which
it decides whether to carry out the action.

Given the novelty of the coalition peering domain archi-
tecture, its integration with distributed trust and decision-
making frameworks is unexplored territory. Zhu and Mutka
[15] proposed a credit-based trust system for connection
sharing among ad-hoc network devices. Although similar,
their proposal differs from the concept of coalition peering
domain. As each device takes turn to act as a temporary
gateway, the aggregated bandwidth in their proposal is less
than that in a coalition-based approach, in which multiple
devices simultaneously act as gateways. Also, the credit-

based trust system uses ad-hoc trust evolution rules and
does not discount past reputation data over time.

3. COALITION PEERING DOMAIN
The formation of a Coalition Peering Domain (CPD)

emerges from a new class of community-area networks (e.g.,
Consume.net and FreeNetworks.org) [7]: one in which in-
dividuals connect together their home and/or personal-area
networks, on an ad hoc basis, forming a local mesh or com-
munity network. Although existing mechanisms are em-
ployed by users to administer these existing community net-
working initiatives, such mechanisms tend to be manual,
slowly changing and relatively limited in their abilities. In
particular, they tend to concentrate on sharing a single con-
nection between multiple machines and do not take into ac-
count the possibility of utilising multiple connections simul-
taneously. Within a CPD, however, devices share multiple
connections simultaneously. The under-utilised local-area
connectivity between Coalition Members (CMs) is used to
distribute traffic across all CMs that are willing to share
their wide-area connectivity. Therefore, CMs are able to
better utilise the full aggregate wide-area bandwidth that is
available to the CPD. For example, consider that the Inter-
net connectivity of 4 PDAs increases by a factor of 5.5 when
joining a CPD [10].

The resulting community-area networks do not represent a
single Administrative Domain (AD) that is under the control
of a single organisation or entity, but rather a collaborative
group of such entities. Existing mechanisms are designed
to operate in network environments where administrative
responsibility is not distributed. However, such an approach
cannot be applied to the community network environment
because it is most unlikely that members would be willing
to trust all others unconditionally.

The “tragedy of commons” that arises from too many free-
riding coalition members exploiting resources made avail-
able by others, without actually sharing their own resources
within the CPD, undermines the value of the CPD.

By using reputation evidence to evaluate the behaviour
of peers, STRUDEL provides a distributed framework to
overcome this hurdle.

4. A PEER’S STATE MACHINE
Each peer in a CPD can be described by the state machine

depicted in Figure 1.
To join a CPD, an IDLE peer pX broadcasts a join re-

quest (JR) message, containing a list of its minimum re-
quirements for peering to be feasible (ranging from mini-
mum bandwidth, maximum loss rate, and so forth through
to constraints on the credentials that are acceptable). The
peer pX enters the AGREEMENT state in two possible sit-
uations: (i) pX receives a request accepted (RA) message
from pY in response to its JR. The peer pX evaluates peer-
ing agreement terms contained in the RA (e.g., amount of
bandwidth pY is willing to offer), pY ’s credentials (i.e., other
peers’ ratings about pY , some of which may be forwarded by
pY), and pX ’s locally historical experiences with pY . Based
on this information, pX decides whether or not to initiate
a peering agreement with pY ; (ii) pX receives a JR from a
peer pY , asking to form a CPD with pX ; as JR also contains
pY ’s credentials, pX evaluates them and decides whether to
accept (thus sending a RA message back), or to reject (thus

WAIT
UPDATE

RESEND

SLOWSTART

MALIC.

AVOIDANCE

SEND

NEXT HOP

IDLE
ADV

AGREEMENT

S
end(A

D
V
,-)

{n
o
 h

o
p
}

{a
b
o
v
e
 t
ru

s
t

th
re

s
h
o
ld

}

{q
u
it
 C

P
D

}

{update complete}

RCV(JR, p Y
)

{miss 2° ACK}

{miss 1° ACK}

{m
iss 1° ACK}

{above benevolence threshold}

{below
 trust threshold}

{m
ar

k

un
re

sp
on

si
ve

}

{burst losses}

{m
is

s
 2

°
A

C
K

}

Rcv(RA,pY)

Send(RD,pY) ∧ {Out CPD}

Send(R
D,pY

) ∧
{In

 C
PD}

S
e
n
d
(R

A
,p

Y
)

{bandw
idth change}

∨
T

A
D

V

{∃ pkt to
be sent}

Figure 1: A peer’s state machine.

sending a request denied RD message) the peering agree-
ment.

If pX accepts at least one peering agreement, it enters
the WAIT state, meaning that it belongs to at least one
CPD and it is ready for action. It may then enter the ADV
state to send advertisements to its peering nodes either to
refresh its peering agreement terms periodically or to change
them (e.g., when pX ’s available bandwidth changes). An
advertisement ADVX,Y from pX to pY contains: (i) the total
(Internet plus local) bandwidth that pX is willing to offer
to pY ; (ii) pX ’s current trust in pY . Therefore, from the
advertisement, pY determines the amount of traffic that pX

is willing to receive and obtains a trust tuple that it may
later use as recommendation letter.

Whenever pX has to send packets, it must first select the
forwarding peer pY , based on stored reputation and routing
information, from pX ’s ISP and the set of peers with which
pX has an agreement. The selection process is performed in
the NEXT-HOP state and is based on utility maximisation,
where utility is a measure of delivery probability. Based on
the next-hop’s reliability, pX selects one of the two sending
modes: either normal operation mode or suspicious mode. If
pX deems pY reliable, it enters normal operation mode rep-
resented by the SEND state. Here, pX sends packets to pY

without any mechanism for maliciousness detection, other
than an assessment of end-to-end loss rate. At this point
unless there is some mechanism for assessing whether pack-
ets have been delivered, there is no incentive for a forwarder
to act honestly. If an end-to-end mechanism is available -
for example, TCP acknowledgements - then it may be used
to assess whether the loss rate on the entire link between
sender and destination is an acceptable one. We know that
if the loss rate is acceptable, then peers within the commu-
nity are well (enough) behaved and we need not track their
activities more closely. However, the converse is not true -
if the end-to-end loss rate is unacceptable, it is still entirely
possible for all peers to behave honestly and well, and for
the loss to be occurring within the wider Internet. In this
case, we need to identify the cause of the problem and, as a
conequence, if the loss rate is unacceptable, or if there is no
end-to-end mechanism for acknowledging pX switches into
suspicious mode.

In suspicious mode, all forwarding peers are required to
use Pau and Mitchell’s 2-ACK scheme [14]. At the price of
greater packet overhead, the scheme allows the identifica-
tion of suspicious peers along the path and also allows us to
distinguish them from unresponsive peers. Suspicious mode
comprises two substates: SLOW START and MALICIOUS-
NESS AVOIDANCE. In the former state, pX sends packets
to pY according to a sending window which grows expo-
nentially. After exceeding a threshold (benevolence thresh-
old), pX enters the latter state, in which the sending window
grows linearly. Section 4.2 discusses suspicious mode in de-
tail.

If the next-hop is unresponsive, pX enters the RESEND
state and retransmits the same packet up to a retransmission
threshold. When pX exceeds the threshold, it marks pY

as unresponsive and enters the UPDATE state to update
its routing information. Reputation information is updated
when either (i) a next-hop node is cleared of suspicion; (ii)
or it initiates a peering agreement.

In the following subsections, we consider three of the key
states in more detail.

4.1 NEXT-HOP State
In this state, the peer pX uses a utility-based decision

mechanism to judge whether to send the next packet in its
queue and, if so, to choose the next-hop pY that will act
as packet forwarder. For this purpose, pX uses a modi-
fied version of the risk-aware decision model by Quercia and
Hailes [13]. This decision model includes the following ele-
ments:

1. A set of actions that pX can carry out, such as ‘send
packet to pY ’ or ‘drop the packet’.

2. A set of states that completely defines the set of oc-
currences of interest, such as s1 =‘acceptable packet
delivery through pY ’, s2 =‘just-in-time packet deliv-
ery through pY ’, and s3 =‘out-of-time packet delivery
through pY ’. The peer pX associates with each state an
acceptable latency (which corresponds to the residence
time in that state) that is dependent both on the next
hop and on the packet type. For example, there will be
different acceptable latencies for the state s2 =‘packet
sent just in time through pY ’ depending on whether
the packet belongs to real-time traffic or to FTP traf-
fic.

3. A set of state probabilities. To compute the proba-
bility of a state, pX first needs to compute: (i) the
state residence time (i.e., the maximum packet delay
from pX to the destination under which each state will
continue to obtain); as described previously, pX maps
each jth state with a state residence time dj that is a
function of the packet type; (ii) the expected packet
delay edY from pX to the destination when pX selects
pY as the next-hop. pX computes the expected delay
edY as a function of the RTT dY

net = RTT/2, and of
the delay dY

trust caused by pY (which depends on pX ’s
trust in pY): edY = dY

net + dY
trust. Observing that the

smaller the difference between the midpoint of the in-
terval [dj−1, dj] and the expected delay edY , the more
likely the state, we compute each jth state probabil-

ity as Pj =

1

|edY − dj−1+dj
2 |P

j
1

|edY − dj−1+dj
2 |

. The probability of the

jth state is the reciprocal of the difference between the
midpoint and the expected delay divided by a normal-
ization factor. If such difference is zero, then the state
probability is maximum.

4. A set of outcomes such as o1 =‘packet sent without
significant delay’, o2 =‘packet sent just-in-time’,
and o3 =‘packet dropped’, and o4 =‘packet sent too
late’. For a given state and a given action a unique
outcome exists. For instance, for the state s2 =‘just-
in-time packet delivery through pY ’ and pX ’s action
‘send the packet to pY ’, the outcome o2 =‘packet sent
just-in-time’ takes place.

5. An elementary utility function u which, given an out-
come, returns pX ’s utility (ranging in [0, 1]) for the
outcome. Considering the notation above, pX could
have the following utility ordering: u(o1) > u(o2) >
u(o3) > u(o4).

6. A decision rule. The peer pX computes its utility for
each next-hop pY and action ai:
UpY

ai =
P

j Pj · u(sj , ai). It then carries out the action
am with the peer pq so that it maximizes its utility:
U

pq
am = max∀pY ,ai{UpY

ai }.

4.2 Suspicious Mode: SLOW START and MA-
LICIOUSNESS AVOIDANCE States

Suspicious mode is entered whenever we suspect that a
node or set of nodes on the path to the destination is mis-
behaving. The purpose of the mode is rapidly to identify
whether there is misbehaviour and, if so, who is responsible
for it, so that they may be excluded from the path, and in
such a way that they are less likely to be included in future
paths. However, such identification mechanisms are costly,
and, where nodes appear to be well-behaved, we wish to
minimise the impact on them.

Suspicious mode is analogous to TCP congestion control:
we wish effectively to exploit transmission capacity. There-
fore, we shape the suspicious mode in TCP congestion con-
trol’s likeness. The suspicious mode comprises two states:
slow start and maliciousness avoidance. As TCP congestion
control has a congestion window constraining the sending
rate, the suspicious mode has a benevolence window that
constrains the sending rate as well and grows exponentially
during the slow start, and linearly during the maliciousness
avoidance.

Before describing how the suspicious mode unfolds, we
briefly describe the 2-ACK scheme [14], which the suspi-
cious mode uses to detect either unresponsive or suspicious
peers. Consider three peers: pX , its next-hop pY , and pZ

(pY ’s next-hop). With the 2-ACK scheme, after sending a
packet to pY , pX has to receive two acknowledgments from
pY : one cryptographically signed pY (called one-hop away
acknowledgment) and the other by pZ (called two-hops away
acknowledgment). The scheme runs as follows: pX sends a
packet to pY ; pY receives the packet, signs an acknowledge-
ment with its private key, sends the acknowledgment to pX ,
and sends the packet to pZ . Upon receiving the packet, pZ

signs an acknowledgment with its private key and sends it
to pY ; pY forwards the acknowledgment to pX . If pX does
not receive the one-hop away acknowledgment, it retrans-
mits the same packet up to a retransmission threshold. If
it still does not receive any acknowledgment back from pY ,

pX marks pY as unresponsive. If pX does not receive the
two-hop away acknowledgement instead, pX marks pY as
suspicious because pY either did not send the packet to pZ

or relied on an untrustworthy peer pZ .
When entering in the suspicious mode, pX sets its benev-

olence window (i.e., the number of packets pX sends before
requiring a 2-ACK) to q = 1 and enters the SLOW START
state. At each stage it sends q packets to pY and, if it
receives the two-hop away acknowledgment for this set, in-
creases its benevolence window by q. As a consequence, the
benevolence window grows exponentially.

The peer pX ’s benevolence window, grows exponentially
until one of the following events occurs: (i) the benevolence
window value exceeds a threshold, called the benevolence
threshold, in which case, pX enters the MALICIOUSNESS
AVOIDANCE state and increases its benevolence window
linearly; (ii) pX misses at least one two-hop away acknowl-
edgment, in which case, pX sets the threshold to half the cur-
rent benevolence window size; it then enters the UPDATE
state and refreshes its trust in pY based on the amount of
bandwidth pY claimed to offer (in a similar way to the way
that lack of TCP acknowledgments signal congestion, lack of
two-hop away acknowledgments signal suspicious behavior);
(iii) pY offers the transmission capacity that it promised, in
which case the window remains fixed and a timer is set; if
the timer expires, the node returns to normal operation, and
the bounding packet loss parameters for the end-to-end link
are updated to avoid state flapping.

4.3 UPDATE State
The main purpose of this state it to allow pX to update

its trust information. It uses a Bayesian trust framework
for pervasive computing. pX ’s overall trust in pY combines
pX ’s direct trust in pY (i.e., trust pX builds after direct
experiences with pY) and pX ’s recommended trust in pY

(i.e., trust pX builds from others’ recommendations about
pY).

Since the random variables describing direct trust, rec-
ommended trust, and overall trust are discrete (i.e., they
assume one of n discrete values {l1, . . . , ln}), B-trust has
numerous advantages: (i) the random variable distributions
emerge as a consequence of updates and are not fixed a pri-
ori, as existing models impose; (ii) a generic n-level metric
is more fine-grained than a binary metric (for which an en-
tity is either completely trustworthy or completely untrust-
worthy), as existing models impose; (iii) discrete metrics
are more computationally tractable than continuous metrics
(e.g., they do not involve the computation of integrals).

We now discuss when and how pX updates its direct, rec-
ommended, and overall trust beliefs in a peer pY . The peer
pX updates its direct trust after completing a suspicious
mode session with any peer pY . Let DTX,Y be a random
variable expressing pX ’s direct trust in pY and DEX,Y be
a random variable expressing pX ’s evaluations of direct ex-
periences with pY . The peer pX carries out the Bayesian
revision process as follows:

1. for α = (1, . . . , n), pX has prior probability of the
event DTX,Y = lα (i.e., pX deems pY deserves a level
lα of direct trust) and has prior conditional probability
of the event DEX,Y = lβ (i.e., pX evaluates the direct
experience with pY with a lβ satisfaction level) given
the event DTX,Y = lα took place.

2. pX computes its satisfaction for the just completed
suspicious mode with pY :

s =

8<: δT
T

AV G
OFF

if δT < T and AV G < OFF
AV G
OFF

if δT ≥ T and AV G < OFF
1 if AV G ≥ OFF

where AV G is pX ’s average throughput during the
immediately previous suspicious mode, OFF is the
throughput that pY was supposed to offer, δT is the
duration of the suspicious mode, and T is the typi-
cal suspicious mode’s duration. As pX ’s throughput
comes closer to pY ’s promised throughput, the sat-
isfaction s rises. If s ∈ [(β − 1) · 1

n
, β · 1

n
], for any

β ∈ [1, n], pX evaluates the direct experience with pY

with a lβ satisfaction level (i.e., the event DEX,Y = lβ
takes place).

3. Given this level of satisfaction, pX applies Bayes’ the-
orem to update its direct trust. It thus computes
p(DTX,Y = lα|DEX,Y = lβ) for α = (1, . . . , n) as

p(DTX,Y =lα)·p(DEX,Y =lβ |DTX,Y =lα)Pn
γ=1 p(DTX,Y =lγ)·p(DEX,Y =lβ |DTX,Y =lγ)

Similarly, the peer pX updates its recommended trust
(RTX,Y) upon receiving a set of credentials from any peer
pY .

Finally, to determine its overall trust in pY , pX computes,
∀j ∈ [1, n], p(TX,Y = lj) = σ · p(DTX,Y = lj) + (1 − σ) ·
p(RTX,Y = lj), where TX,Y = lj is the event ‘pX deems pY

deserves an lj overall trust ’ and σ holds the importance pX

places in direct experiences over recommendations.
Two more aspects are worthy of discussion: how pX ages

its trust beliefs and how it bootstraps them. Direct trust
and recommended trust confidence levels decrease with time.
The aging process is carried out by decreasing the trust
probabilities that are greater or equal to 1

n
and increasing

those that are below 1
n
, so that the probabilities sum to

1. As for bootstrapping, when the peer pX meets pY for
the first time, it has no information about pY ; its beliefs
are thus uniformly distributed, i.e., ∀j ∈ [1, n]: p(DTX,Y =
lj) = p(RTX,Y = lj) = 1

n
.

5. CONCLUSION
We have presented an adaptive framework, named

STRUDEL, that allows CPDs to isolate malicious peers and,
thus, minimize connectivity disruptions. Using STRUDEL,
peers are able to identify malicious behaviors by means of
the 2-ACK scheme. They keep track of other peers’ repu-
tation and team up with only trustworthy ones. They do
this by means of a fully distributed Bayesian trust model
that updates reputation data structures based on direct ex-
periences and recommendations, and that produces trust
assessments. Based on such assessments, a decision-making
process maximizes each peer’s expected utility, with the re-
sult that well behaved peers will preferentially be selected,
and with the overall effect that malicious ones will be iso-
lated. As such, most traffic will flow through cooperating
peers, whilst free-riders will be excluded from the Coalition
Peering Domain.

Two general models stand out from STRUDEL: the
Bayesian trust model (described in subsection 4.3) and the
decision-making model (described in subsection 4.1 and
widely discussed in [13]). They are general in the sense that

many applications, in addition to bandwidth sharing, benefit
from them. Any decentrilized collaborative application ben-
efits from both the trust model, which manages collaborat-
ing parties’ reputation information, and the decision-making
model, which on input of reputation information determines
the best possible action.

6. ACKNOWLEDGEMENTS
The authors gratefully acknowledge the support of the

European Commission through the SEINIT and RUNES
projects.

7. REFERENCES
[1] A. Abdul-Rahman and S. Hailes. Using Recommendations for

Managing Trust in Distributed Systems. In Proc. of IEEE
Malaysia International Conference on Communication, Kuala
Lumpur, Malaysia, November 1997.

[2] A. Abdul-Rahman and S. Hailes. Supporting Trust in Virtual

Communities. In Proc. of the 33rd IEEE Hawaii International
Conference on System Sciences, volume 6, page 6007,
Washington DC, USA, 2000.

[3] T. Aura. Cryptographically Generated Addresses (CGA). In

Proc. of the 6th LNCS International Conference on
Information Security, pages 29 – 43, Bristol, UK, 2003.

[4] S. Buchegger and J.-Y. L. Boudec. A robust reputation system

for p2p and mobile ad-hoc networks. In Proc. of the 2nd

Workshop on the Economics of Peer-to-Peer Systems,
Cambridge, MA, USA, June 2004.

[5] M. Carbone, M. Nielsen, and V. Sassone. A Formal Model for
Trust in Dynamic Networks. In Proc. of the 1st IEEE
International Conference on Software Engineering and
Formal Methods, pages 54–63, Brisbane, Australia, September
2003.

[6] N. Dimmock. How much is ‘enough’? Risk in Trust-based

Access Control. In Proc. of the 12th IEEE International
Workshop on Enabling Technologies, page 281, Washington,
DC, USA, June 2003.

[7] N. Easen. Welcome to the Wi-Fi revolution. In
http://edition.cnn.com/, September 2003.

[8] G. Hardin. The tragedy of the commons. Science,
162:1243–1248, December 1968.

[9] M. Lad, S. Bhatti, S. Hailes, and P. Kirstein. Enabling
Coalition-Based Community Networking. In Proc. of the
London Communications Symposium, London, UK, September
2005.

[10] M. Lad, S. Bhatti, P. Kirstein, and S. Hailes. Challenges,
Opportunities and Incentives for Coalition-Based Community
Networking. In Technical Research Note Number RN/05/08.
University College London, London, UK, June 2005.

[11] S. Marsh. Formalising Trust as a Computational Concept.
Ph.D. Thesis. Department of Mathematics and Computer
Science, University of Stirling, 1994.

[12] L. Mui, M. Mohtsahemi, C. Ang, P. Szolovits, and
A. Halberstadt. Ratings in Distributed Systems: A Bayesian
Approach. In Proc. of the 11th Workshop on Information
Technologies and Systems, New Orleans, Louisiana, USA,
December 2001.

[13] D. Quercia and S. Hailes. Risk Aware Decision Framework for
Trusted Mobile Interactions. In Proc. of the 1st

IEEE/CreateNet International Workshop on The Value of
Security through Collaboration, Athens, Greece, September
2005.

[14] P.-W. Yau and C. J. Mitchell. 2HARP: A secure routing
protocol to detect failed and selfish nodes in mobile ad hoc
networks. In Proc. of the 5th World Wireless Congress, pages
1–6, San Franciso, USA, 2004.

[15] D. Zhu and M. W. Mutka. Promoting Cooperation Among
Strangers to Access Internet Services from an Ad Hoc Network.
In Proc. of the 12nd IEEE International Conference on
Pervasive Computing and Communications, pages 229–240,
Orlando, FL, USA, March 2004.

