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Abstract

The geodesic distance (path length) and effective resistance are both metrics de-
fined on the vertices of a graph. The effective resistance is a more refined measure
of connectivity than the geodesic distance. For example if there are k edge disjoint
paths of geodesic distance d between two vertices, then the effective resistance is
no more than d

k . Thus, the more paths, the closer the vertices. We continue the
study of the recently introduced p-effective resistance [9]. The main technical
contribution of this note is to prove that the p-effective resistance is a metric for
p ∈ (1, 2] and obeys a strong triangle inequality. Given an efficient method to
compute the p-effective resistance then an easy consequence of this inequality is
that we may efficiently find a k-center clustering within a factor of 2p−1 from the
optimal clustering with respect to p-effective resistance.

1 Introduction

Learning a function defined on a graph has received considerable attention in machine learning. A
common approach is to represent functions defined on a graph by a Hilbert space associated with the
graph Laplacian. The norm induced by the graph Laplacian is a natural measure of smoothness of
these functions. If we are given a partial labeling of the graph this set-up is often referred to as semi-
supervised learning [2, 14, 18, 17, 10]. The unsupervised learning of a labeling is often referred to as
clustering (community detection) see for example [15] and [6, Section VII]. In machine learning and
machine vision, recently, a generalization of the graph Laplacian to a p-(graph) Laplacian has been
discussed in [16, 4, 9]. The dual norm associated with the p-Laplacian induces a metric between
vertices which measures connectivity. In [9] the properties of the pth power of the dual norm were
found to be analogous to the electrical network concept of effective resistance.

A p-resistive network is an undirected graph with an edge-resistance (a positive scalar) associated
with each edge. This may be viewed as a generalization of both an electrical network (p = 2) and of
an undirected flow (“pipe”) network (p = 1). Such networks (graphs) are commonly used in graph-
based semi-supervised learning. For semi-supervised learning, we are given a fixed set of objects,
some of which are labeled and some of which are unlabeled, and we wish to predict the unlabeled
objects. A graph is then defined where an edge between objects indicates similarity between objects.
If the graph is weighted then the weights indicate the degree of similarity (inverse resistance). These
include the min-cut method of [3] (p = 1) and the harmonic energy (power) minimization (p = 2)
procedure of [18] (also [1]). We interpret these methods as specific instances of the minimization
of a p-power [9]. When p = 2 the analogy is that the graph is an electrical network [5]; the edges
are now resistors whose edge-resistance is the reciprocal of the similarity. The fixed labels from
{−1, 1} now correspond to voltage constraints and the algorithm for labeling the graph is then to
find the set of consistent voltages which minimize the power and then to predict with the “sign” of
the voltages. In the case p = 1 this is equivalent to finding the label-consistent min-cut.
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Given an electrical network the effective resistance between two vertices is the voltage difference
needed to induce a unit “current” flow between the vertices i.e., it is resistance measured across
the vertices1. In fact the effective resistance induces a metric on the vertices of the graph, see for
example [13]. Specifically it obeys the the triangle inequality, that is, given vertices va, vb, and vc

rG,2(a, c) ≤ rG,2(a, b) + rG,2(b, c) ,

where rG,2(s, t) denotes the effective resistance between vertex vs and vt on the electric network
as determined by the graph G and the associated set of edge resistances. For a flow network the
1-effective resistance denoted rG,1(s, t) may be defined to be the reciprocal of the minimum value
of a separating-cut of vs and vt where a cut is a set of edges and a cut separates two vertices in a
graph if after removal of the cut edges there is no path between the two vertices. Then the value of
the cut is the sum of the reciprocals of the edge-resistances constituting the cut. Gomory and Hu [7]
observed that the following stronger triangular inequality,

rG,1(a, c) ≤ max(rG,1(a, b), rG,1(b, c)) ,

holds for flow networks. The key technical contribution of this note is then to prove the following
triangular inequality for the p-effective resistance (see Definition 1)

rG,p(a, c) ≤
(
rG,p(a, b)

1
p−1 + rG,p(b, c)

1
p−1

)p−1
which smoothly interpolates from the triangular inequalities at p = 1 to p = 2.

In the following section we provide the formal definition of p-effective resistance. Then we recall
the results of [9] in Theorem 1 which characterize the sense in which p-effective resistance is a
measure of (inverse) connectivity. In Section 3, in Theorem 2, we prove the triangle inequality
for p-resistance. We conclude in Section 4 with an observation about the farthest-first heuristic for
k-center clustering in p-resistance.

2 p-Resistive networks

Let IN be the set of natural numbers and IN` := {1, . . . , `}. If z ∈ IRn then let ‖z‖p :=
p
√∑n

i=1 |zi|p denote the p-norm when p ∈ [1,∞). Given a seminorm ‖·‖ : IRn → IR the dual
seminorm ‖·‖∗ : IRn → IR∪{+∞} is defined on the vector space of linear functionals Z : IRn → IR
as

‖Z‖∗ := sup
w∈IRn

{
|Z(w)|
‖w‖

}
=

[
inf

w∈IRn
{‖w‖ : Z(w) = 1}

]−1
.

The canonical basis vectors of IRn we denote as e1, . . . , en with corresponding functionals
Ei(w) := e>i w.

A weighted graph G = (V,E,A) is a collection of vertices V = {v1, . . . , vn} joined by connecting
(possibly weighted) edges. Denote i ∼ j whenever vi and vj are connected by an edge. We
consider undirected weighted graphs so that E := {(i, j)|i ∼ j} is the set of unordered pairs
of adjacent vertex indexes. A graph is connected if there does not exist partitioning vertex sets
Va, Vb ⊂ V, Va ∪ Vb = V such that for every pair of vertices va ∈ Va and vb ∈ Vb there does not
exist any edge (a, b) ∈ E. Associated with each edge (i, j) ∈ E is a weight Aij > 0 and Aij = 0
if (i, j) 6∈ E, so that A is the weighted symmetric adjacency matrix. For compactness in discussion
we will now refer to a weighted graph G = (V,E,A) as a graph G = (V,E) where the implicit
adjacency matrix A is understood. In this paper we always assume that graphs are connected.

A labelling u ∈ IRn of an n-vertex graph G is viewed as a function u : VG → IR defined on
the vertices of G whereby ui corresponds to the label of vi. We introduce a class of Laplacian
p-seminorms defined on the space of graph labellings: if u ∈ IRn then

‖u‖G,p :=

 ∑
(i,j)∈EG

Aij |ui − uj |p
 1

p

. (1)

1This is distinct and strictly smaller than the edge-resistance associated to an edge connecting the vertices
unless removing this edge separate the networks into distinct components.
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These p-seminorms generalize the commonly used “smoothness functional” uTLu [1, 18] where L
is the graph Laplacian, and as such measure the complexity of graph labellings.

When p = 2 there is an established natural connection [5] between graphs and resistive networks
where each edge (i, j) ∈ EG is viewed as a resistor with resistance πij := 1

Aij
. We exploit this

analogy so that a set of label constraints {(v1, y1), . . . , (v`, y`)} ∈ (VG × IR)` are interpreted as (the
effect of) voltage sources applied to the relevant vertices. This leads to following definition of the
power for a network with voltage constraints,

min
u∈IRn

{‖u‖pG,p : u1 = y1, . . . , u` = y`)}, (p ≥ 1) .

Since the graph is assumed connected there is a unique minimizer if the set of constraints is
nonempty. The effective resistance is the voltage difference needed to induce a unit “current” flow
between vi and vj . With the above definition of power it is natural to generalize the effective resis-
tance as follows,
Definition 1. The p-(effective) resistance between vertex vi and vj is

rG,p(i, j) :=
(
‖Ei − Ej‖∗G,p

)p
(2)

=

(
min
u∈IRn

{
‖u‖pG,p : ui = 1, uj = 0

})−1
, (3)

where (3) follows as ‖u‖pG,p = ‖u+ k1‖pG,p for k ∈ IR. We will now abbreviate p-effective
resistance to p-resistance. In practice the p-resistance between all pairs of vertices may be efficiently
computed in the case p = 1 by construction of a Gomory-Hu tree [7] and for p = 2 by computing
the pseudoinverse of the graph Laplacian (see [13]). For other values of p we may apply conjugate-
gradient directly to the unconstrained optimization given by (3).

The following theorem summarizes some of the characteristics of the p-resistance.
Theorem 1 ([9, Section 4.1.2]). For p ∈ (1,∞) we have the following properties.

1. (Resistors in series) Consider a path graph G, with VG = {v1, v2, . . . , vn}, EG =
{(1, 2), (2, 3)...(n− 1, n)} and edge resistances {π12, π23, . . . , πn−1,n}. Then

rG,p(1, n) =

(
n−1∑
i=1

π
1

p−1

i,i+1

)p−1
.

2. (Resistors in parallel) Consider a multigraph G with two vertices VG = {va, vb} joined by
m edges with edge resistances {πk}mk=1. Then

rG,p(a, b) =

(
m∑
k=1

1

πk

)−1
.

3. (2-Port black box principle) Given a subgraph G′ ⊆ G with only “2 ports” at va and vb,
that is if (i, j) ∈ EG and vi ∈ VG \ VG′ and vj ∈ VG′ then vj ∈ {va, vb}. We may
then construct a graph G′′ that replaces the subgraph G′ with a single edge. So that G′′ is
“electrically” equivalent to G if there are no voltages constraints on VG′ \ {va, vb}. Thus
if G′′ = (VG′′ , EG′′) is constructed so that

VG′′ := (VG \ VG′) ∪ {va, vb}, EG′′ := {(i, j) ∈ EG : vi, vj ∈ VG′′} ∪ {(a, b)} ,
new edge resistance πab = rG′,p(a, b) and if z ∈ IRm then

‖z‖pG′′,p = argmin
u∈IRn

{‖u‖pG,p : u1 = z1, . . . , um = zm} ,

with m = |VG′′ | and n = |VG |.

4. (Rayleigh’s monotonicity principle) Given G with adjacency matrix A. Let G′, with ad-
jacency A′, be identical to G except for the increase in the weight of one arbitrary edge
(a, b), so that A′ab = A′ba = Aab + δ for δ > 0. Then for arbitrary vertices vi and vj ,

rG,p(i, j) ≥ rG′,p(i, j) .
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5. (“p”-monotonicity) Given G and vertices vi and vj if p ≤ s then

rG,p(i, j) ≤ rG,s(i, j) .

We observe that the “resistors in parallel” law is unchanged as a function of p while the “serial”
law generalizes by becoming a ( 1

p−1 )-norm on the edge resistances. Combining these laws with the
2-port black box and Rayleigh’s monotonicity principle demonstrates that the p-resistance between
two vertices is bounded above by d

k where k is the number of edge disjoint paths and d is the
minimum path length as determined by the serial law.

3 Triangle Inequality

We first need a straightforward generalization of the well-known maximum principle for electric
networks (see for example [5]).
Lemma 1 (Maximum principle). Given a network with voltage constraints, the minimizing voltages
are in the interior of the constraints. Thus given a connected graph G, a constant p ≥ 1, and y ∈ IR`
then if

u∗ := argmin
u∈IRn

{‖u‖pG,p : u1 = y1, . . . , u` = y`)} (4)

then
max
i∈INn

u∗i = max
i∈IN`

yi and min
i∈INn

u∗i = min
i∈IN`

yi . (5)

Proof. Suppose (5) is false then without loss of generality, define

m := max
i∈INn

u∗i > max
i∈IN`

yi

and let m′ < m be the value of the second largest component of component of u∗ (m′ =
maxi∈INn{u∗i : u∗i 6= m}). Now construct u′ component-wise via

u′i :=

{
m′ u∗i = m

u∗i u∗i 6= m
(i = 1, . . . , n) .

The vector u′ is a feasible solution of the objective of (4), but ‖u′‖pG,p < ‖u∗‖
p
G,p and this is a

contradiction.

The following is our triangular inequality for p-resistance. We may obtain an equality, for example,
if we have a simple path graph with a ∼ b ∼ c (and more generally if every path from va to vc
must contain vb) by Theorem 1 (series law). The inequality (6) also implies that the “usual” triangle
inequality holds for the p-resistance if p ∈ (1, 2] and cannot for p ∈ (2,∞) because of the equality
on the path graph. With respect to (7) the fact that ‖·‖∗G,p is a semi-norm and | · |s (0 ≤ s ≤ 1) is a
subadditive function implies the inequality is a triviality for q ∈ (0, 1] thus the “interesting” range is
q ∈ (1, p

p−1 ).

Theorem 2 (Triangle Inequality). Given a graph G and vertices va, vb, and vc then

rG,p(a, c) ≤
(
rG,p(a, b)

1
p−1 + rG,p(b, c)

1
p−1

)p−1
p ∈ (1,∞) (6)

and thus for all 0 < q ≤ p
p−1 we also have,(

‖Ea − Ec‖∗G,p
)q ≤ (‖Ea − Eb‖∗G,p)q + (‖Eb − Ec‖∗G,p)q p ∈ (1,∞) (7)

Proof. Construct a graph G̃, see figure 1, which consists of two duplicates G′,G′′ of G joined together
at the vertices v′b and v′′b which are now identified as a single vertex. Thus

VG̃ := {v′1, . . . , v′n, v′′1 , . . . , v′′b−1, v′′b+1, . . . , v
′′
n}

and

EG̃ :={(v
′
i, v
′
j) : (vi, vj)∈EG}∪{(v′′i , v′′j ) : (vi, vj)∈EG and vb 6∈ {vi, vj}}∪{(v′′i , v′b) : (vi, vb)∈EG}

4



v′a v′′a

v′′cv′c

v′b

Figure 1: The graph G̃

and the edge weights of G̃ correspond to those of G. We now argue that

rG̃,p(a
′, c′′) =

(
rG,p(a, b)

1
p−1 + rG,p(b, c)

1
p−1

)p−1
p ∈ (1,∞). (8)

First observe that rG,p(a, b) = rG̃,p(a
′, b′) for if we define the power minimizer

w := argmin
u∈IRn

{‖u‖pG,p : ua = 1, ub = 0}

and the power minimizer

w̃ := argmin
u∈IR2n−1

{‖u‖pG̃,p : u
′
a = 1, u′b = 0}

is “decoupled” as w̃ = (w′ = w,w′′ = 0), and similarly rG,p(b, c) = rG̃,p(b
′, c′′) We may compute

rG̃,p(a
′, c′′) as follows

rG̃,p(a
′, c′′) =

(
min

u∈IR2n−1

{
‖u‖pG̃,p : u

′
a = 1, u′′c = 0

})−1
(9)

=

min
λ∈IR

 min
u∈IR2n−1

{
‖u‖pG̃,p : u

′
a = 1, u′b = λ

}
+

min
u∈IR2n−1

{
‖u‖pG̃,p : u

′
b = λ, u′′c = 0

}


−1

(10)

=

(
min
λ∈IR

[
|1− λ|p

rG,p(a, b)
+

|λ|p

rG,p(b, c)

])−1
(11)

where (9) follows from (3). This optimization is split into separate optimizations coupled only via
λ in (10). Then since

|α|p‖u‖pG,p = ‖αu+ k1‖pG,p
and rG,p(a, b) = rG̃,p(a

′, b′) as well as rG,p(b, c) = rG̃,p(b
′, c′′) this gives (11). We observe that the

minimizing λ of (11) is

λ∗ =
rG,p(b, c)

1
p−1

rG,p(a, b)
1

p−1 + rG,p(b, c)
1

p−1

after substituting λ = λ∗ into the minimand of (11) then (8) follows immediately.

We now proceed to prove
rG,p(a, c) ≤ rG̃,p(a

′, c′′) , (12)

which is equivalent to

min
u∈IR2n−1

{
‖u‖pG̃,p : u

′
a = 1, u′′c = 0

}
≤ ‖u∗‖pG,p , (13)
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with
u∗ := argmin

u∈IRn

{
‖u‖pG,p : ua = 1, uc = 0

}
.

We construct the vector ũ := (ũ′, ũ′′) ∈ IR2n−1 as

ũ′i :=

{
u∗i u∗i > u∗b
u∗b u∗i ≤ u∗b

(i = 1, . . . , n) ; ũ′′i :=

{
u∗i u∗i < u∗b
u∗b u∗i ≥ u∗b

(i = 1, . . . , n− 1) . (14)

We infer that u∗b ∈ [0, 1] from Lemma 1 thus ũ′a = 1 and ũ′′c = 0 and therefore the vector ũ is a
feasible solution to the objective of the left-hand-side of (13). We now define the three index sets,

L := {i ∈ INn : u∗i < u∗b} ,M := {i ∈ INn : u∗i = u∗b} and H := {i ∈ INn : u∗i > u∗b}
Which we use to compute ‖ũ‖pG̃,p (where A is the adjacency matrix of G),

‖ũ‖pG̃,p =
∑

{(i,j)∈L2:i<j}
Aij |ũ′i − ũ′j |p +

∑
{(i,j)∈H2:i<j}

Aij |ũ′i − ũ′j |p +
∑

{(i,j)∈M2:i<j}
Aij |ũ′b − ũ′j |p (15)

+
∑

{(i,j)∈L×H}
Aij |ũ′i − ũ′j |p +

∑
{(i,j)∈M×L∪H}

Aij |ũ′b − ũ′j |p

+
∑

{(i,j)∈L2:i<j}
Aij |ũ′′i − ũ′′j |p +

∑
{(i,j)∈H2:i<j}

Aij |ũ′′i − ũ′′j |p +
∑

{(i,j)∈M2:i<j}
Aij |ũ′b − ũ′′j |p

+
∑

{(i,j)∈L×H}
Aij |ũ′′i − ũ′′j |p +

∑
{(i,j)∈M×L∪H}

Aij |ũ′b − ũ′′j |p

eliminating “zero” terms we have,

‖ũ‖pG̃,p =
∑

{(i,j)∈H2:i<j}
Aij |ũ′i − ũ′j |p +

∑
{(i,j)∈L×H}

Aij |ũ′i − ũ′j |p +
∑

{(i,j)∈M×H}
Aij |ũ′b − ũ′j |p (16)

+
∑

{(i,j)∈L2:i<j}
Aij |ũ′′i − ũ′′j |p +

∑
{(i,j)∈L×H}

Aij |ũ′′i − ũ′′j |p +
∑

{(i,j)∈M×L}
Aij |ũ′b − ũ′′j |p

rewriting using the definition of ũ in (14)

‖ũ‖pG̃,p =
∑

{(i,j)∈H2:i<j}
Aij |u∗i − u∗j |p +

∑
{(i,j)∈L×H}

Aij |u∗b − u∗j |p +
∑

{(i,j)∈M×H}
Aij |u∗b − u∗j |p (17)

+
∑

{(i,j)∈L2:i<j}
Aij |u∗i − u∗j |p +

∑
{(i,j)∈L×H}

Aij |u∗i − u∗b |p +
∑

{(i,j)∈M×L}
Aij |u∗b − u∗j |p.

We now compute

‖u∗‖pG,p =
∑

{(i,j)∈H2:i<j}
Aij |u∗i − u∗j |p +

∑
{(i,j)∈L×H}

Aij |u∗i − u∗j |p +
∑

{(i,j)∈M×H}
Aij |u∗b − u∗j |p (18)

+
∑

{(i,j)∈L2:i<j}
Aij |u∗i − u∗j |p +

∑
{(i,j)∈M×L}

Aij |u∗b − u∗j |p.

Now subtracting we have

‖u∗‖pG,p − ‖ũ‖
p

G̃,p =
∑

{(i,j)∈L×H}
Aij |u∗i − u∗j |p −

∑
{(i,j)∈L×H}

Aij
(
|u∗i − u∗b |p + |u∗b − u∗j |p

)
(19)

therefore since
(|r|+ |s|)p ≥ |r|p + |s|p for p ≥ 1 , (20)

we have that ‖ũ‖pG̃,p ≤ ‖u
∗‖pG,p and since ũ is a feasible solution for the minimand of the left-hand-

side of (13) this proves (12).

Finally substituting (8) into (12) proves (6) from which (7) follows immediately.
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4 Clustering with p-resistance

The metric k-center clustering problem is to find the solution to the following objective,

min
v∗1 ,...,v

∗
k∈V

max
v∈V

min
i∈INk

d(v, v∗i ) . (21)

Thus the goal is to find k centers v∗1 , . . . , v
∗
k such that maximum distance from any center is mini-

mized where d(·, ·) is a metric on the set V . The “farthest-first” heuristic for this problem is known
to give 2-opt clustering [8, 11] for this problem, which is matched by the result that there is no
polynomial-time (2 − ε)-opt approximation algorithm [8, 12] unless P = NP. Given the strong
triangle inequality proved for p-resistance we now argue that the “farthest-first” heuristic gives a
2p−1-opt algorithm for clustering the vertices of a graph by p-resistance by a simple modification of
the original proofs.

Input: A set V = v1, . . . , vn, an positive integer k and a metric d(V, V )→ IR
Initialization: ṽ1 = v1
for t = 2, . . . , k do
ṽt = argmaxv∈V mini∈INt−1

d(v, ṽi)
end for2

return {ṽ1, . . . , ṽk}

Figure 2: Farthest-first clustering

Theorem 3. Given a graph G the farthest first algorithm gives a 2p−1-opt k-center clustering with
respect to the p-resistance for p > 1.

Proof. Let,
C∗ := min

v∗1 ,...,v
∗
k∈V

max
v∈V

min
i∈INk

rG,p(v, v
∗
i )

where {v∗1 , . . . , v∗k} is a minimizer and let

C̃ := max
v∈V

min
i∈INk

rG,p(v, ṽi)

where {ṽ1, . . . , ṽk} is the approximate solution returned by farthest-first algorithm, thus we prove

C̃ ≤ 2p−1C∗ .

Consider the construction of ṽ1, . . . , ṽk each of the points must be separated from each other by at
least C̃ further there must exist one additional point ṽk+1 which is also separated by C̃ otherwise
the farthest-first clustering would cost less than C̃. Now given these k + 1 points ṽ1, . . . , ṽk+1 by
the pigeonhole principle two of these points ṽ′, ṽ′′ must share a center v∗ ∈ {v∗1 , . . . , v∗k} such that
rG,p(ṽ′, v∗) ≤ C∗ and rG,p(ṽ′′, v∗) ≤ C∗. An application of the p-resistance triangle inequality (6)
gives,

C̃ ≤ rG,p(ṽ′, ṽ′′) ≤ 2p−1C∗ .

We observe that the farthest-first algorithm is optimal as p→ 1.
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sions. Finally, I would like to thank the PASCAL 2 European network of excellence for supporting
this work through the grant, “Data-Dependent Geometries and Structures : Analyses and Algorithms
for Machine Learning.”

2Ties may be resolved arbitrarily.
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