Exploiting Cluster Structure to Predict the Labeling of a Graph

ALT 2008

Mark Herbster
University College London
Department of Computer Science

16 October, 2008

Overview

1. Give perceptron-like algorithm for graph label prediction
2. Improve on Perceptron bound when cluster-structure

"Default" Assumption

- "Cluster" Assumption

Outline

- Review: Online graph label prediction
- Review: Predicting labeling of a graph with a perceptron
- Problem: Multiple clusters (Perceptron fails)
- Solution: Pounce algorithm
- Bound: Via cover of input space
- Application: Heat kernel
- Moral: Value of unlabeled data

A prediction game

Let's try again

Online Learning Model

- Aim: learn a function $\boldsymbol{u}: V \rightarrow\{-1,+1\}$ corresponding to a labeling of a graph $G=(V, E)$ and $V=\{1, \ldots, n\}$.
- Learning proceeds in trials

for $t=1, \ldots, \ell$ do

1. Nature selects $v_{t} \in V$
2. Learner predicts $\hat{y}_{t} \in\{-1,+1\}$
3. Nature selects $y_{t} \in\{-1,+1\}$
4. If $\hat{y}_{t} \neq y_{t}$ then mistakes $=$ mistakes +1

- Learner's goal: minimize mistakes
- Bound: mistakes $\leq f($ complexity (\boldsymbol{u}))

Perceptron Bound (Novikoff)

Theorem [Novikoff]:
Given a sequence $\left\{\left(\boldsymbol{x}_{t}, y_{t}\right)\right\}_{t=1}^{\ell} \subseteq \mathcal{H} \times\{-1,1\}$ then the mistakes of the perceptron are bounded by

$$
M \leq\|\boldsymbol{u}\|^{2} R
$$

with $R=\max _{t}\left(\left\|\boldsymbol{x}_{t}\right\|^{2}\right)$ for all $\boldsymbol{u} \in \mathcal{H}$ such that

$$
\left\langle\boldsymbol{u}, \boldsymbol{x}_{t}\right\rangle y_{t} \geq 1
$$

for $t=1, \ldots, \ell$.

Signed Laplacian

Matrix-Edge Decomposition
If \mathbf{G} is a symmetric matrix then
where $\left(\boldsymbol{e}_{i}\right)_{j}=\delta_{i j}$ with $a_{i j}, b_{i j}>0$ and $c_{i} \in \mathbb{R}$ and thus

$$
\|\boldsymbol{u}\|_{\mathbf{G}}^{2}=\boldsymbol{u}^{\top} \mathbf{G} \boldsymbol{u}=\sum_{(i, j) \in E^{+}} a_{i j}\left(u_{i}-u_{j}\right)^{2}+\sum_{(i, j) \in E^{-}} b_{i j}\left(u_{i}+u_{j}\right)^{\top}+\sum_{i=1}^{n} c_{i} u_{i}^{2}
$$

Definitions

- G is a graph Laplacian if $E^{-}=\emptyset$ and $c_{1}=\cdots=c_{n}=0$
- \mathbf{G} is a signed graph Laplacian if $c_{1} \geq 0, \ldots, c_{n} \geq 0$ (p.s.d.)

Examples

$$
\begin{array}{lll}
\|\boldsymbol{u}\|^{2}=3 \times 4 & \text { positive unit-edges } & \|\boldsymbol{u}\|^{2}=12 \times 4 \\
\|\boldsymbol{u}\|^{2}=10 \times 4 & \text { negative unit-edges } & \|\boldsymbol{u}\|^{2}=1 \times 4
\end{array}
$$

Resistance distance

The resistance distance [KR93] between vertex \boldsymbol{v}_{p} and \boldsymbol{v}_{q},

$$
\left\|\boldsymbol{v}_{p}-\boldsymbol{v}_{q}\right\|_{\mathbf{G}}^{2}=\left(\boldsymbol{e}_{p}-\boldsymbol{e}_{q}\right)^{\top} \mathbf{G}^{+}\left(\boldsymbol{e}_{p}-\boldsymbol{e}_{q}\right)
$$

is the effective resistance between \boldsymbol{v}_{p} and \boldsymbol{v}_{q}. The graph is the circuit and edge (i, j) has resistance $a_{i j}^{-1}$.

- Resistance Diameter : $R_{G}:=\max _{p, q \in V}\left\|\boldsymbol{v}_{p}-\boldsymbol{v}_{q}\right\|_{G}^{2}$
- Geodesic distance upper bounds the resistance desistance

Resistance Diameter: $R_{G}=1$

Predicting the Labeling of a Graph with the Perceptron

Theorem[HP06]:

The mistakes of perceptron are bounded by

$$
M \leq 2\|\boldsymbol{u}\|^{2} R_{G}+2
$$

for all consistent labelings $\boldsymbol{u} \in[-1,1]^{n}$.
Proof.
If \mathbf{G} is a Laplacian use kernel $\mathbf{G}^{+}+11^{\top} R_{\mathbf{G}}$.

Observations

- Optimal \boldsymbol{u}^{*} are the voltages which minimizes energy
- Optimal $\left\|\boldsymbol{u}^{*}\right\|^{2}$ is bounded by each label-separating cut.

Bound: 2 Prototype Clusters

- Two m-cliques with ℓ edges $(\ell<m)$ between cliques
- Norm: $\|\boldsymbol{u}\|^{2}=4 \ell$
- Resistance diameter: $R_{G} \leq 5 / \ell$
- Perceptron: $M \leq 42$ (independent of ℓ and m)
- Does this generalize to multiple clusters? No!

Problem: 3 Clusters

3 clusters (one in isolation)

- Three m-cliques
- Two m-cliques with ℓ edges $(c m<\ell<m)$ between cliques
- An "isolated" clique with $\Theta(1)$ outgoing edges.
- Norm: $\|\boldsymbol{u}\|^{2}=\Theta(\ell)$, Resistance diameter: $R_{\mathbf{G}}=\Theta(1)$
- Problem: perceptron: $M \leq \Theta(\ell)$ (dependent on ℓ)

Pounce Bound Motivation

Input space X of radius R with cover number $\mathcal{N}(X, \rho)=7$.

- Bounds to be dependent on structure of input space X.
- Novikoff is only dependent on X through radius R.
- Expectation is that a typical ambient input space is only sparsely populated (cf manifold/cluster hypotheses).
- Pounce will depend on the cover of X.
- In particular the number of balls $\mathcal{N}(X, \rho)$ of diameter ρ.

Pounce Algorithm

```
Notation: \(\mathcal{V}_{\mathbf{G}}:=\left\{\boldsymbol{v}_{i}:=\boldsymbol{e}_{i}^{\top} \mathbf{G}^{+}: i \in\{1,2, \ldots, n\}\right\}\)
Input: \(\left\{\left(\boldsymbol{v}_{i_{t}}, y_{t}\right)\right\}_{t=1}^{\ell} \subseteq \mathcal{V}_{\mathbf{G}} \times\{-1,1\}\).
Initialization: \(\boldsymbol{w}_{2}=\mathbf{0} ; \mathcal{M}=\{1\}\).
for \(t=2, \ldots, \ell\) do
    Receive: \(i_{t} \in\{1, \ldots, n\}\)
        \(\eta_{t}=\arg \min _{j \in \mathcal{M}}\left\|\boldsymbol{v}_{i_{t}}-\boldsymbol{v}_{i_{j}}\right\|\)
    Predict: \(\hat{y}_{t}=\operatorname{sign}\left(y_{\eta_{t}}+\boldsymbol{w}_{t}\left(i_{t}\right)-\boldsymbol{w}_{t}\left(i_{\eta_{t}}\right)\right)\)
    Receive: \(y_{t}\)
    if \(\hat{y}_{t}=y_{t}\) then
        \(\boldsymbol{w}_{t+1}=\boldsymbol{w}_{t}\)
    else
\[
\begin{aligned}
& \boldsymbol{w}_{t+1}=\boldsymbol{w}_{t}+\frac{y_{t}-y_{\eta_{t}}-\left(\boldsymbol{W}_{t}\left(i_{t}\right)-\boldsymbol{W}_{t}\left(i_{\eta_{t}}\right)\right)}{\left\|\boldsymbol{V}_{i_{t}}-\boldsymbol{V}_{i_{\eta_{t}}}\right\|^{2}}\left(\boldsymbol{v}_{i_{t}}-\boldsymbol{v}_{i_{\eta_{t}}}\right) \\
& \mathcal{M}=\mathcal{M} \cup\{t\}
\end{aligned}
\]
end
```


Pounce Bound

Theorem

The mistakes M of Pounce are bounded by

$$
M \leq \mathcal{N}(X, \rho)+\|\boldsymbol{u}\|^{2} \rho+1
$$

for all $0<\rho$, and for all $\boldsymbol{u} \in \mathbb{R}^{n}$ such that

$$
\boldsymbol{u}\left(i_{t}\right) y_{t} \geq 1
$$

for all $t=1, \ldots, \ell$.

- Definition: $\mathcal{N}(X, \rho)$ is the minimum number of balls of squared diameter ρ that cover X.
- Three Clusters: $|\mathcal{M}| \leq 20$ with $\left(\rho=\frac{2}{m-1}, \mathcal{N}(X, \rho)=3\right.$, and $\left\|\boldsymbol{u}^{*}\right\|^{2}<8 \ell$)

Application: Heat Kernel

The Heat Kernel is used to build Laplacian from data.
Discrepancy Function

- $d: \mathcal{X} \times \mathcal{X} \rightarrow[0, \infty)$
- $d(x, y)=d(y, x)$
- $(d(x, y)=0) \Longleftrightarrow(x=y)$

Heat Kernel Laplacian

Given $X=\left\{x_{1}, \ldots, x_{n}\right\} \subseteq \mathcal{X}$, discrepancy d, and $a>0$ then

$$
G_{i j}^{a}:= \begin{cases}-e^{-a d\left(x_{i}, x_{j}\right)} & i \neq j \\ \sum_{k \neq i}^{n} e^{-a d\left(x_{i}, x_{k}\right)} & i=j\end{cases}
$$

a is a scale parameter

(Component) Separating Cover

Definitions

- $\mathcal{N}^{\circ}(\mathcal{X}, \mathcal{Y}, d)$ is the separating cover number the minimal number of balls of diameter ρ covering \mathcal{X} with $\mathcal{Y}(x) \neq \mathcal{Y}\left(x^{\prime}\right) \rightarrow d\left(x, x^{\prime}\right)>\rho$
- $x, x^{\prime} \in X$ are ρ-path-connected if $d\left(x, x^{\prime}\right) \leq \rho$ or $\exists x^{\prime \prime}$ such that $d\left(x, x^{\prime \prime}\right) \leq \rho$ and $x^{\prime \prime}, x^{\prime}$ are ρ-path-connected.
- $\mathcal{C}^{\circ}(X, \mathcal{Y}, d)$ is the component-separating cover number ... ρ-path-connected sets ...
$\mathcal{Y}(x) \neq \mathcal{Y}\left(x^{\prime}\right) \rightarrow d\left(x, x^{\prime}\right)>\rho$.

$$
\begin{aligned}
\mathcal{N}^{\circ}(\mathcal{X}, \mathcal{Y}, d) & =42 \\
\mathcal{C}^{\circ}(X, \mathcal{Y}, d) & =2
\end{aligned}
$$

Heat Kernel Bound

Theorem

There exists an $a^{\prime}>0$ such that for all $a>a^{\prime}$ the mistakes M of the Pounce algorithm with Laplacian \mathbf{G}^{a} are bounded by

$$
M \leq \mathcal{C}^{\circ}(X, \mathcal{Y}, d)+1 \leq \mathcal{N}^{\circ}(\mathcal{X}, \mathcal{Y}, d)+1 \quad(*)
$$

Observe

- As X increases potentially $\mathcal{C}^{\circ}(X, \mathcal{Y}, d) \ll \mathcal{N}^{\circ}(\mathcal{X}, \mathcal{Y}, d)$

The Value of Unlabeled Data

Two Path connected components

- Center row of m labels is the task.
- Center row is labeled randomly.
- Expected mistakes of any algorithm not using unlabeled data is $M=\frac{m}{2}$.
- Aligned unlabeled data \longrightarrow Pounce's bound is $M \leq 3$.
- Example implies a limitation in the type bounds provable for non-transductive algorithms.

Thanks

Thank You!

