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Overview

1. Give perceptron-like algorithm for graph label prediction
2. Improve on Perceptron bound when cluster-structure

“Default” Assumption — “Cluster” Assumption



Outline

Review: Online graph label prediction

Review: Predicting labeling of a graph with a perceptron
Problem: Multiple clusters (Perceptron fails)

Solution: Pounce algorithm

Bound: Via cover of input space

Application: Heat kernel

Moral: Value of unlabeled data
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A prediction game
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Let’s try again
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Online Learning Model

» Aim: learn a function u: V — {—1,+1} corresponding to a
labeling of a graph G = (V,E)and V ={1,...,n}.

» Learning proceeds in trials

fort=1,...,/do

1. Nature selects v; € V

2. Learner predicts j; € {—1,+1}

3. Nature selects y; € {—1,+1}

4. If y; # y; then mistakes = mistakes + 1

» Learner’s goal: minimize mistakes
» Bound: mistakes < f(complexity(u))



Perceptron Bound (Novikoff)

Theorem [Novikoff]:

Given a sequence {(X:, y1)}i_; € H x {—1,1} then the
mistakes of the perceptron are bounded by

M < |lu|*R
with R = max;(||x;||*) for all u € H such that

(u, xe)yr > 1
fort=1,...,/4

Signed Laplacian

Matrix-Edge Decomposition
If G is a symmetric matrix then

(I.))EET (/,/)EE—
where (e;); = ; with a;;, b > 0 and ¢; € R and thus

lulg=u"Gu= > aj(u + ) bj(ui+uy) +Zc,

(iJ)eEt (/,/)eE—

Definitions

» Gis agraph Laplacianif E- =0andc;=---=¢c, =0

» G is a signed graph Laplacianif ¢ > 0,...,¢c, > 0 (p.s.d.)



Examples

|ul|? =3 x 4 positive unit-edges  ||u||? =12 x 4
|ul|? = 10 x 4 negative unit-edges ||u||? =1 x 4

Resistance distance

The resistance distance [KR93] between vertex v, and vy,
[Vp — VqHé = (ep—eq)'G"(ep — €q)

is the effective resistance between v, and v4. The graph is the

circuit and edge (i, j) has resistance a,.j_.1.

> Resistance Diameter : Rg := maxp gev [|[Vp — Vqlla
» Geodesic distance upper bounds the resistance desistance

Resistance Diameter: Rg = 1



Predicting the Labeling of a Graph with the Perceptron

Theorem[HPO6]:
The mistakes of perceptron are bounded by

M < 2||u||*Rg + 2
for all consistent labelings u € [—1,1]".

Proof.
If G is a Laplacian use kernel G + 117 Rg.

Observations

» Optimal u* are the voltages which minimizes energy
» Optimal ||u*||° is bounded by each label-separating cut.

Bound: 2 Prototype Clusters
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Two m-cliques with ¢ edges (¢ < m) between cliques
Norm: |ul|® = 4¢

Resistance diameter: Rg < 5/¢

Perceptron: M < 42 (independent of £ and m)

Does this generalize to multiple clusters? No!

vV vV.v v VY



Problem: 3 Clusters

3 clusters (one in isolation)

Three m-cliques

Two m-cliques with ¢ edges (cm < ¢ < m) between cliques
An “isolated” clique with ©(1) outgoing edges.

Norm: |u||* = ©(¢), Resistance diameter: Rg = ©(1)
Problem: perceptron: M < ©(¢) (dependent on /)
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Pounce Bound Motivation

Input space X of radius R with cover number N'(X, p) = 7.
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Bounds to be dependent on structure of input space X.
Novikoff is only dependent on X through radius R.

» Expectation is that a typical ambient input space is only
sparsely populated (cf manifold/cluster hypotheses).

» Pounce will depend on the cover of X.
» In particular the number of balls /(X p) of diameter p.
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Pounce Algorithm

Notation: Vg := {v,:=e/G" :ie {1,2,...,n}}
Inpl‘It: {(Vipyt)}§:1 C Vg X {_17 1}
Initialization: w, = 0; M = {1}.
fort=2,...,/do
Receive: ii € {1,...,n}
ne = arg ming v [|vi, — vy |
Predict: y; = sign(y,, + w:(i;) — wi(ip,))
Receive: y;
if j\/t = Vi then
Wi1 = Wy

else
. Ye—Yn; —(Wi(i)=Wi(in))) o, .
Wiet = Wik Ty Ty, e (Vi Via)

M=MU({t}

end

Pounce Bound

Theorem
The mistakes M of POUNCE are bounded by

M<N(X,p)+ |ulPp+1,
for all 0 < p, and for all u € R"” such that

u(ir)yr > 1
forallt=1,...,¢.

» Definition: N (X, p) is the minimum number of balls of
squared diameter p that cover X.

» Three Clusters: | M| < 20 with (p = 2=, N(X, p) =3,
and ||u*||? < 8¢)



Application: Heat Kernel

The Heat Kernel is used to build Laplacian from data.

Discrepancy Function

> d: X xX —[0,00)

> d(x,y)=d(y,x)
> (d(x,y) =0) = (x=y)

Heat Kernel Laplacian
Given X = {xq,...,xp} C &, discrepancy d, and a > 0 then

N
ij - ZZ;AI e_avd(x,-,xk) ,':j

ais a scale parameter

(Component) Separating Cover

Definitions

> N°(X,),d) is the separating cover number
the minimal number of balls of diameter p
covering X with Y(x)# Y (x') —d(x,x")>p

» x,x’ € X are p-path-connected if
d(x,x’) < por3dx” such that d(x, x"”) < p
and x”, x’ are p-path-connected.

> C°(X,),d) is the component-separating
cover number ... p-path-connected sets ...
V(x) # Y(x') = d(x,x') > p.




Heat Kernel Bound

Theorem
There exists an & > 0 such that for all a > & the mistakes M of
the POUNCE algorithm with Laplacian G2 are bounded by

M<C(X,Y,d) +1 <N (X, ,d) +1 ()

Observe
» As X increases potentially C°(X, ), d) < N°(X,V,d)

The Value of Unlabeled Data
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Two Path connected components

» Center row of m labels is the task.
» Center row is labeled randomly.

» Expected mistakes of any algorithm not using unlabeled
datais M = 7.

» Aligned unlabeled data — POUNCE’s bound is M < 3.

» Example implies a limitation in the type bounds provable
for non-transductive algorithms.



Thanks

Thank You!



