
Software Tools for Technology Transfer manuscript No.
(will be inserted by the editor)

Crawlability Metrics for Automated Web Testing

Alessandro Marchetto1, Roberto Tiella1, Paolo Tonella1, Nadia Alshahwan2 and Mark Harman2

1 Fondazione Bruno Kessler – IRST, Trento, Italy; e-mail: {marchetto,tiella,tonella}@fbk.eu,
2 Kings College London, CREST Centre, Strand, London, UK; e-mail: {Nadia.Alshahwan,Mark.Harman}@kcl.ac.uk

Received: / Revised version:

Abstract. Modern Web applications are exposed to fre-
quent changes both in requirements and involved tech-
nologies. At the same time there’s a continuously grow-
ing demand for quality and trust. Such a fast evolution
and quality constraints claim for mechanisms and tech-
niques for automated testing.

Web application automated testing often involves ran-
dom crawlers to navigate the application under test and
automatically explore its structure. However, due to the
specific challenges of the modern Web systems, auto-
matic crawlers may leave large portions of the appli-
cation unexplored. In this paper, we propose the use
of structural metrics to predict whether an automatic
crawler with given crawling capabilities will be sufficient
or not to achieve high coverage of the application under
test. In this work, we define a taxonomy of such capa-
bilities and we determine which combination of them is
expected to give the highest reward in terms of coverage
increase. Our proposal is supported by an experiment in
which 19 Web applications have been analyzed.

Keywords: Web applications, Crawlers, Crawlabil-
ity and Testability, Measures and Metrics, Web Testing.

1 Introduction

Modern Web systems evolve rapidly and there is a strong
need for providing robust mechanisms for quality assur-
ance and trust. Testing is one of the most wide spread
approaches to verify the quality of a Web application. In
the literature, several Web testing techniques have been
proposed (e.g., [11,30]).

In the evolution of Web systems and their test cases,
the task of generating test cases to cover the existing
and new functionality and the exploration of the Web

system’s navigation structure are closely interwoven ac-
tivities. Understanding the structure of a Web applica-
tion, usually performed by means of crawling, is closely
related to the task of seeking to cover the system for
achieving test coverage. This task is quite challenging,
with respect to testing of conventional systems [3,39].
For instance, Web systems are highly dynamic; testing
must take into account coverage of the form structure,
client-side scripting and server-side code, all of which
have a bearing on the behavior of the Web system under
test.

Previous works on testing of Web applications have
been mainly focused on the generation of test cases to
achieve coverage [11,30] in a manual or only partially
automated way. The special features of Web applica-
tions suggest that the coverage to be expected from fully
automated testing (e.g., the one realized by means of
automated crawlers) will not be complete. Automatic
crawlers may leave large portions of the application un-
der test unexplored. Indeed, there is recent evidence that,
even state–of–the–art test data generation systems for
conventional 3rd generation code are only capable of
achieving relatively modest levels of coverage at the in-
terprocedural level [24].

This paper takes as starting points the assumptions
that: (i) modern Web applications have a limited crawla-
bility degree (intuitively, the crawlability is the property
of a Web application to be traversed by an automatic
— e.g., random — crawler); and (ii) automated test
data generation for Web applications (e.g., by means of
random-based strategies) will not provide a complete so-
lution to the testing of Web applications.

As a result, there will be the need for further, manual
testing activity after an initial automated phase of test
data generation has “done the best it can”. This under-
lying assumption motivates our in–testing approach,
in which we seek to measure the application under test
for guiding the user in improving the test data genera-

2 Marchetto, Tiella, Tonella, Alshahwan and Harman: Crawlability Metrics for Automated Web Testing

tion only focusing where it is actually needed (e.g., on
those forms that can be hardly explored by the auto-
matic crawler). Our in–testing approach collects a set
of measures concerning the properties of the Web system
that can impact its crawlability as it attempts to cover
it using automated test data generation.

In this paper, we propose the use of three structural
metrics for predicting whether an automatic (e.g., ran-
dom) crawler will be sufficient or not to achieve high cov-
erage of the application structure, i.e., to explore all the
pages of an application. Furthermore, when the crawler
is insufficient, the user intervention can be required or
more advanced crawling capabilities must be added be-
fore asking for the user’s help. In this work we provide an
overview of the most relevant crawler capabilities con-
nected with the application crawlability and we deter-
mine which combination of such capabilities is expected
to give the highest reward in terms of coverage increase.

An experiment has been conducted on 19 real Web
applications to evaluate: (i) the relationship between the
proposed metrics and the runtime generated pages to be
crawled, so estimating their ability of predicting such
number of pages; and (ii) the impact of different crawler
capabilities on the page crawlability. Overall, we have
analyzed a set of 58 HTML forms contained in 51 Web
pages (mainly HTML and PHP pages) of the considered
Web applications, that generate at runtime 189 differ-
ent client-side pages to be crawled during testing. The
obtained results are encouraging for our in–testing ap-
proach. Some of our metrics are considered strong indi-
cators of crawlability and a limited set of crawler capa-
bilities (i.e., 3/4 well-known and simple capabilities) can
be used to cover a lot of dynamically generated pages.

In detail, this work extends our previous work [2]
with the following contributions:

1. We introduce, for the first time to the best of our
knowledge, the notion of crawlability of a Web appli-
cation and the structural aspects of an application
that impacts it.

2. We introduce three metrics (with some additional
variants for each one) that are proposed to estimate
the crawlability of an application and predict whether
a crawler with given capabilities is sufficient to ex-
plore the application.

3. We present a taxonomy of the possible crawler ca-
pabilities expected to be related to the ability of the
crawler of exploring the pages of the application.

4. We present our idea of the in–testing framework,
integrating and interweaving test data generation,
computation of crawlability metrics and human in-
tervention.

5. We present an experiment in which 19 Web applica-
tions have been analyzed to evaluate the relationship
between the set of pages dynamically generated from
the applications with respect to: (i) our metrics; and
(ii) the crawler capabilities. Though further investi-

Fig. 1. The in–testing framework showing the sequence of testing
steps to be taken by the tester. In the figure: rectangles indicate
artifacts (e.g., pages downloaded by the crawler); ovals represent
the steps performed by means of the framework for supporting
the application testing; and arrows represent the flow of the step
execution

gations are required to strongly confirm the obtained
results, they provide some evidence to suggest that
our in–testing approach can collect useful measure-
ments during automated Web testing that can be
used to inform the on-going testing process.

The rest of the paper is organized as follows: Sec-
tion 2 presents the proposed testing framework, to give
the reader a high level picture of the research context
of this work. Section 3 formally introduces the notion of
application crawlability and relevant aspects impacting
it. Section 4 details the metrics that we propose to eval-
uate the crawlability during application testing. Section
5 summarizes the results of an experiment performed to
evaluate the proposed suite of metrics. Finally, Section 6
presents related work and Section 7 concludes the paper,
presenting also our future work.

2 Framework

Testing tools that aim at page coverage are typically
based on Web crawling. Given a base URL, they auto-
matically navigate links starting from that URL and use
automated input generation techniques to process forms.

In our previous paper [2] we presented a framework
that tries to overcome the three primary problems of
these tools: (i) not all forms can be automatically filled
by such tools; and (ii) after running them we do not
precisely know how much application coverage has been
achieved; (iii) it is not clear which application inputs
should be changed in order to increase such a coverage.

Figure 1 summarizes the most relevant activities of
the in–testing framework. The URL for the starting
page of the Web application under test is provided by
the user and crawling starts from that point. The crawler
downloads the Web page (step 1 in Figure 1) and iden-
tifies any forms it contains (step 2).

Marchetto, Tiella, Tonella, Alshahwan and Harman: Crawlability Metrics for Automated Web Testing 3

At this step, typical Web application testing tools,
following the dashed arrow, automatically generate in-
put values (e.g., using random values; using input taken
from a predefined database or from previously logged
user sessions) for these forms and test cases are created
(step 5a). The crawler then resumes crawling using those
created test cases and the process is repeated for each
encountered page.

In the framework we are proposing, forms, client-side
code (extracted from downloaded pages, step 3b) and
involved server-side code (identified in step 3a) are ana-
lyzed and crawlability indicators are calculated for each
form (step 4). These indicators are then used both for
generating a ranking of forms (step 5b) and for improv-
ing the automatic generation of inputs (step 5a).

Forms ranked by estimated crawlability are displayed
to the user, who is asked to fill the lowest crawlabil-
ity forms with inputs from equivalence classes not con-
sidered so far (step 6). The input values provided by
the user are then used to generate additional test cases
that could lead to new target pages being covered. These
pages are processed in the same way, returning control
to the user when more manual intervention is needed.

The automatic input generator can effectively use
crawlability indicators to tune the crawling strategy, gen-
erating more test cases and making use of more ad-
vanced generation capabilities for forms with low values
of crawlability.

The following sections give experimental evidence that
even if approximate, this approach is expected to be use-
ful in both cases.

3 Crawlability

Intuitively, the crawlability of a Web application mea-
sures how difficult it is for a crawler to explore all the
pages reachable from the home page. When such explo-
ration involves form submission, it depends on the ability
of the crawler to generate inputs that explore all differ-
ent pages possibly generated in response to form submis-
sion. So it depends on the input generation capabilities
of the crawler. It also depends on the notion of “differ-
ent” pages generated in response to a form submission,
in that different concrete pages may be indeed instances
of the same “conceptual” page, differing just for irrele-
vant details about the displayed information (e.g., date
and time information shown at the top of the page).

Hence, instead of an absolute definition of crawla-
bility, we give a definition which is relative to: (1) the
conceptual model of the pages to be crawled; and, (2)
the crawler’s capabilities:

– [Conceptual Web application model]: we con-
sider a conceptual Web application model contain-
ing (at least) the set of conceptual client pages the
Web application can provide to the user. A concep-
tual client page represents an equivalence class of

all concrete pages that are conceptually regarded as
equivalent. The model may also include the server
side components that generate the conceptual client
pages, as well as the submission relationship between
forms contained in client pages and associated server
side actions.
The UML Conallen model [8] of a Web application is
an example of a conceptual model pretty close to the
one referred to in this work. Client pages are not dis-
tinguished by the concrete content, which may vary
from time to time. Rather, they are characterized by
their conceptual role in the application. Multiple dif-
ferent concrete pages may be actually instances of
the same conceptual page. For example, the concrete
content of the result of a search on the Web may vary
from time to time, but conceptually there is just one
client page, showing the search result.

– [Crawler’s capabilities]: we characterize a crawler
by its specific crawling capabilities. Such capabilities
include the algorithm used to generate input data
when forms are to be filled-in to continue exploration
of the Web application and the algorithm used to rec-
ognize equivalent pages that should not be crawled
separately. Examples of common crawler’s capabil-
ities, related to input data generation, are random
generation of strings or getting input values from ex-
isting databases. Common criteria used by crawlers
to decide whether a page has already been explored
or not (i.e., whether two pages instantiate the same
conceptual page) are based on page name/title or
page HTML structure comparison. Crawler’s capa-
bilities are further analysed is Section 3.3.

3.1 Definition of crawlability

– DEF 1 [Crawlability of a Web application]: The
crawlability of a Web application is the degree to
which a crawler with given capabilities is able to ex-
plore all conceptual client pages in the conceptual
model of the Web application.

– DEF 2 [Crawlability of a form]: Assuming the
conceptual Web application model contains informa-
tion to associate each form with the conceptual client
pages produced in response to form submission, the
crawlability of a form is the degree to which a crawler
with given capabilities is able to explore all concep-
tual client pages produced in response to form sub-
mission, according to the conceptual model of the
Web application.
Given a conceptual model (see Figure 2) containing
a page with a form, a set of pages reachable from
such a form, and an arc connecting the form with
each page, we can assign a number pi to each arc
representing the probability of the event Ei of having
the crawler traversing that arc. Being pi a discrete
probability distribution, we have 0 ≤ pi ≤ 1 and∑N

i=1 pi = 1. The crawlability of a form is related to

4 Marchetto, Tiella, Tonella, Alshahwan and Harman: Crawlability Metrics for Automated Web Testing

Form

Page 1

p 1

Page 2p 2

...

pi

Page N

p n

Page

Fig. 2. Conceptual model augmented with arc traversing proba-
bilities

Fig. 3. Facebook Form: there are 1,004 possible input combina-
tions for this simple form

values assigned to probabilities pi. Ideally a form is
completely crawlable if all arcs have a non-negligible
probability of being traversed (pi ≫ 0) and in general
the crawlability of a form will depend on the number
of arcs for which pi ≫ 0, i.e. the higher this number,
the higher the crawlability.

3.2 Aspects Affecting Crawlability

Three main aspects of Web applications affect crawla-
bility: forms, client-side validation and server-side ma-
nipulation.
- Forms. Form inputs affect the generation of dynamic
content and sometimes the target pages that can be navi-
gated, thus affecting page coverage. Though a form could
have several types of input fields, we can divide those
types into two categories: enumerable (often, those fields
that in the form definition itself have a list of all pos-
sible input values from which the user can choose, e.g.,
drop down lists, radio buttons and check boxes) and un-
bounded (often, those fields that the user has to enter,
e.g., text and password fields and search boxes). Given
a form with different bounded/unbounded fields (e.g.,
Figure 3 shows a simple form taken from Facebook) it
is hard for a crawler to determine which field combi-
nations and inputs lead to new dynamically generated
pages that have to be covered during application testing.
The crawler can randomly run the form with random
combinations of fields selection and inputs, however, it
is hard to detect/explore in such a way all the possi-
ble pages in reasonable time. In other terms, it could be
hard for the crawler to generate meaningful values for
the form fields.
- Client-side validation. Forms or form fields can have a
client-side script such as JavaScript functions attached
to them. These scripts are triggered by certain events

such as typing a value into a text field or submitting the
data in the form to a server component. These scripts
could display text and/or automatically fill a dependent
field when a certain field is filled or highlight invalid
inputs. This is done to help the user in filling out fields
and validate the input value (in terms of format and
content). Forms with complex scripts attached can be
considered harder to explore for an automatic crawler
since the crawler needs to generate meaningful values
that overcome the validation check and proceed with
the expected validation (avoiding error and redirection
pages). Note that, in this work, we do not consider plug-
ins and extensions such as applets, flash and ActiveX
controls.
- Server-side Manipulation. Several aspects regarding
the server-side components can impact the application
crawlability. Server side code generates dynamic pages
based on choices made by the user. Input fields can be di-
rectly or transitively used in page generation statements.
This can be along a high number of different paths in the
server code which indicates that pages can be generated
in a number of different ways. Each of these paths may
need separate test inputs to satisfy. Again, inputs that
are used to query the database also need meaningful val-
ues imbued with domain knowledge, so that valid results
can be returned. Hence, the presence of dependencies
between form inputs and database queries can make an
application hard to crawl for an automatic crawler. Fur-
thermore, some inputs used on the server side are not
directly entered by the user, such as date or location.
These parameters can be used to display different pages
at different times or customize pages based on the user’s
location, hence affecting the application’s crawlability.
In this work, we mainly focus on the first aspect (mul-
tiple page generation paths). Further investigation will
consider crawlability indicators for the other server-side
aspects introduced here.

3.3 Capabilities of crawlers

If given infinite testing time, a random crawler is ex-
haustive, i.e., it fills unbounded textual input fields with
random strings which eventually crawl every page that
could be generated from a form, as a result of its ability
to generate all possible inputs. Depending on constraints
imposed by the logic of the application, the probability
pi of visiting a page in response to a form submission
could vary a lot. As an example, Figure 4 shows the
conceptual model of a typical Web application where a
random crawler starting from a login page will have a
probability p1 (close to 1) of reaching the “Wrong user
or password page”, and a probability p2 = 1 − p1 (close
to 0) of visiting the “Logged in page”.

To increase the number of reached pages in a fixed
number of attempts, a random crawler could be extended
with capabilities of generating field values from some
smaller “specialized” domains, e.g. numbers, emails, dates,

Marchetto, Tiella, Tonella, Alshahwan and Harman: Crawlability Metrics for Automated Web Testing 5

Login Page

Login Form

Logged in Pagep 1 ~ 0 . 0

Wrong U/P Page

p 2 ~ 1 . 0

p = 1 . 0

Fig. 4. Conceptual model for a login form

R a n d o m

Format DB data Cor re la ted da ta

Emails N u m b e r s D a t e s Record Data Credent ia ls Identical input pair

Fig. 5. Crawling Capabilities

and times. Figure 5 shows the set of capabilities we have
considered in this work organized into a hierarchy rooted
at the least specialized domain:

– Random random generation of character sequences,
including the empty string;

– Format generation of properly formatted character
sequences, which comprises: Emails, Numbers and
Dates;

– DB data random values which are extracted from
DB;

– Correlated data multiple inputs which are con-
strained to satisfy some relation;

– Identical input pair;
– Record data values from the same record;
– Credentials username and password are for a reg-

istered user.

A crawler enhanced with a given set of capabilities
could implement some strategies attempting to improve
its efficiency, e.g. by randomly selecting a domain for
each field in a form and then generating random values
from the selected domain. Continuing with the login ex-
ample introduced above, if the crawler is provided with
the “Credentials” capability which randomly (and uni-
formly) selects records from a username/password table
and its strategy selects this capability with a probabil-
ity of 0.5 whenever the crawler is facing a form with two
fields, then p2 ∼ 0.5 (so p2 ≫ 0).

4 Metrics

We can distinguish between two cases: (1) the conceptual
model of the Web application is known; (2) the concep-
tual model of the Web application is unknown. In case
(1), crawlability can be measured directly in terms of
model coverage:

– PCOV [Conceptual Client Page Coverage]: pro-
portion of conceptual client pages that are explored
by a crawler with given capabilities.

Assuming the crawler’s implementation is available,
PCOV is determined by just running the crawler. For
crawlers with long or unbounded execution times, this
metrics may be parametrized with a time limit (i.e.,
pages covered within a given time bound). For crawlers
with non-deterministic behaviors, this metrics may be
interpreted statistically (considering average and stan-
dard deviation, or the probability of covering a page).

In case (2), crawlability cannot be measured directly.
Internal metrics computed for the Web application are
used to characterize its crawlability. These metrics are
actually indicators (or indirect measures) of crawlability,
the validity of which must be assessed empirically (e.g.,
by correlating them with PCOV, when this is available).
It should be noticed that case 2 is the typical, normal
case, when applying the in–testing framework in prac-
tice, since the conceptual model of the Web application
will be in general unknown. Case 1 is limited to con-
trolled experiments conducted in a research setting (as
the one we describe in the next section).

Crawlability depends on how input values are pro-
cessed by the server-side and client-side code. On the
server-side, input values might be validated before trig-
gering the generation of new pages. Moreover, under dif-
ferent conditions, different (conceptual) pages may be
produced. On the client-side, the presence of input vali-
dation is also an indicator of some filtering applied before
allowing the user to navigate to the next page.

Some internal metrics may depend on the crawler’s
capabilities we are assuming. In such cases we list the
assumed capabilities explicitly.

We introduce two main categories of internal indica-
tors of crawlability:

Server side metrics: The server side code generates the
next client page depending on the submitted input. The
existence of different page generation statements that
are executed under different conditions is an indicator of
a server side component which produces different (con-
ceptual) pages depending on the input values it receives
upon form submission. In order to quantify such a va-
riety of behaviors of the server code, a first rough indi-
cator that we can use is McCabe’s cyclomatic complex-
ity, which measures the number of independent paths in
a program [26]. Specifically, we need an interprocedu-
ral variant of the cyclomatic complexity, which includes
also the contribution from transitively called functions.
In fact, page generation statements can be inside func-
tions transitively called by the main server component
activated by form submission. The related metrics is:

– ICC [Interprocedural Cyclomatic Complexity]:
number of independent paths in the interprocedural
control flow graph.

In practice, we can obtain the number of independent
paths of each procedure as the number of conditional
and loop statements (NCS), incremented by 1. However,

6 Marchetto, Tiella, Tonella, Alshahwan and Harman: Crawlability Metrics for Automated Web Testing

for called functions the increment should not be applied,
since the base execution path is already accounted for in
the main component. It should be noticed that ICC is
indeed an indicator of lack of crawlability, in that low
values of ICC indicate high crawlability, while high val-
ues of ICC indicate low crawlability. Hence, we use this
metrics as an inverse indicator of crawlability, by inter-
preting low values as high crawlability and vice versa.
The same holds for the following internal metrics.

A variant of ICC is ICC-L0 (loops zero), which dif-
fers from ICC in that loops do not contribute to the
measured cyclomatic complexity. The reason for ignor-
ing loops is that the number of times they are traversed
is usually not related to the number of distinct client
pages that the server component can generate.

Consider the PHP program shown in Figure 6 (re-
duced for readability). The program, invoked by pressing
the submit button in a login form, is in charge of veri-
fying user credentials, namely userid and password, and
possibly to allow the user to login. Possible outcomes of
such an invocation are (1) the home page is shown with
the user logged in, (2) the login form is redisplayed to the
user with an error message or (3) an error page is shown
if an internal error occurs, e.g. a database connection
fails. Upon being activated, the program verifies that
expected input parameters are provided and match the
proper syntax (lines 36-39), then the function checkLogin
is called which in turn invokes the function authentica-
teUser to look for user credentials in the users database
table. Functions whose body is not shown in the exam-
ple have ICC reported in comments (e.g. line 2). ICC
computation for this example develops as follows:

1. function authenticateUser has ICC of 1+2 = 3 (two
conditional statement, lines 19 and 22)

2. function checkLogin contains a conditional statement
(line 28) and invokes authenticateUser and register-
Login, its ICC is 1+1+(3-1)+(1-1) = 4

3. function checkManadatory has ICC of 2 (one condi-
tional statement at line 7)

4. the main program contains two conditional state-
ments in its body and it calls checkMandatory (two
times), checkMinAndMaxLength, emailCheck, and check-
Login its ICC is then 1+2+2*(2-1)+(2-1)+(4-1)+(4-
1) = 12.

Depending on designing and programming styles, server-
side logic could account for various aspects of a Web
application which dictates the complexity of the control
flow:

– configuration/installation state: often Web applica-
tions are deployed using some kind of file transfer
service (e.g. ftp) and then installed invoking some
specific installation URL. User pages often contain
code to check that such an installation has taken
place;

1 <?php

2 function checkMinAndMaxLength (...) { /* ICC = 2

*/ }

3 function emailCheck (...) { /* ICC = 4 */ }

4 function registerLogin (...) { /* ICC = 1 */ }

5 function checkMandatory (...) {

6 if (! isset($_SESSION ["{ $formVars }"]["{

$field }"]) ||

7 empty($_SESSION ["{ $formVars

}"]["{ $field }"])) {

8 ...

9 return false;

10 }

11 return true;

12 }

13 function authenticateUser (...) {

14 $password_digest = md5(trim($loginPassword)

);

15 $query = "SELECT password FROM users

16 WHERE user_name = ’$loginUsername ’

17 AND password = ’$password_digest

’";

18 $result = $connection -> query($query);

19 if(DB :: isError($result)) {

20 // return internal error page

21 }

22 if($result -> numRows () != 1)

23 return false;

24 else

25 return true;

26 }

27 function checkLogin (...) {

28 if (authenticateUser (...)) {

29 registerLogin (...);

30 // forward to home page

31 } else {

32 // back to login page

33 }

34 }

35 ...

36 if(checkMandatory (...))

37 checkMinAndMaxLength (...);

38 if(checkMandatory (...))

39 emailCheck (...);

40 checkLogin (...);

41 ?>

Fig. 6. Example of PHP program (reduced for readability)

– session state: applications often check whether a spe-
cific form action is invoked in the proper state (e.g.
after the user has logged in);

– role management: applications could check whether
an action is invoked by a user with some specific role,
e.g. administrator, guest, etc.;

– action selection: a single server page may be devoted
to generate content for different forms; in these cases,
a mechanism is implemented to select which action
to execute, e.g., via case statement on the value of a
hidden input;

– internal errors management: pages access databases,
send mails, or use other external services; all these
activities may rise errors that do not depend on user
inputs.

Marchetto, Tiella, Tonella, Alshahwan and Harman: Crawlability Metrics for Automated Web Testing 7

All the above aspects do not contribute to the num-
ber of pages generated in handling form submission and
the complexity due to the code needed to implement
them has to be ignored. One way to achieve this result
is to measure the source code complexity on a slice in-
stead of the entire code. The slice can be restricted to
the code between input processing and page generation
(technically, this is a variant of a slice called a chop).

As a further example, let us consider the code listed
in Figure 7. The code is in charge to handle all the ad-
ministrative tasks for an web-based guestbook. Among
the set of available features, the site administrator can
create a list of (bad) words that are banned from users’
messages. The administrator is provided with a form to
add a new bad word which is handled by the shown
code. Lines 15-22 check if the request is comining from
an authenticated user with “admin” role, while lines 26-
44 perform the selection of the requested action. Lastely,
the code from line 34 to line 38 manages user inputs
(checking, as an example, input word’s length as shown
at line 7), and generates the proper response.

The example above shows that in order to measure
as exactly as possible the portion of the code which is
responsible for mapping input under the control of the
user to alternative resulting pages, we can take advan-
tage of program slicing [35,38]. Specifically, we take a
forward slice from all input receiving statements associ-
ated with input data which are submitted by the form
of interest, and we intersect it with the backward slice
obtained from all output (client page generation) state-
ments. Applying such a method to the above example,
we have only to measure code defined at lines 2-11 and
34-38.

– SL-ICC [Sliced ICC]: interprocedural cyclomatic
complexity computed for the intersection of the for-
ward slice from input statements and backward slice
from output statements.

The variant of SL-ICC with loops not contributing
to the complexity can be considered for the sliced server
code as well, giving the SL-ICC-L0 metrics.

Client side metrics: We consider two metrics related to
crawlability from the client-side point of view: (i) the
number of fields of a form (NOF), and (ii) the Javascript
Validation Interprocedural Cyclomatic Complexity (JVICC).

– NOF [Number of fields of a form]: It indicates
the number of enumerable and unbounded fields of
a form. The composition of a form is expected to
be relevant to its crawlability since often the data in
input and output to/from the application is business
data [23].

For efficiency reasons, input data validation is often
moved to the client-side. In such cases, the form is not
submitted to the server until it passes the client-side
validation routines. The pattern to recognize client-side

1 <?php

2 function bad_word_add ($word) {

3 ...

4 if ($word === NULL || strlen ($word) === 0)

{

5 return FALSE;

6 }

7 if (strlen ($word) > $MAX_BAD_WORD_LENGTH) {

8 die ("That word is too long .");

9 }

10 ...

11 }

12

13 ...

14 session_start ();

15 if (! isset ($_SESSION [" username "]) || !

isset ($_SESSION [" admin "])) {

16 relative_location ("../ login.php");

17 exit ();

18 }

19 if ($_SESSION [" admin "] !== "TRUE") {

20 relative_location ("..");

21 exit ();

22 }

23 if (isset ($_REQUEST [" action "])) {

24 ...

25 $action = $_REQUEST [" action "];

26 switch ($action) {

27 case "delete ":

28 ...

29

30 case "showbans ":

31 ...

32

33 case "addbadword ":

34 if (isset ($_POST ["word "])) {

35 bad_word_add ($_POST ["word "]);

36 }

37 ...

38 break;

39

40 ...

41

42 default:

43 die (" Invalid action .");

44 }

45 } else {

46 ...

47 }

48 ...

49 ?>

Fig. 7. Example of PHP page which needs slicing

validation of form inputs is the following: an onsubmit

event that calls a Javascript function is associated with
the form tag or with one of the form fields by means of
the onclick event. When the function, which performs
the actual input data validation, returns false, form sub-
mission is blocked (and typically some error message is
displayed to the user on the Web page or on a separate
dialog window).

We identify the Javascript validation functions based
on the form attribute onsubmit and we measure the in-
terprocedural cyclomatic complexity [26] for them. In

8 Marchetto, Tiella, Tonella, Alshahwan and Harman: Crawlability Metrics for Automated Web Testing

1

2 <SCRIPT TYPE="text/javascript"><!--

3 function validate_email(field ,alerttxt){

4 var valid=false;

5 if (field){

6 apos=value.indexOf ("@");

7 dotpos=value.lastIndexOf (".");

8 if (apos <1|| dotpos -apos <2){

9 alert(alerttxt);

10 valid=true;}

11 }

12 return valid;

13 }

14 function validate_form (thisform){

15 if (thisform) {

16 if (validate_email(email ,"Not a valid e-mail

address !")== false){

17 email.focus ();

18 return false ;}

19 }

20 }

21 //--></SCRIPT >

22

23 <form name="f" action =" submit.htm" onsubmit ="

return validate_form (this);">

24 Email <input type="text" name=" email" size

="30"/ >

25 <input type=" submit" value =" Submit">

26 </form >

27

Fig. 8. Simple example of Javascript-based validation

fact, more complex functions will require careful selec-
tion of the input values.

– JVICC [Javascript Validation Interprocedural
Cyclomatic Complexity]: ICC computed for the
Javascript input validation routines.

A variant of this metrics is JVICC-B, where the
metrics is replaced by a boolean value (1 or 0), which
just indicates whether any validation is performed or
not. The reason for collapsing the cyclomatic complexity
to a single boolean value is that the actual complexity of
the input validation performed may not be reflected well
in the number of independent paths that are counted in
the validation routines.

For instance, let us consider the fragment of code
shown in Figure 8. In this code, two Javascript func-
tions (validate email and validate form) are used in an
HTML page to check the conformity between the content
written by the user into the email input field of the page
form f and the syntax of a typical email address (e.g.,
the presence of the character “@”). This check indicates
that a Javascript-based validation of the form inputs
is performed, i.e., JVICC-B(f) = 1. Moreover, the two
Javascript functions, validate email and validate form,
have interprocedural cyclomatic complexity equal to 3
and 5 respectively. Hence, the overall Javascript Valida-
tion Interprocedural Cyclomatic Complexity of the form
f is 5, i.e., JVICC(f) = 5. We expect the JVICC metric

to be related to the number of dynamic pages gener-
ated by the form when a validation is performed. For
instance, in the example above, the form generates at
least two conceptual pages according to the pass/fail of
the email field validation.

5 Evaluation

An experiment has been conducted with the aim of inves-
tigating crawlability and, in particular: (i) the relation-
ship that exists between our metrics and form crawlabil-
ity, in other terms, we investigated whether our server
and client side metrics are good surrogates for the quan-
tification of crawlability; and (ii) the impact of the craw-
ler’s capabilities on crawlability. To these aims, we for-
mulate the following research questions.
RQ1 Do internal metrics correlate with a direct measure
of crawlability?

RQ1 deals with the relationship that exists between
our metrics (internal measures of a Web application) and
form crawlability (an external property of a Web appli-
cation). To evaluate this relationship, we manually build
the conceptual model of the given Web application and
we determine precisely which conceptual pages are ex-
plored by a crawler with given capabilities and which
are not. Then, we run our tool to compute the internal
metrics (e.g., ICC, NOF and JVICC) on the applica-
tion code and correlate them with the fraction of unex-
plored conceptual pages reachable from each form (i.e., 1
- PCOV). We used the Spearman correlation coefficients
[22] for evaluating the relationship between metrics and
crawlability. This coefficient reflects both the degree of
linear and curvilinear relationship between two variables
and range from +1 to -1. A correlation of +1 means that
there is a perfect positive correlation between variables;
-1 means that there is a perfect negative correlation.
A coefficient of 0 indicates the absence of correlation.
The p-value associated with the coefficient gives the sta-
tistical significance of the evaluation, in other terms, it
estimates how much the correlation is due to random
reasons.

Finally we performed a regression analysis to build
prediction models for crawlability of forms from the col-
lected measures. Such a model could be used by the
crawler to estimate the number of pages that are reach-
able from a particular form given the values of the met-
rics. Comparing the estimate value with the number of
pages actually discovered behind a form and taking into
account the number of attempts already made on the
form, the crawler’s strategy may decide which action to
perform, e.g. generating a new input or asking the tester
for help.
RQ2 Which types (or set) of crawler capabilities have
major impact on crawlability?

RQ2 deals with the relationship that exists between
the ability of the crawler of crawling Web pages with

Marchetto, Tiella, Tonella, Alshahwan and Harman: Crawlability Metrics for Automated Web Testing 9

respect to its capabilities. To evaluate this relationship,
for each page contained in the conceptual model of the
Web application, we identified the set of crawler capabil-
ities (among those previously introduced in the taxon-
omy, see Section 3) required to crawl the page. In other
terms, given a Web page, we identified the capabilities
(e.g., random string, dates, valid emails) that can sig-
nificantly increment the chance of a random crawler to
crawl (i.e., reach) some uncovered page in reasonable
time. Finally, we evaluated the impact of the (set of)
crawler capabilities by plotting them with respect to the
number of pages they affect.

5.1 Objects

Table 1 summarizes some data about the objects taken
into consideration in the experiment. To answer RQ1 we
evaluate the correlation between metrics and crawlabil-
ity by analyzing 51 Web pages related to 19 Web ap-
plications (e.g., OScommerce2, Zencart, phpMyAdmin),
which contain a set of 58 HTML forms generating HTML
pages in response to the data submitted with the forms.
With respect to RQ2, we analyzed all the 189 Web pages
dynamically generated by the same set of 58 HTML to
understand the capabilities required to reach each page.

5.2 Procedure

The experiment has been performed by iterating the fol-
lowing steps for each considered application:

1. We ran the application. When possible we locally in-
stalled the application (e.g., OScommerce, Zencart),
alternatively, we ran the online demo (e.g., OrangeHRM).

2. We manually built the conceptual model of the Web
application, in which we identified the set of concep-
tual pages generated by starting from each form.

3. We measured our client/server side metrics by apply-
ing our tool to the application code exercised from
the considered forms. Note that, depending on the
availability of the application source code and the ca-
pability of our prototype tool to measure the metrics
on the given code, we collected different sets of met-
rics for different applications. For instance, for the
applications for which we analyzed the online demo
(e.g., OrangeHRM), we accessed only the client side
code (HTML enriched by Javascript) thus we mea-
sured only the client side metrics. Overall, we evalu-
ated 39 forms (out of 58) for the client side metrics
and 18 (out of 58) for the server side ones. There is
no overlap between these two sets of forms.

4. We plot in a graph the values of our metrics with
respect to the crawlability and we evaluated the cor-
relation by computing the Spearman coefficient.

5. For each Web page dynamically generated from the
considered forms, we manually identified the set of

capabilities (starting from those described in the tax-
onomy) required to reach/generate such a page.

6. We evaluated the relevance of the set of crawler capa-
bilities by plotting them with respect to the number
of pages they contribute to crawling.

5.3 Results

In this section, we summarize and discuss the results of
the experiment and the most relevant threats to validity
and we indicate some interesting outcome of the experi-
ment that will be further investigated.

5.3.1 RQ1: Metrics as Crawlability indicators

Metric measures obtained in the experiment are fully
listed in Table 5 in Appendix A, while Table 2 reports
only some examples. The table lists: (i) the considered
forms; (ii) the computed metrics for each form; (iii) the
number of conceptual pages generated by each form,
when clicking the submit button; and (iv) the fraction
of unexplored conceptual pages reachable from a form
(i.e. 1-PCOV). PCOV has been computed taking into
account a random crawler, that exercises HTML forms
by submitting random sequences of characters. Such a
crawler can be easily implemented by tools such as wget
1 and HTTPUnit2 that are able to submit HTTP re-
quests to a Web server without any ability of managing
client-side scripting languages such as Javascript.

Figures 9(a) and 9(b) plot the collected measures of
NOF, JVICC, ICC-L0 and SL-ICCL0 (y-axes) for each
analyzed form (x-axes). In both figures, the solid-dot-
based line (i.e., GeneratedPages) represents the number
of pages generated by each form while the other lines
represent the metric values measured for the correspond-
ing form. Since the points have been ordered along the
x-axes by increasing values of 1-PCOV, we can visually
inspect the trend of the metrics with respect to the num-
ber of pages generated by the forms and to the form
crawlability.

Figure 9(a) shows that the values of the client-side
metrics have an overall trend slightly comparable with
the trend of the number of generated pages and thus
potentially with the form crawlability. However, several
values of NOF and JVICC seem to be far from their cor-
responding points on the GeneratedPage line and, more-
over, several peaks exist in which NOF and JVICC really
diverge from the number of generated pages.

Conversely Figure 9(b) shows that the values for the
server-side metrics (ICC-L0 and SL-ICC-L0) have a trend
strongly comparable with the number of generated pages,
and several points overlap. In particular, the points of
the SL-ICC-L0 line result really close to the points of
the GeneratedPages line, thus indicating that a good

1 http://www.gnu.org/software/wget
2 http://httpunit.sourceforge.net

10 Marchetto, Tiella, Tonella, Alshahwan and Harman: Crawlability Metrics for Automated Web Testing

Application URL # Considered Pages # Forms

oscommerce2 http://www.oscommerce.com 2 2

campcaster http://www.campware.org 8 8
ajchat http://ajchat.sourceforge.net 1 1

shop http://demo.webasyst.net/shop 1 1

hotelBooking http://demo.onlinebookingmanager.com 3 3
zencart http://www.zencart-italia.it 4 4

orangeHRM http://www.orangehrm.com 3 4

spellCheck http://www.netjs.com/speller 2 2

addressBook http://www.corvalis.net/address 2 3
webChess http://webchess.sourceforge.net 2 2

schoolMate http://www.primateapplications.com 2 2

phpmyadmin http://www.phpmyadmin.net 5 8

addressook http://www.corvalis.net/address/ 1 1

php-agenda http://www.abeel.be/php-agenda 3 3
airalliance http://blogs.sun.com/phantom/resource/php/AirAlliance.tar.gz 1 1

ecombill http://sourceforge.net/projects/ecombill 1 1

dbguestbook http://freshmeat.net/projects/dbguestbook 2 3

lesson8 http://netbeans.org/kb/61/php/wish-list-lesson8.html 3 4
winestore http://www.webdatabasebook.com 5 5

Total

19 - 51 58

Table 1. Analyzed applications

0 10 20 30 40

0
1
0

2
0

3
0

4
0

5
0

Forms

M
e
tr

ic
 v

a
lu

e
s

NOF
JVICC
Generated Pages

(a) Client metric values per form. Notice that Forms are plot-
ted according to their increasing 1-PCOV measure.

0 5 10 15

0
5
0

1
0
0

1
5
0

Forms

M
e
tr

ic
 v

a
lu

e
s

ICC−L0
SL−ICC−L0
Generated Pages

(b) Server metric values per form. Notice that Forms are plot-
ted according to their increasing 1-PCOV measure. Y-axis
range is limited to about 150 for readablity and an outlier
value of 262 for ICC-L0 at GeneratedPages=0 is not shown
in the plot.

Fig. 9. Client and server metric values per form.

correlation can be expected to exist between the met-
ric and the form crawlability. A quite similar trend can
be also observed for ICC-L0. However, a limited number
of peaks, in which ICC-L0 diverges from the Generated-
Pages line, negatively impacts on the overall relationship
between ICC-L0 and the form crawlability.

Let us consider now two representative examples out
of the set of outliers in our results: the advancedSearch
form of oscommerce2 and the add bad word form of dbguest-

book (their metric values have been highlighted in Fig-
ures 9(a) and 9(b)).

The advancedSearch form allows the user to search
products in the online store. The form contains a not
small number of fields (NOF=11) and it uses a not triv-
ial Javascript code (JVICC=46). Both the form fields
and the Javascript code have no impact on the number
of pages generated by the form as they are used to de-

Marchetto, Tiella, Tonella, Alshahwan and Harman: Crawlability Metrics for Automated Web Testing 11

App Page Form Client side Metrics # Generated Pages 1-PCOV

NOF JVICC

oscommerce2 create account createAccount 20 18 4 0.75
oscommerce2 advanced search advancedSearch 11 46 3 0.67

campcaster StationSettings changeStationPrefs 11 8 2 0.50

...

App Page Form Server side Metrics # Generated Pages 1-PCOV

ICC-L0 SL-ICC-L0

addressbook add entry theform 262 1 1 0.00

airalliance process itinerary provide itinerary details 16 3 2 0.50

dbguestbook admin add bad word 151 6 4 0.75

...

Table 2. Examples of the obtained results: metrics and crawlability

ρ p-value

NOF vs JVICC 0.32 0.041
NOF vs 1-PCOV 0.55 0.00026

JVICC vs 1-PCOV 0.59 6.27E-05
ICC-L0 vs 1-PCOV 0.53 0.024
SL-ICC-L0 vs 1-PCOV 0.89 7.35E-07

Table 3. Metrics and Crawlability: Spearman’s ρ and p-values

fine options enriching the search, thus making the search
functionality attractive for the user.

In the second example, the add bad word has a quite
complex PHP source code with a not trivial control-flow
(ICC-L0=151) that generates just 4 pages. However, a
large part of the code is devoted to manage user session,
user role, internal errors and activity selection. As noted
before, such part of the code does not actually contribute
to pages generation, it increases the value of ICC-L0,
thus making this metric a not so precise indicator of the
form crawlability (this is evident in Figure 9(b), where
the points related to ICC-L0 and the number of gen-
erated pages for add bad word diverge). Only avoiding
such an amount of code, e.g., by means of code slicing,
we can identify the code that actually contributes to the
pages construction for the form (SL-ICC-L0=6). In this
case, SL-ICC-L0 represents a good indicator of the form
crawlability (the points related to SL-ICC-L0 and the
number of generated pages for add bad word overlap in
Figure 9(b)).

A numerical evaluation of the qualitative observa-
tions made above can be given by means of the Spear-
man’s correlation coefficient. Table 3 shows the obtained
correlation measures. We see that a moderate correla-
tion (59%) exists between JVICC and crawlability and
between NOF and crawlability (55%). Moreover, a lower
correlation (32%) exists between NOF and JVICC, thus
indicating that they (potentially) measure different in-
formation. The moderate correlation existing between
NOF, JVICC vs. crawlability suggests that both these
metrics are not a so good indicator (indirect measure)
of the number of pages dynamically generated by the
forms. Furthermore, the existence of a correlation (even
moderate) between JVICC and crawlability seems sup-

port our hypothesis for which if a client-side validation
check is attached to a form by means of Javascript the
complexity of such a code is only partially correlated
with the number of pages generated by the form itself.
Hence, this type of code has a limited impact on the
ability of a crawler of crawling (e.g., reaching) the pages
dynamically generated from the application by starting
from the data of a form.

On the server side, the table shows that the set of col-
lected data provides evidence of a moderate correlation
(53%) between the cyclomatic complexity ICC-L0 and
1-PCOV (p-value < 0.025) and a very strong correlation
(89%) between the sliced version SL-ICC-L0 of interpro-
cedural cyclomatic complexity and 1-PCOV (p-value <
10−6).

Considering the strong correlation obtained for the
server-side SL-ICC-L0 metric, we additionally perform a
regression analysis of PCOV versus SL-ICC-L0 assessing
the goodness of fit for a linear model and two non-linear
models (exponential and hyperbolic). In defining such
models, we assume PCOV equal to 1 if SL-ICC-L0 is 1, as
a (possibly sliced) server-side page having a cyclomatic
complexity of 1 generates necessarily just one page, and
thus this single unique page is covered by the crawler.

If we indicate with y the dependent variable PCOV,
with x the independent variable SL-ICC-L0, and with β
the model parameter, the three considered models have
the following forms:

1. L1 (linear): y = 1 + β(x − 1)
2. NL1 (exponential): y = eβ(x−1)

3. NL2 (hyperbolic): y = 1/(1 + β(x − 1))

We rescale x by subtracting 1 to map it into the
[0,+∞) interval.

We use the “leave-one-out” cross-validation method
to rank the models based on accuracy: taking the i-th
sample as the test sample, we train each model on the
remaining samples and then we compare the predicted
value with the test sample. We rank the models from
measures based on the magnitude of the absolute error
(MAE):

MAE = |actual PCOV − predicted PCOV|

12 Marchetto, Tiella, Tonella, Alshahwan and Harman: Crawlability Metrics for Automated Web Testing

Model MMAE MdMAE PRED(0.25) PRED(0.50) SDMAE

L1 0.33 0.42 33 72 0.21

NL1 0.25 0.33 44 94 0.17

NL2 0.13 0.13 83 100 0.09

Table 4. Prediction accuracy of linear, exponential and hyperbolic
models

...................
......

...................
......

...................
......

...................
......

...................
......

...................
......

...................
......

...................
......

...................
......

...................
......

...................
.........................

.........................
......

...................
......

...................
.........................

......

...................
......

...................
......

...
...........

...........
...........

...........
...........

...........
...........

0 5 10 15 20 25 30 35

.....

.....

.....

.....

.....

.....

.....

.....

.....

.....

.....

.....

.....

.....

.....

.....

.....

.....

.....

.....

.....

.....

.....

.....

.....

.....

.....

.....

.....

.....

.....

.....

.....

.....

.....

.....

.....

.....

.....

.....

.....

.....

.....

.....

.....

.....

.....

.....

.....

.....

.....

.....

.....

.....

.....

.

...........

...........

...........

...........

...........

...........

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

...
.....
.....
.....
.....
.....
.....
.....
.....
.....
.....
.....
.....
.....
.....
.....
.....
.....
.....
.....
.....
.....
.....
.....
.....
.....
.....
.....
.....
.....
.....
.....
.....
.....
.....
.....
.....
.....
.....
.....
.....
.....
.....
.....
.....
.....
.....
.....
.....
.....
.....
.....
.....
.....
.....
.....
.....
.....
.....
...

SL-ICC-L0

1-
P
C
O

V

.....

.....

.....

.....

.....

.....

.....

.....

.....

.....

.....

.....

......

.....
.....
.....
.....
.....
.....
.....
......
.....
.....
.....
.....
.....
......
......
......
......
.......
......
......
.......
......
......
........
.......
.........
........
..........
...........
............
.............

..............
................

....................
......................

............................
...................................

..
..

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

... ...

... ...

... ...

... ...

... ...

... ...

Fig. 10. Plot of 1-PCOV versus SL-ICC-L0. The solid line repre-
sents the regression curve of the hyperbolic model

Table 4 summarizes the results: MMAE is the mean
magnitude of absolute error, MdMAE is the median of
MAE, PRED(0.25) and PRED(0.50) are the percentages
of cases for which MAE ≤ 0.25 and MAE ≤ 0.50 respec-
tively, SDMAE is the standard deviation of MAE. The
table shows that the hyperbolic model provides the best
predictor with a MMAE of 0.13 which means that on av-
erage, the predicted value differs from the sample about
13% of the value. The curve of the hyperbolic prediction
model is shown in Figure 10. It is interesting to note that
the form of the hyperbolic model has a natural interpre-
tation. In fact, it can be read as the ratio of the number
of pages a random crawler can easily traverse (1 page),
to the typical fan-out of a server-side page, which in turn
is 1 + β(x− 1), with β = 0.294 and x− 1 the number of
(possibly sliced) conditional statements in the code (i.e.,
SL-ICC-L0-1).

These results highlight the trade-off between source
code analysis effort and precision of ranking/prediction.
It is relatively easy to implement a tool that computes
ICC-L0 while it would be a difficult work to build a
tool that performs the same slicing techniques we applied
manually for this study. On the other hand, ICC-L0 is
sufficient to build a ranking of forms by crawlability,
while SL-ICC-L0 gives us a quite accurate predictor.

5.3.2 RQ2: Crawler capabilities

Figure 11 shows the percentage of dynamically generated
pages with respect to each crawler’s capability required

.......
.......
...

.......
.......
.......
.......
.......
.......
.......
....

.......
.......
.......
.......
.......
.......
.......
....

.......
.......
.......
.......
.......
.......
.......
....

.......
.......
.......
.......
.......
.......
.......
....

.......
.......
.......
.......
.......
.......
.......
....

.......
.......
.......
.......
.......
.......
.......
....

.......
.......
.......
.......
.......
.......
.......
....

.......
.......
.......
.......
.......
.......
.......
....

......
......
......
......
...

.......
.......
.......
.......

......
......
......
.......
.......
.

.......
.......
.......
.......
.......
.......
.

......
...

..

.......
.......
.......
.......
.......
..

.......
.......
.......
.......
.......
.
.......
.......
.......
.......
.......

.......
.......
.......
.......
.......
.......
.......
....

.......
.......
.......
......
......

.......
.......
.......
.......
.......
.......

.......
.......
....

.......
.......
.......
.....

.......
.......
.......
.......
.......
.......
.......
....

.......
.......
.......
.......
.......
.......
..

......
..
......
.....

......
......
......
......
.....

.......
.......
.

.......
.......
.......
.......
.......
.......
.......
..

.......
.......
.......
.......
.......
.......
.......
....

.......
.......
.......
.....

...
.....
.....
.....
.....
.....
.....
.....
.....
.....
.....
.....
.....
.....
.....
.....
.....
.....
.....
.....
.....
.....
.....
.....
.....
.....
.....
.....
.....
.....
.....
.....
.....
.....
.....
.....
.....
.....
.....
.....
.....
.....
.....
.....
.. ...

.....

.....

.....

.. ...
.....
.....
.....
.....
... ...

.....

.....

.....

.....

.....

.....

... ...
.....
.....
.....
.....
.....
.....
.....
.....
.....
.....
... ...

.....

.....

.....

.....

... ...
.....
.....
.....
.....
.....
.....
.....
.....
.....
.....
.....
.. ...

.....

.....

.....

.. ...
.....
.....
.....
.....
.....
.....
.....
.....
.....
.....
.....
.....
...

st
ri
n
g

va
lid

E
m

ai
l

d
at

es

ot
h
er

F
or

m
s

n
u
m

b
er

s

id
en

ti
ca

lP
ai

rs

re
co

rd
D

at
a

cr
ed

en
ti
al

s

co
rr

el
at

ed

P
ag

es
(%

)

.....

.....

.....

.....

.....

.....

.....

.....

.....

.....

.....

.....

.....

.....

.....

.....

.....

.....

.....

.....

.....

.....

.....

.....

.....

.....

.....

.....

.....

.....

.....

.....

.....

.....

.....

.....

.....

.....

.....

.....

.....

.....

.....

.....

.....

.....

.....

.....

.....

.....

.....

.....

.....

.....

.....

.....

.....

.....

.....

...

...........

...........

...........

...........

...........

...........

0
20

40
60

80
10

0

... ...

... ...

... ...

... ...

... ...

... ...

Fig. 11. Crawler’s capability required to cover the pages under
analysis (one page may require multiple capabilities)

.......
.......
.......
.......
.

.......
.......
.......
.......
.......
.......
.......
.......
.......
..

.......
.......
.......
.......
.......
.......
.......
.......
.......
.....

.......
.......
.......
.......
.......
.......
.......
.......
.......
.....

.......
.......
.......
.......
.......
.......
.......
.......
.......
.....

.......
.......
.......
.......
.......
.......
.......
.......
.......
.....

.......
.......
.......
.......
.......
.......
....

.......
...

......
....

.......
.......
.......
.......
.......
.......
....

.......
.......
.......
.......
.......
.......
.......
.......
.......
.....

.......
.......
.......
.......
.......
.......
.......
......

.......
.......
.....

......
......
.....

.......
.......
.......
.......
.......
.......
.......

.......
.......
......
.......
.

......
......
......
......
..

.......
.......
.......
.......
....

..
.

......
.

.....
.....
.....
.....
.....
.....
.....
.....
.....
.....
.....
.....
.....
.....
.....
.....
.....
.....
.....
.....
.....
.....
.....
.....
.....
.....
.....
.....
.....
.....
.....
.. ..

.....

.....

.....

.....

.....

.....

.....

.....

.....

.....

.....

.....

.....

... ..
.....
.....
.....
.....
.....
... ..

.....

.....

.....

... ...
...

1 2 3 4 5 6 7

Number of Capabilities

P
ag

es
(%

)

.....

.....

.....

.....

.....

.....

.....

.....

.....

.....

.....

.....

.....

.....

.....

.....

.....

.....

.....

.....

.....

.....

.....

.....

.....

.....

.....

.....

.....

.....

.....

.....

.....

.....

.....

.....

.....

.....

.....

.....

.....

.....

.....

.....

.....

.....

.....

.....

.....

.....

.....

.....

.....

.....

.....

.....

.....

.....

.....

...

...........

...........

...........

...........

...........

...........

0
20

40
60

80
10

0

... ...

... ...

... ...

... ...

... ...

... ...

Fig. 12. Sets of crawler’s capabilities with respect to the percent-
age of generated pages that require such sets of capabilities

to generate such pages (a page may require multiple ca-
pabilities). For instance, we see that the capability of
generating strings (empty and not) is relevant since it
is required in 75% of the analyzed pages. Furthermore,
19% of such pages requires the capability of generating
numbers. We can notice that the most relevant capabil-
ity is string generation, while the least relevant ones are
both the ability of generating valid emails and creden-
tials (e.g., login and password). The remaining capabil-
ities are slightly above these two.

Figure 12 shows the percentage of pages that are cov-
ered by means of the number of capabilities in the hor-
izontal axis. For instance, one capability is sufficient for
covering 52% of the considered pages. While sets of two
capabilities (e.g., the ability of generating both strings
and numbers, or alternatively the ability of generating

Marchetto, Tiella, Tonella, Alshahwan and Harman: Crawlability Metrics for Automated Web Testing 13

......
.......
...

.......
.......
.......
.......
.......
.......
.......
...

.......
.......
.......
.......
.......
.......
.......
....

.......
.......
.......
.......
.......
.......
.......
....

.......
.......
.......
.......
.......
.......
.......
....

......
......
......
......
...

.....

.......
.......
.......
.......
.......
......

.......
.......
.......
.......
.......
.......
.......
....

.......
.......
.......
.......
.......
.......
.......
....

.......
.......
.......
.......
.......
.......
.......
....

.......
.......
.......
.......
.......
.......
.......
....

.......
.......
.......
.......
.......
.......
.......
....

......
......
......

.......
.......
.......
.....

.......
.......
.......
.......
.......
.......
.......
....

.......
.......
.......
.......
.......
.......
.......
....

.......
.......
.......
.......
.......
.......
.......
....

.......
.......
.......
.......
.......
.......
.......
....

.......
.......
.......
.......
.......
.......
.......
....

.......
.......
.......
.......
.......
.......
.......
....

.......
.......
.......
.......
.......
.......
...

......
...

......

.......
.......
.......
.......
.......
.......

.......
.......
.......
.......
.......
.......
.......
....

.......
.......
.......
.......
.......
.......
.......
....

.......
.......
.......
.......
.......
.......
.......
....

.......
.......
.......
.......
.......
.......
.......
....

.......
.......
.......
.......
.......
.......
.......
....

.......
.......
.......
.......
.......
.......
.......
....

.......
.......
.......
.......
.......
.......
.......
....

.......
.......
.......
.......
.......
.

......
...

.......
.......
.......
.......
.......
.......
...

.......
.......
.......
.......
.......
.......
.......
....

.......
.......
.......
.......
.......
.......
.......
....

.......
.......
.......
.......
.......
.......
.......
....

.......
.......
.......
.......
.......
.......
.......
....

.......
.......
.......
.......
.......
.......
.......
....

.......
.......
.......
.......
.......
.......
.......
....

.......
.......
.......
.......
.......
.......
.......
....

.......
.......
.......
.......
.......
.......
.......
....

.......
.......
.......
......

.....

.......
.......
.......
.......
.......
......

.......
.......
.......
.......
.......
.......
.......
....

.......
.......
.......
.......
.......
.......
.......
....

.......
.......
.......
.......
.......
.......
.......
....

.......
.......
.......
.......
.......
.......
.......
....

.......
.......
.......
.......
.......
.......
.......
....

.......
.......
.......
.......
.......
.......
.......
....

.......
.......
.......
.......
.......
.......
.......
....

.......
.......
.......
.......
.......
.......
.......
....

.......
.......
.......
.......
.......
.......
.......
....

.......
.......
....

..

.......
.......
.......
.......
.......
..

.......
.......
.......
.......
.......
.......
.......
....

.......
.......
.......
.......
.......
.......
.......
....

.......
.......
.......
.......
.......
.......
.......
....

.......
.......
.......
.......
.......
.......
.......
....

.......
.......
.......
.......
.......
.......
.......
....

.......
.......
.......
.......
.......
.......
.......
....

.......
.......
.......
.......
.......
.......
.......
....

.......
.......
.......
.......
.......
.......
.......
....

.......
.......
.......
.......
.......
.......
.......
....

.......
.......
.......
.......
.......
.......
..

......
..

.......
.......
.......
.....

.......
.......
.......
.......
.......
.......
.......
....

.......
.......
.......
.......
.......
.......
.......
....

.......
.......
.......
.......
.......
.......
.......
....

.......
.......
.......
.......
.......
.......
.......
....

.......
.......
.......
.......
.......
.......
.......
....

.......
.......
.......
.......
.......
.......
.......
....

.......
.......
.......
.......
.......
.......
.......
....

.......
.......
.......
.......
.......
.......
.......
....

.......
.......
.......
.......
.......
.......
.......
....

.......
.......
.......
.......
.......
.......
.......
....

.......
.......
.......
.......
.......

......
......
..

.......
.......
.......
.......
.......
.......
.......
.

.......
.......
.......
.......
.......
.......
.......
....

.......
.......
.......
.......
.......
.......
.......
....

.......
.......
.......
.......
.......
.......
.......
....

.......
.......
.......
.......
.......
.......
.......
....

.......
.......
.......
.......
.......
.......
.......
....

.......
.......
.......
.......
.......
.......
.......
....

.......
.......
.......
.......
.......
.......
.......
....

.......
.......
.......
.......
.......
.......
.......
....

.......
.......
.......
.......
.......
.......
.......
....

.......
.......
.......
.......
.......
.......
.......
....

.......
.......
.......
.....

...
.....
.....
.....
.....
.....
.....
.....
.....
.....
.....
.....
.....
.....
.....
.....
.....
.....
.....
.....
.....
.....
.....
.....
.. ...

.....

.....

.....

.....

.....

.....

.....

.....

.....

.....

.....

.....

.....

.....

.....

.....

.....

.....

.....

.....

.....

.....

.....

.....

.....

.....

.....

.....

.....

.....

... ...
.....
.....
.....
.....
.....
.....
.....
.....
.....
.....
.....
.....
.....
.....
.....
.....
.....
.....
.....
.....
.....
.....
.....
.....
.....
.....
.....
.....
.....
.....
.....
.....
.....
.....
.....
.....
.....
.. ...

.....

.....

.....

.....

.....

.....

.....

.....

.....

.....

.....

.....

.....

.....

.....

.....

.....

.....

.....

.....

.....

.....

.....

.....

.....

.....

.....

.....

.....

.....

.....

.....

.....

.....

.....

.....

.....

.....

.....

.....

.....

.....

.....

.. ...
.....
.....
.....
.....
.....
.....
.....
.....
.....
.....
.....
.....
.....
.....
.....
.....
.....
.....
.....
.....
.....
.....
.....
.....
.....
.....
.....
.....
.....
.....
.....
.....
.....
.....
.....
.....
.....
.....
.....
.....
.....
.....
.....
.....
.....
.....
.....
.. ...

.....

.....

.....

.....

.....

.....

.....

.....

.....

.....

.....

.....

.....

.....

.....

.....

.....

.....

.....

.....

.....

.....

.....

.....

.....

.....

.....

.....

.....

.....

.....

.....

.....

.....

.....

.....

.....

.....

.....

.....

.....

.....

.....

.....

.....

.....

.....

.....

.....

.....

... ...
.....
.....
.....
.....
.....
.....
.....
.....
.....
.....
.....
.....
.....
.....
.....
.....
.....
.....
.....
.....
.....
.....
.....
.....
.....
.....
.....
.....
.....
.....
.....
.....
.....
.....
.....
.....
.....
.....
.....
.....
.....
.....
.....
.....
.....
.....
.....
.....
.....
.....
.....
.....
.....
.....
... ...

.....

.....

.....

.....

.....

.....

.....

.....

.....

.....

.....

.....

.....

.....

.....

.....

.....

.....

.....

.....

.....

.....

.....

.....

.....

.....

.....

.....

.....

.....

.....

.....

.....

.....

.....

.....

.....

.....

.....

.....

.....

.....

.....

.....

.....

.....

.....

.....

.....

.....

.....

.....

.....

.....

.....

.....

... ...
.....
.....
.....
.....
.....
.....
.....
.....
.....
.....
.....
.....
.....
.....
.....
.....
.....
.....
.....
.....
.....
.....
.....
.....
.....
.....
.....
.....
.....
.....
.....
.....
.....
.....
.....
.....
.....
.....
.....
.....
.....
.....
.....
.....
.....
.....
.....
.....
.....
.....
.....
.....
.....
.....
.....
.....
.....
.....
...

st
ri
n
g

+
co

rr
el

at
ed

+
re

co
rd

D
at

a

+
n
u
m

b
er

s

+
ot

h
er

F
or

m
s

+
d
at

es

+
id

en
ti
ca

lP
ai

rs

+
va

lid
E
m

ai
l

+
cr

ed
en

ti
al

s

P
ag

es
(%

)

.....

.....

.....

.....

.....

.....

.....

.....

.....

.....

.....

.....

.....

.....

.....

.....

.....

.....

.....

.....

.....

.....

.....

.....

.....

.....

.....

.....

.....

.....

.....

.....

.....

.....

.....

.....

.....

.....

.....

.....

.....

.....

.....

.....

.....

.....

.....

.....

.....

.....

.....

.....

.....

.....

.....

.....

.....

.....

.....

...

...........

...........

...........

...........

...........

...........

0
20

40
60

80
10

0

... ...

... ...

... ...

... ...

... ...

... ...

Fig. 13. Page coverage by incremental sets of crawler’s capabilities

both valid emails and dates) are required to cover 24%
of the pages. On average, three capabilities are sufficient
to cover about the 80% of the dynamically generated
pages.

Furthermore, Figure 13 shows how the generated pages
are covered by considering incrementally composed sets
of capabilities, generated by taking into account the out-
come shown in Figure 11, and adding more capabilities
in a greedy way. In the figure, we can observe that the ca-
pabilities of generating strings and correlated fields can
cover more than 52% of the pages while considering also
record data and numbers we can cover about 80% of the
generated pages.

5.3.3 Threats to Validity

Several threats to validity affect the overall results of the
experiment. In this section, we discuss and analyze the
most relevant ones concerning External validity, Internal
validity, Construct validity and Conclusion validity.

External validity threats relate to the generalization
of results. Two important threats that limit the gen-
eralization of the obtained results are related to: the
limited number of applications, forms and pages con-
sidered to answer respectively RQ1 and RQ2, and the
representativeness of the used Web applications with re-
spect to the application domain and characteristics (e.g.,
we mainly considered PHP applications). Further itera-
tions of the experiment can better support the obtained
results. However, we believe that 19 real applications be-
longing to different domains and 58 forms related to 51
pages make the context of our experiment realistic and
effective.

Internal validity threats concern external factors that
may affect a dependent variable. The most relevant threat
concerning the internal validity is related to the subjec-

tivity of some tasks performed in the experiment. In par-
ticular, in the subjective task involved in the construc-
tion of the application conceptual models (i.e., required
for answering RQ1) knowledge, skills and human errors
done by testers that performed such a task could influ-
ence the obtained results and different testers may lead
to obtain different results. To limit this threat we tried
to formally define what is a conceptual model, its rel-
evant characteristics and we asked the testers to apply
the Conallen’s design methodology [7].

Construct validity threats concern the relationship
between theory and observation. A possible threat comes
from the choice of considering only a random crawler for
answering RQ1 approximating the PCOV as PCOV =
1− #CoveredPages

#GeneratedPages
. Another threat to the validity comes

from the simple taxonomy of crawler capabilities consid-
ered for answering RQ2. For instance, in our taxonomy
we do not distinguished among, e.g., positive or negative
numbers, integer or real numbers. Further iterations of
the experiment will consider these aspects as well as ad-
ditional capabilities to obtain improved results.

Conclusion validity threats concern the relationship
between the treatment and the outcome. One of such
threats concerns the use of few points during the statis-
tical analysis (i.e., limited number of applications, pages
and forms considered in the experiment). Further inves-
tigation and experiment repetitions will lead to a larger
set of data in which more sophisticated statistical anal-
ysis can be performed.

6 Related works

Several Web testing techniques and tools have been pro-
posed as a result of the increased pervasiveness of Web
applications. This increased pervasiveness demands for
high quality applications with low defectiveness.

Functional testing is the most widely applied test-
ing approach. Existing tools for Web applications (e.g.
LogiTest, Maxq, Badboy), are based on capture/replay
facilities: the tester navigates through the Web applica-
tion recording various testing scenarios which are then
repeated during regression testing. However, the quality
of the produced test suite relays on the tester’s thorough-
ness and skill. Also, changes in the structure of the Web
application could make the recorded test suite fail to run.
This makes it necessary to re-record all or part of the
tests. An alternative is based on tools such as HttpUnit.
HttpUnit is a Java API that provides the building blocks
required to emulate the browser’s behavior. When com-
bined with a framework such as JUnit, HttpUnit allows
testers to create test cases to verify Web Application be-
havior [20]. Both approaches require significant manual
effort from the tester and require time and resources that
might not be available or cost effective.

Web crawlers can be viewed as testing tools as they
traverse a Web application reporting failures and broken

14 Marchetto, Tiella, Tonella, Alshahwan and Harman: Crawlability Metrics for Automated Web Testing

links. Many open source and commercial crawlers exist
with varying degrees of functionalities. WebSPHINX [28]
is a customizable site-specific spider with a GUI inter-
face. It also provides a class library that can be used to
implement spiders in Java. Mercator [19] has similar fea-
tures to WebSPHINX but is designed to deal with scal-
ability issues. JSpider3 is another open source crawler
that has the advantage of recording a Web application’s
structure to a database. However, all three crawlers do
not provide support for automated form filling and sub-
mission. Teleport Pro4 is a commercial crawler that pro-
vides a few additional features. The crawler gives the
user the ability to provide authentication information to
access password protected parts of the application. It
also parses JavaScript to extract links. Girardi et al. [15]
conducted a comparison of these and other crawlers based
on completeness, robustness, features offered and down-
load limiting options. The study concluded that the con-
sidered crawlers have different strengths and weaknesses
but indicated that some commercial crawlers offer more
completeness. Although we have the advantage of being
automated, their ability to cover an application is closely
related to their capabilities.

Model-based testing of Web applications was initially
proposed by Ricca and Tonella [30] and then refined
by others. This testing approach performs a preliminary
analysis of the application under test with the aim of de-
scribing it by means of a model (often, it describes Web
pages, links and forms). Coverage criteria are applied to
the model to extract test case suites. Recently, model-
based testing approaches have been applied to Web 2.0
applications [25,27]. These approaches extract test cases
by studying the client-side behavior of the application.

Elbaum et al. [12] were the first to propose a Web
testing approach that uses data captured in user ses-
sions to create test cases automatically. Alshahwan and
Harman [1] proposed a session data repair approach to
be used in regression testing. Sampath et al. [31–34] fo-
cused on techniques for prioritizing session based test
cases and reducing the test suite. Using session data to
create test suites proved to be effective and reveals faults
that were not discovered by white box techniques. How-
ever, if the application is new or was not configured to
record session data this approach can not be used.

Concolic testing of Web applications is used to cover
server-side code or uncover vulnerabilities that could
lead to security threats. Concolic testing is a combina-
tion of symbolic and concrete execution. The program
is first run with no input values. Constraints are gath-
ered through the application. Part of the constraint is
negated and a constraint solver is used to produce in-
puts that satisfy the new constraint. The inputs are then
used in the next run to execute a different path. Wasser-
mann et al. [37] used this approach to dynamically gen-

3 http://j-spider.sourceforge.net/
4 http://www.tenmax.com/teleport/

erate test data for PHP Web applications. In their paper
only constraints related to the parts of the program that
call database queries are examined. The technique was
able to find vulnerabilities that could lead to SQL in-
jections not found by other static techniques. Artzi et
al. [4] used a similar approach to generate test data and
find bugs in PHP applications. A tool called Apollo was
developed to implement the approach and generate in-
puts. The tool also monitors the output for crashes and
malformed HTML and minimizes the conditions on in-
puts that cause failures and outputs a bug report. To
perform symbolic execution the code needs to be trans-
formed to simulate user actions such as button pressing.
The transformation is done manually which limits the
automation of the approach. The tool was evaluated on
4 PHP applications and recorded an average of over 50%
line coverage. The results are promising but the cover-
age achieved indicates that manual testing is still needed
for testing the applications. Also only server-side code is
tested and client-side scripts such as JavaScript still need
to be considered.

Interface discovery can be useful in providing guid-
ance for test data generation. Halfond and Orso [17,18]
used static analysis to identify interfaces of Java Web
applications. The discovered interfaces were then evalu-
ated by measuring their effectiveness in generating test
cases. The work was then extended by Halfond et al. [16]
to use symbolic execution to identify interfaces. Fisher
et al. [13] also worked on interface discovery. Their ap-
proach was dynamic in that they submit all possible
combinations and subsets of input parameters, analyzing
the output.

A test case for a Web application can be viewed as
a sequence of Web pages, enriched by inputs and user
actions performed through the GUI. The goal of a test
case is to emulate an execution in which the expected
and real application behavior are compared. One of the
most relevant difficulties in Web testing is that a lot of
manual intervention is often required to fully test the
application. In fact by applying only automatic testing
criteria there is no way to guarantee that a Web appli-
cation is “completely” covered (e.g. all links, pages and
forms).

Testability metrics have been used and defined for
traditional software such as Object Oriented software
for predicting testing effort. For instance, Bruntink and
van Deursen [6] evaluated and defined a set of testabil-
ity metrics for Object Oriented programs and analyzed
the relation between classes and their JUnit test cases.
Jungmayr [21] suggests that testability metrics can be
used to identify parts of the application causing a lower
testability level by analysing test critical dependencies.

In Web applications, metrics have been used espe-
cially for usability, maintainability and evolution. Emad
Ghosheh et al. [14] compare a number of papers that
define and use Web maintainability metrics. These are
mostly source code metrics that predict maintainabil-

Marchetto, Tiella, Tonella, Alshahwan and Harman: Crawlability Metrics for Automated Web Testing 15

ity of Web applications. Warren et al. [36] created a
tool to collect a number of metrics to measure Web ap-
plication evolution over an interval of time. Douglis et
al. [10] conducted a study to evaluate caching methods
in the World Wide Web. They defined a number of met-
rics and studied the relationship between a Web appli-
cation’s characteristics and the effectiveness of caching
methods. Palmer [29] defined and validated a number of
usability metrics for Web applications. Navigability was
among the metrics that were proved by the study to cor-
relate to a Web application’s success. Although naviga-
bility and crawlability have similar context, navigability
in Palmer’s paper is defined in terms of sequence and
layout. Dhyani et al. [9] conducted a survey of Web ap-
plication metrics that can be used in improving content.
In the context of using metrics to aid testing, Bellet-
tini et al. [5] created a tool TestUML that combines a
number of techniques to semi-automatically test a Web
application. Metrics such as number of pages or number
of objects were used to define coverage level and then
they were used for stopping the testing process based on
user criteria.

The framework we propose combines the existing Web
testing approaches with crawlability metrics. Crawlabil-
ity could be considered closely related to traditional ap-
plications testability but is focused on Web navigability.
This can help in prioritizing parts of the application that
are hard to crawl during the testing process. Combining
testing with crawlability metrics supports the tester in
identifying areas of the application that need more atten-
tion thereby decreasing the testing effort. The primary
novelty of our in–testing approach is that measures are
used during the testing to guide the tester where her/his
efforts could be most effective.

7 Conclusions

In this paper, we introduced the notion of crawlability
and presented an experiment with 19 real applications
analyzed to evaluate the correlation existing between
the direct measure of the application’s crawlability and
structural metrics. The obtained results show that our
metrics can be reasonable indicators of crawlability. Al-
though preliminary, our results highlight some interest-
ing features of the systems under test and the way in
which our metrics can be used to draw the tester’s at-
tention and simplify the testing activity. Slice restricted
quantification of the cyclomatic complexity is more ef-
fective than the same metrics computed on the original
code. Around 80% of pages can be covered by crawlers
which possess the four most effective crawling capabili-
ties (i.e., string generation, correlated data generation,
record reuse, number generation).

Future work will focus on the development of addi-
tional measurements at the server side to complement
those presented in this paper. Moreover, we will study

crawlability predictor metrics for crawlers with enhanced
capabilities (i.e., those more advanced than the random
crawler). The experimental results documented in this
paper encourage us to proceed our investigation about
the use of crawlability metrics for improving Web test-
ing. In particular, we plan to further improve the imple-
mentation of the WATT tool [2] to provide the commu-
nity with a tool that supports our in–testing frame-
work. We will add the investigated capabilities and the
ability to select the most appropriate ones to WATT.

References

1. N. Alshahwan and M. Harman. Automated session data
repair for web application regression testing. In ICST
’08: Proceedings of the 2008 International Conference
on Software Testing, Verification, and Validation, pages
298–307, Washington, DC, USA, 2008. IEEE Computer
Society.

2. N. Alshahwan, M. Harman, A. Marchetto, and
P. Tonella. Improving web application testing using
testability measure. In IEEE International Symposium
on Web Systems Evolution (WSE), Edmonton, Canada,
September 2009. IEEE Computer Society.

3. J. O. Anneliese A. Andrews and R. T. Alexander. Testing
web applications by modeling with fsms. Software and
Systems Modeling, 4:326–345, 2005.

4. S. Artzi, A. Kiezun, J. Dolby, F. Tip, D. Dig, A. Parad-
kar, and M. D. Ernst. Finding bugs in dynamic web
applications. In ISSTA ’08: Proceedings of the 2008 in-
ternational symposium on Software testing and analysis,
pages 261–272, New York, NY, USA, 2008. ACM.

5. C. Bellettini, A. Marchetto, and A. Trentini. TestUml:
user-metrics driven web applications testing. In SAC
’05: Proceedings of the 2005 ACM symposium on Applied
computing, pages 1694–1698, New York, NY, USA, 2005.
ACM.

6. M. Bruntink and A. van Deursen. An empirical study
into class testability. J. Syst. Softw., 79(9):1219–1232,
2006.

7. J. Conallen. Modeling web applications with uml. In
White paper, 1999.

8. J. Conallen. Building Web Applications with UML.
Addison-Wesley Publishing Company, Reading, MA,
2000.

9. D. Dhyani, W. K. Ng, and S. S. Bhowmick. A survey of
web metrics. ACM Comput. Surv., 34(4):469–503, 2002.

10. F. Douglis, A. Feldmann, B. Krishnamurthy, and
J. Mogul. Rate of change and other metrics: a live study
of the world wide web. In USITS’97: Proceedings of the
USENIX Symposium on Internet Technologies and Sys-
tems on USENIX Symposium on Internet Technologies
and Systems, Berkeley, CA, USA, 1997. USENIX Asso-
ciation.

11. S. Elbaum, S. Karre, and G. Rothermel. Improving Web
application testing with user session data. In Proceedings
of the 25th International Conference on Software Engi-
neering (ICSE), pages 49–59, Portland, USA, May 2003.
IEEE Computer Society.

16 Marchetto, Tiella, Tonella, Alshahwan and Harman: Crawlability Metrics for Automated Web Testing

12. S. Elbaum, G. Rothermel, S. Karre, and M. Fisher II.
Leveraging user-session data to support web application
testing. IEEE Trans. Softw. Eng., 31(3):187–202, 2005.

13. M. Fisher II, S. Elbaum, and G. Rothermel. Dy-
namic characterization of web application interfaces. In
FASE’07: Proceedings of the Fundamental Approaches to
Software Engineering, pages 260–275. Springer Berlin /
Heidelberg, 2007.

14. E. Ghosheh, J. Qaddour, M. Kuofie, and S. Black. A
comparative analysis of maintainability approaches for
web applications. In AICCSA ’06: Proceedings of the
IEEE International Conference on Computer Systems
and Applications, pages 1155–1158, Washington, DC,
USA, 2006. IEEE Computer Society.

15. C. Girardi, F. Ricca, and P. Tonella. Web crawlers com-
pared. International Journal of Web Information Sys-
tems, 2:85–94, 2006.

16. W. G. Halfond, S. Anand, and A. Orso. Precise interface
identification to improve testing and analysis of web ap-
plications. In ISSTA ’09: Proceedings of the eighteenth
international symposium on Software testing and analy-
sis, pages 285–296, New York, NY, USA, 2009. ACM.

17. W. G. J. Halfond and A. Orso. Improving test case gener-
ation for web applications using automated interface dis-
covery. In ESEC-FSE ’07: Proceedings of the the 6th joint
meeting of the European software engineering conference
and the ACM SIGSOFT symposium on The foundations
of software engineering, pages 145–154, New York, NY,
USA, 2007. ACM.

18. W. G. J. Halfond and A. Orso. Automated identification
of parameter mismatches in web applications. In SIG-
SOFT ’08/FSE-16: Proceedings of the 16th ACM SIG-
SOFT International Symposium on Foundations of soft-
ware engineering, pages 181–191, New York, NY, USA,
2008. ACM.

19. A. Heydon and M. Najork. Mercator: A scalable, ex-
tensible web crawler. World Wide Web, 2(4):219–229,
1999.

20. E. Hieatt, R. Mee, and G. Faster. Testing the web appli-
cation engineering internet. IEEE Software, 19(2):60–65,
March/April 2002.

21. S. Jungmayr. Testability measurement and software de-
pendencies. In Proceedings of the 12th International
Workshop on Software Measurement, pages 179–202,
Aachen, 2002. Magdeburg,Shaker Publ.

22. S. H. Kan. Metrics and Models in Software Quality En-
gineering. Addison-Wesley, 2003.

23. K.-H. Kim and Y.-G. Kim. Process reverse engineering
for bpr: A form-based approach. Journal of Information
and Management, 23(4):187 – 200, 1998.

24. K. Lakhotia, P. McMinn, and M. Harman. Automated
test data generation for coverage: Haven’t we solved this
problem yet? In 4th Testing Academia and Industry
Conference — Practice And Research Techniques (TAIC
PART’09), pages 95–104, Washington, DC, USA, 2009.
IEEE Computer Society.

25. A. Marchetto, P. Tonella, and F. Ricca. State-based test-
ing of ajax web applications. In International Conference
on Software Testing Verification and Validation (ICST),
Lillehammer, Norway, April 2008. IEEE Computer Soci-
ety.

26. T. McCabe. A complexity measure. IEEE Transactions
on Software Engineering, 2(4):308–320, 1976.

27. A. Mesbah, , and A. van Deursen. Invariant-based au-
tomatic testing of ajax user interfaces. In 31st Inter-
national Conference on Software Engineering (ICSE).
IEEE Computer Society, May 2009.

28. R. C. Miller and K. Bharat. Sphinx: a framework for
creating personal, site-specific web crawlers. Comput.
Netw. ISDN Syst., 30(1-7):119–130, 1998.

29. J. W. Palmer. Web site usability, design, and perfor-
mance metrics. Info. Sys. Research, 13(2):151–167, 2002.

30. F. Ricca and P. Tonella. Analysis and testing of web ap-
plications. In ICSE ’01: Proceedings of the 23rd Interna-
tional Conference on Software Engineering, pages 25–34,
Washington, DC, USA, 2001. IEEE Computer Society.

31. S. Sampath, R. C. Bryce, G. Viswanath, V. Kandimalla,
and A. G. Koru. Prioritizing user-session-based test cases
for web applications testing. In ICST ’08: Proceedings of
the 2008 International Conference on Software Testing,
Verification, and Validation, pages 141–150, Washington,
DC, USA, 2008. IEEE Computer Society.

32. S. Sampath, S. Sprenkle, E. Gibson, L. Pollock, and
A. Souter. Analyzing clusters of web application user
sessions. In WODA ’05: Proceedings of the third inter-
national workshop on Dynamic analysis, pages 1–7, New
York, NY, USA, 2005. ACM.

33. S. Sampath, S. Sprenkle, E. Gibson, L. Pollock, and
A. Souter Greenwald. Applying concept analysis to user-
session-based testing of web applications. IEEE Trans.
Softw. Eng., 33(10):643–658, 2007.

34. S. Sprenkle, S. Sampath, E. Gibson, L. Pollock, and
A. Souter. An empirical comparison of test suite reduc-
tion techniques for user-session-based testing of web ap-
plications. In ICSM ’05: Proceedings of the 21st IEEE In-
ternational Conference on Software Maintenance, pages
587–596, Washington, DC, USA, 2005. IEEE Computer
Society.

35. F. Tip. A survey of program slicing techniques. Journal
of Programming Languages, 3(3):121–189, 1995.

36. P. Warren, C. Boldyreff, and M. Munro. The evolution of
websites. In IWPC ’99: Proceedings of the 7th Interna-
tional Workshop on Program Comprehension, page 178,
Washington, DC, USA, 1999. IEEE Computer Society.

37. G. Wassermann, D. Yu, A. Chander, D. Dhurjati, H. Ina-
mura, and Z. Su. Dynamic test input generation for web
applications. In ISSTA ’08: Proceedings of the 2008 in-
ternational symposium on Software testing and analysis,
pages 249–260, New York, NY, USA, 2008. ACM.

38. M. Weiser. Program slicing. IEEE Transactions on Soft-
ware Engineering, 10(4):352–357, July 1984.

39. Y. Wu and J. Offutt. Modeling and testing web-based
applications. Technical report, George Mason University,
2002.

Appendix A

In this section we provide additional data collected dur-
ing the experiment about the measured metrics and crawla-
bility but not included in the main sections of the paper
for space reason.

Marchetto, Tiella, Tonella, Alshahwan and Harman: Crawlability Metrics for Automated Web Testing 17

App Page Form Client side Metrics # Generated Pages 1-PCOV

NOF JVICC

oscommerce2 create account createAccount 20 18 4 0.75
oscommerce2 advanced search advancedSearch 11 46 3 0.67

campcaster StationSettings changeStationPrefs 11 8 2 0.50

campcaster importPlayLists PL importForm 5 3 3 0.67
campcaster AddGroup addsubject 4 3 2 0.50

campcaster AddAudio uploadFile 7 3 2 0.50

campcaster newPlayLists editMetaData 10 4 2 0.50

campcaster ChangePsw chgPsw 6 4 2 0.50
campcaster AddUser addsubject 6 5 2 0.50

campcaster newWebcam addWebstream 11 5 3 0.67

ajchat ajchat f1 8 9 3 0.67

shop indexphp subscription form 3 3 2 0.50

hotelBooking avialability.php checka 16 4 3 0.67
hotelBooking indexphp checka 15 7 4 0.75

hotelBooking checkavail.php checka 38 14 6 0.83

zencart index create account 25 20 5 0.80

zencart index advancedSearch 11 15 4 0.75
zencart product reviewes product reviews write 6 9 3 0.67

zencart checkout checkout payment 3 9 3 0.67
orangeHRM companyInfo general frmGenInfo 15 8 3 0.67

orangeHRM companyInfo structure frmAddNode 7 9 3 0.67

orangeHRM companyInfo structure frmDeleteNode 3 9 2 0.50
orangeHRM jobSpecification frmJobspec 3 6 3 0.67

spellCheck speller form1 2 6 3 0.67
spellCheck controls spellcheck 9 6 2 0.50

addressBook AddToGroup mainForm 6 8 2 0.50
addressBook Edit theForm 17 10 11 0.91
webChess MainMenu PersonalInfo 7 3 3 0.67

webChess newUser UserData 13 3 3 0.67
SchoolMate index-addclasses Classes 17 11 5 0.80

SchoolMate index-reg Registration 13 3 3 0.67
phpmyadmin server provilegies userForm 47 9 5 0.80

phpmyadmin db operations tbl create 5 8 3 0.67

phpmyadmin db operations dbop1 7 8 3 0.67
phpmyadmin db operations dbop2 14 3 2 0.50

phpmyadmin server sql sqlForm 9 15 6 0.83
phpmyadmin user password chgPassword 10 6 4 0.75

phpmyadmin structure tbl addField 9 5 3 0.67

phpmyadmin structure tbl indexes 5 5 3 0.67

App Page Form Server side Metrics # Generated Pages 1-PCOV

ICC-L0 SL-ICC-L0

addressbook add entry theform 262 1 1 0.00
airalliance process itinerary provide itinerary details 16 3 2 0.50

dbguestbook admin add bad word 151 6 4 0.75

dbguestbook guestbook sign guestbook 106 34 7 0.86
dbguestbook admin login 4 3 2 0.50

ecombill enter lab tests lab 1 1 1 0.00

lesson8 create new wisher create new wisher 13 7 4 0.75

lesson8 edit wish edit wish 10 5 2 0.50

lesson8 index login 4 3 2 0.50

lesson8 index wishlist 2 2 2 0.50
php-agenda admin deleteuser 19 4 3 0.67

php-agenda register register 16 4 4 0.75

php-agenda main page add todo 8 2 1 0.00
winestore changepasswd details 27 17 5 0.80

winestore login login 16 11 3 0.67

winestore your cart update 12 4 3 0.67

winestore details details 47 25 13 0.92
winestore search seach 17 2 2 0.50

Table 5. Metrics and Crawlability.

