
Search based software engineering for software product
line engineering: a survey and directions for future work

M. Harman, Y. Jia, J. Krinke, W. B. Langdon, J. Petke & Y. Zhang
CREST Centre, University College London, Malet Place, London, WC1E 6BT, U.K.

ABSTRACT
This paper1 presents a survey of work on Search Based
Software Engineering (SBSE) for Software Product Lines
(SPLs). We have attempted to be comprehensive, in the
sense that we have sought to include all papers that ap-
ply computational search techniques to problems in software
product line engineering. Having surveyed the recent explo-
sion in SBSE for SPL research activity, we highlight some di-
rections for future work. We focus on suggestions for the de-
velopment of recent advances in genetic improvement, show-
ing how these might be exploited by SPL researchers and
practitioners: Genetic improvement may grow new prod-
ucts with new functional and non-functional features and
graft these into SPLs. It may also merge and parameterise
multiple branches to cope with SPL branchmania.

Categories and Subject Descriptors
D.2.1 [Software Engineering]: Requirements/Specifications;
D.2.5 [Software Engineering]: Testing and Debugging;
D.2.11 [Software Engineering]: Software Architectures

Keywords
SBSE, SPL, Genetic Programming, Program Synthesis

1. INTRODUCTION
A Software Product Line (SPL) [113, 124], is a collec-

tion of related software products, all of which share some
core functionality, yet each of which differs in some specific
features. These differences in the features offered by each
product help the product line to capture the variability re-
quired by different users, different platforms and different
operating environments. The purpose of SPL engineering
is to optimally manage the elicitation/extraction, analysis,
evolution and application of the feature model and the SPL
architecture and the products constructed from them.

1
The paper was written to accompany the keynote at the 15th Soft-

ware Product Line Conference (SPLC 2014), given by Mark Harman,
but it reflects the joint work of all the authors.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
Copyright 20XX ACM X-XXXXX-XX-X/XX/XX ...$15.00.

A well managed SPL benefits from the commonalities
shared by all features. It allows us to address many of the
goals that have long been sought in software engineering,
such as reuse, traceability of requirements into products,
systematic testing and the control of software maintenance
and evolutionary processes.

It is natural to think of many of the problems in software
product line engineering as problems of optimisation. The
wide variability of different products expressed by their fea-
ture models, creates a large and rich search space in which
we can seek optimal (or near optimal) choices of products.
Many of the problems in SPL engineering involve balances
of multiple competing and conflicting software engineering
concerns.

Problems such as this, characterised by a large search
space, in which we seek to satisfy multiple conflicting or
competing objectives and constraints, are not unique to SPL
engineering alone. Such software engineering problems have
repeatedly been shown to submit to search-based formula-
tion and solution using techniques from the area that has
come to be known as ‘Search Based Software Engineering’
(SBSE) [48, 65].

The term ‘Search Based Software Engineering’, coined in
2001 [60], refers to the use of computational search as a
means of optimising software engineering problems. Since
2001, SBSE has been used to address challenging software
engineering problems with large and complex search spaces,
characterised by many conflicting competing objectives, in
areas as diverse as requirements [162], predictive modelling
[1, 55] software project management [43], design [134], test-
ing [2, 112], refactoring [125] and repair [93]. This wide
applicability to problems characterised by similar features
to those found in SPL engineering, naturally suggests that
SBSE will find successful applications in SPL optimisation.
This observation has led to a recent upsurge in interest and
activity in the area of ‘SBSE for SPL’.

Figure 1 shows the growth in papers on SBSE for SPL.
The number of papers expected for 2014 is estimated, based
on those we found at the time of writing (end of May 2014).
The 2014 figure is estimated by simply multiplying those
papers seen in the first five months of the year by 12/5 to
linearly extend. While we include some ‘to appear’ papers
for 2014, there will also be an inherent lag in paper in-
dexing. Bearing in mind these two conflicting confounders,
we believe a simple linear extrapolation is the simplest ap-
proach. Naturally, this number should be treated with cau-
tion. Whatever the true result for 2014, the growth trend
reveals a large upsurge in interest in the past five years.

N
um

be
r o

f P
ub

lic
at

io
ns

30

25

20

15

10

5

0
01 02 03 04 05 06 07 08 09 10 11 12 13 14

Year

estim
ated

Figure 1: SBSE for SPL Papers Since 2000

As well as the many subject specific SBSE surveys, there
are several publicly available SBSE tools for release planning
[121], design [115], testing [4, 45, 51, 78, 88, 147], refactoring
[117] and repair [94]. However, hitherto, there has been no
survey of SBSE for SPL. This next section sets out to provide
a comprehensive survey of this literature.

2. SBSE OF SPL ENGINEERING SURVEY
This section provides a survey of work on search based

software engineering for software product lines. At the heart
of most SPLs lies the feature model. Much of the work on
SBSE for SPLs is concerned with the problem of extracting
and improving the feature model, and selecting and priori-
tising the choice of products to be constructed from it.

The first two sections (Sections 2.1 and 2.2) concern the
problems of optimising feature model construction and prod-
uct selection/prioritisation from these models. A slightly
less well studied, but nonetheless very important and promis-
ing area, concerns improvement and repair of software prod-
uct line architectures. This is covered in the third sec-
tion (Section 2.3). Finally, there has been a great deal of
work on testing software product lines. The final section
(Section 2.4) covers test case construction, selection and
prioritisation, which has been attacked using many differ-
ent search based optimisation approaches, but most notably
search based combinatorial interaction testing.

2.1 Search Based Feature Model Selection
The concept of a feature model dates back to the work of

Kang et al. [82], who first formulated the notion of domain
features as an important space to be modelled, analysed and
controlled. There are many languages and notations avail-
able for describing feature models (also known as variability
models), such as TVL [27], DOPLER [38], FODA [19], and
commercial tools and tool extensions such as Gears [12].
A survey of feature model diagrammatic notations can be
found elsewhere [141].

These notations represent the common features, their char-
acteristics, defaults, special features and constraints. From
such models, developers can both derive specific instantia-
tions (products), and also manage, analyse and understand
the interactions and constraints pertinent to their product
line features.

As an illustrative example of a feature model diagram,
consider the model depicted in Figure 2. The model is taken
from a real 2005 Motorola mobile phone product line, widely
used as a dataset in search based requirements optimisation
since 2006 [13]. The fact that a feature model can simul-
taneously be used to study feature model optimisation and
requirements optimisation, underscores the very close rela-
tionship between two problems.

Mobile Phone

SettingsUtility Connectivity Multimedia

GPRS EDGE DTMMessage
Composer

EMS MMS

PTT

Audio
Buffer SMS

JSR177

Class
10

Multi-
Profile

XML Provisioning
Document

OTA-DM Music
Service

Mobile
TV

Progressive
Download Streaming

Figure 2: Extract from a 2005 Motorola Phone SPL

In this feature model, SMS is the Short Message Service
(aka text messaging), which remains ubiquitous ten years
later. EMS is an SMS concatenation protocol, while MMS
is the Multimedia Message Service protocol that includes
pictures (and, on more recent phones, video). PTT is a
Push To Talk feature that provides an instant communica-
tion solution, with optional audio buffering facility. Multi-
Profile allows several users to share the same phone, and
includes an XML export format. OTA-DM is Over The Air
Device Management, which allows the provider remove de-
vice configuration access. JSR177 is Java Specification Re-
quest 177, which provides security and trust functionality
for J2ME. GPRS is the General Packet Radio Services low
bandwidth data connection, while EDGE provides enhanced
bandwidth, for which ‘Class 10’ is a specific optional version.
DTM is Dual Transfer Mode communication between device
and base station.

Real world feature models typically involve many con-
straints [17]. Tracing variability information between prob-
lems (requirements) and solutions (products) is challenging
[16]. Languages, notations and tools (such as TVL, DO-
PLER, FODA and Gears) seek to provide a solution. Opti-
misation approaches that seek to select features and extract
products from feature models need to take account of these
traceability links and constraints. Consider Figure 3 (but ig-
nore the arrow labelled ‘infer’, which will be discussed later).
From a feature model, such as the reduced Motorola feature
model on the lefthand side of the figure, we can select fea-
tures to produce the products (mobile phone instances) on
the righthand side of the figure.

Search based feature model selection is isomorphic to the
previously studied search based requirements selection prob-
lem [163]. Search based requirements selection seeks to find
requirement selections, while respecting constraints. There
are thus many parallels between work on Search Based Re-
quirements Optimisation and Search Based SPL optimisa-
tion, as we shall show in the remainder of this section.

White et al. [153] introduce an approach they call Fil-
tered Cartesian Flattening to select features from a feature
model. They formulate feature selection as a constrained
single objective formulation (subject to a budget constraint)
and solve it using Branch and Bound with Linear Program-
ming (BBLP). They formulate feature selection as a Multi-
Dimensional, Multiple-Choice (MDMC) knapsack problem.
Since MDMC knapsack is known to be NP-hard, they con-
clude that previous (exact) approaches may not scale to
larger feature model instances. They introduce a heuris-
tic to filter choices, thereby reducing the search space and
evaluate on synthetic models of up to 5,000 features. They
report that their heuristic scales, while suffering only ap-
proximately 7% loss of solution quality.

Utility
Message
Composer

SMS EMS

Settings
OTA-DM

Connectivity
GPRS

Multimedia

Mobile TV

Product A

Utility
Message
Composer

SMS

Settings
JSR
177

OTA-
DM

Connectivity
GPRS

Multimedia
Music

Service

Product N

Streaming

Utility
Message
Composer

SMS MMS

Settings
OTA-DM

Connectivity
EDGE

Multimedia

Mobile TV

Product B

Progressive
Download

Class 10

Mobile Phone

SettingsUtility Connectivity Multimedia

Message
Composer

EMS MMSSMS

JSR177 OTA-DM Music
Service

Mobile
TV

Progressive
Download Streaming

GPRSEDGE

Class 10

Select

Infer

Figure 3: Selecting Features and Inferring Feature Models

Wu et al. [155] introduce (but do not evaluate) a frame-
work of 6 typical reuse strategies and the problem of max-
imising product quality, subject to constraints (such as cost,
failure rate and time). In so doing they reformulate the com-
ponent selection and reuse problem [13] in terms of SPLs
(subject to constraints). Component selection and reuse
is, itself, a variation of the Next Release Problem [11] in
Search Based Requirements Optimisation [162]. Therefore,
this work makes an implicit link between previous work on
search based software engineering for requirements selection
and search based optimisation of choices pertaining to fea-
ture models. Wu et al. subsequently extended this earlier
paper2 [162] with a multi-objective optimisation formulation
and a Mail Server System case study [154].

Bagheri et al. [10] propose an approach to the staged con-
figuration of the product using a variant of the Analytic
Hierarchy Process (AHP) that they term ‘Stratified AHP’.
This work is partly inspired by the use of AHP in require-
ments engineering optimisation, where it has a long history,
dating back to Karlsson’s foundational work [85] that was,
itself, incorporated into the requirements management tool
FocalPoint. AHP has the advantage that it minimises the
number of questions required of the user, and can cater for
conflicting responses about the choices to be made. This led
to its use in the search based software engineering literature,
not only in requirements, but also in ‘human-in-the-loop’ re-
gression test optimisation [159].

In order to extract an instance from the feature model
to create a specific product, the engineer has to answer a
series of questions. The presence of constraints means that
the answer to some questions may render certain subsequent
questions inapplicable. Nohrer and Egyed [123] investigate
iterative optimisation approaches to refine subsequent ques-
tion choices, based on answers received. The goal was to
reduce the number of overall questions required and to in-
crease the amount of choice in the order in which questions
are answered by the decision maker. It increases choice by
identifying question subsets for which order is unimportant.
Nohrer and Egyed report that the largest feature model with
which they experimented involved an unoptimised sequence
of 280 questions, indicating that optimisation is clearly im-
portant in this area. Chen and Erwig [24] also investigate
the problem of optimising the sequence of questions posed to
a decision maker, guided by a fitness function that measures
feature selectivity.

2
The earlier paper was in Chinese, while the latter is in English.

According Chen and Erwig’s fitness function, a feature is
more selective than another if choosing it causes more sub-
sequent features to be automatically selected (according to
the constraints pertinent to the feature model). Both Chen
and Erwig and also Nohrer and Egyed used an iterative,
greedy algorithm, which selects subsequent questions to be
asked based on those previously encountered.

Guo et al. [96, 54] use a genetic algorithm to find SPL
feature sets using a tool they implemented called GAFES.
GAFES uses repair to transform invalid selections into valid
ones, after crossover. Their fitness is value-per-unit-cost, so
this is a single objective formulation from a technical search
based optimisation perspective (they require a single fitness
function). However, from the user’s perspective, their ap-
proach combines cost and value objectives, just as, for exam-
ple search based regression testing combines cost and value
as value-per-unit-cost [39]. Guo et al. report that their GA
approach out-performs the Filtered Cartesian Flattening ap-
proach [153] on synthetically generated feature models.

Muller [118] also formulate the choice of products to be
built from an SPL as a cost-value trade off, using the simu-
lated annealing computational search algorithm to find sug-
gested choices of features that would form products that
balance these trade offs. They focus on differing customer
segments (stakeholder groups), observing that not all such
groups can necessary be satisfied by the products offered
(due to budgetary constraints).

Ognjanović et al. extract a business process model from a
set of business process instances and then apply a genetic al-
gorithm to search for business process configurations based
on stakeholder requirements [126]. The contributions target
the business community rather than the SPL community.
Though the terminology is different to that used in both
the SPL and the SBSE communities, the concepts and for-
mulation as a search problem is very similar to that used
in search based requirement optimisation [162] and SBSE
for SPLs. This observation suggests additional synergies
between SBSE for SPL, requirement and business process
analysis.

Sayyad et al. provided a detailed investigation of the multi-
objective feature selection problem in three related papers
[137, 138, 140]. In their ICSE paper [140] they studied and
evaluated metaheuristic algorithms for the multi-objective
SPL feature selection problem. They make explicit the (of-
ten previously implicit) link between search based software
engineering for requirements selection and search based op-
timisation of choices pertaining to feature models.

Their CMSBSE paper [138] extends the ICSE paper with a
more detailed investigation of parameter tuning for crossover
and mutation and explores the way different objectives be-
come satisfied at different points in the optimisation process.
This latter contribution may help the engineer to explain
and account for optimisation decisions in their discussions
with users. In their RESER paper [137] they replicate their
previous findings from the ICSE paper that Indicator-Based
Evolutionary Algorithm (IBEA) outperforms the well-known
Non-Dominated Sorting Genetic Algorithm (NSGA-2). The
replication shows that these findings also hold for the SPL
feature selection problem, over multiple tuning choices.

While the formulation of Wu et al. [155], described ear-
lier, was single objective, Sayyad et al. formulated a five-
objective optimisation problem, in which the objectives were
to minimise the total cost, defects, and violation and to max-
imise the total number of features offered by products, and
the number of features reused from previous products. In so
doing, Sayyad et al. transform the multi-objective next re-
lease problem [164] into a multi-objective software product
line engineering problem.

Sayyad et al. [139] subsequently introduce heuristics to
improve the performance of the IBEA they previously used
[138, 140]. They report that these heuristics allow the IBEA
to find sound and optimum configurations of very large vari-
ability models in the presence of multiple competing objec-
tives.

Cruz et al. [36] use a hybrid approach, which combines
fuzzy inference systems and the well-known multi-objective
genetic algorithm, NSGAII, to help decision makers manage
product lines by generating portfolios of products. These
portfolios are based on user segments and the development
cost of SPL products. Zhang et al. [161] proposed a fuzzy
multi-objective approach to extend previous multi-objective
SPL selection, but do not evaluate it.

Since White’s work in 2008 there has been a departure
from exact optimisation approaches for feature selection,
to explore metaheuristics. Velazco’s masters thesis [148]
presents a comparison of exact and metaheuristic multi-
objective approaches to feature selection. Velazco compares
the SMT-based exact incremental approach called the Guided
Improvement Algorithm with IBEA (which was used by
Sayyad et al. [137, 138, 139, 140]). While the exact tech-
nique can find optimal solutions for small models (with 45
features) in two hours, IBEA scales to larger models with
290 features, which it covers sub-optimally in 20 minutes.
Velazco’s findings also indicate that significant effort is re-
quired to find suitable IBEA parameter tunings.

Wang and Pang [151] use Ant Colony Optimisation to
optimise SPL feature selection, compering it to the Filtered
Cartesian Flattening algorithm of White et al. [153] and
the GAFES tool of Guo et al. [54, 96]. They report that
their solution quality is, on average, 6% worse than Filtered
Cartesian Flattening (though faster), while it is 10% better
than GAFES (though slower). As such, it offers a modest
compromise between these two existing solutions.

2.2 Search Based Feature Model Construction
One important problem in SPL engineering is the infer-

ence of products from a set of examples; an NP-hard problem
[5]. This is somewhat analogous to the problems associated
with requirements elicitation, in which the requirements are
‘extracted’ from user dialog or desired use-case scenarios.

However, whereas traditional requirement elicitation is
primarily concerned with elicitation from users for new sys-
tems and next releases, for SPL engineering, there may al-
ready exist several instances of a product prior to the reali-
sation that an SPL is required. Thus, for SPL feature model
elicitation, there may often be a need to reverse engineer (or
infer) a model from a set of instances. This problem is also
illustrated in Figure 3, in which the arrow labelled ‘infer’ in-
dicates that, from a set of products (on the righthand side)
we can infer a feature model (on the lefthand side).

Chan et al. were among the first to address this problem
using SBSE [22]. They use a genetic programming approach
to generate customer satisfaction models and their relation-
ship to design attributes, illustrating with the application of
their approach to a digital camera SPL case study. In the
same year, 2009, the connection between feature models and
genetics was also discussed by Dhungana and Groher [37],
though they did not use SBSE to exploit this link.

Linsbauer et al. [98] seek to learn feature models from in-
stances using genetic programming, extending the previous
work of Lopez-Herrejon et al. [68, 107], who used a genetic
algorithm with post-crossover repair.

Many approaches to software product line engineering fo-
cus on feature models. Therefore, there is a requirement for
thorough evaluation of the proposed tools and techniques
using suitable feature models. A thorough evaluation of any
search based software engineering approach requires both an
experimental and an empirical dimension [57, 114].

In the experimental evaluation, feature model generators
should be used in order to control the model’s characteris-
tics, thereby exploring the behaviour of the evaluated tech-
nique under laboratory controlled conditions. In the empir-
ical evaluation, real-world feature models should be used in
order to provide some indication of the technique’s useful-
ness (and likely behaviour) on realistic models.

If there are sufficiently many real-world instances avail-
able, then the empirical evaluation may also play the role of
the experimental evaluation. However, in many situations
experimental evaluation can only be fully controlled using
instance generators.

Segura et al. [142] address the need for instance genera-
tors for SPL evaluations. They model the problem of find-
ing computationally hard feature models as an optimisa-
tion problem, which they address using an evolutionary al-
gorithm. In this work, the goal is to use SBSE to search for
feature models, with given size and characteristics, that are
‘hard’ in the sense that they drive the feature model analysis
tool to consume time or memory.

The approach, implemented as a feature model generation
tool called ETHOM, thus takes a tool and tunes the feature
model ‘parameters’ to be a specifically hard case for the fea-
ture model analysis tool in hand. In this way, the ETHOM
tool of Segura et al. is a search based ‘stress test’, akin to
Briand et al.’s real-time stress tester [21]. It also shares
a similar motivation and approach to the search based ap-
proach to tuning for more rigorous experimental evaluations
of clone detect tools [150].

2.3 Search Based Architectural Improvement
Software architecture is a critical bridge between require-

ments and implementations [50]. For SPL engineering, the
feature model plays a critical role in capturing and express-
ing relationships between the requirements for products.

It is often attractive and advantageous to interpose a prod-
uct line architecture in-between the feature model and the
products constructed from it. The product line architecture
captures implementation concerns, with traceability links to
the feature model and products. A product line architec-
ture can be used to capture the core salient features, shared
by all products on the product line. It also facilitates ar-
chitectural exploration of the different variants and possible
products that can be implemented.

There is a natural search-based problem of improving and
repairing product line architectures to make them better fit
their feature models and customer needs. There is also the
related improvement and repair problem associated with the
feature model itself.

Lopez-Herrejon and Egyed [101] suggest that SBSE could
be used to search for inconsistencies in software product line
feature models and architectures, a concept being developed
within the SBSE4VM project on techniques to reverse en-
gineer, evolve, and fix inconsistencies in systems with vari-
ability [102].

Colanzi and Vergilio [30, 31, 32, 33, 34] formulate Product
Line Architecture (PLA) optimisation as a multi-objective
SBSE problem, focusing on architectural objectives such as
extensibility and modularity. Guizzo et al. [52, 53] extend
this work by using design patterns in the optimisation pro-
cess. Fung et al. [49] also mine rules to guide a genetic
algorithm to search for design attribute settings, evaluating
on a mobile phone case study.

Rezaul and Ruhe [83] and Karimpour and Ruhe [84] de-
velop Ruhe et al.’s work [135] on SBSE for Requirements to
support requirement theme analysis to identify and add new
features to existing models. Themes could be regarded as
components or cross-cutting SPL concerns.

2.4 Search Based SPL Testing
Approximately 50% of all research output on SBSE con-

cerns problems related to software testing [65]. Testing
problems naturally accommodate a search-based solution,
because most test objectives can be captured by numerical
assessment of test adequacy. These test adequacy criteria
make good fitness function candidates.

In 2011 Engström and Runeson [40] and Neto et al. [120]
both provided a systematic mapping of SPL testing, while
in 2012 Lee et al. [95] provided a general survey of SPL test-
ing. In this section, we focus on work on testing SPLs using
computational search algorithms, thereby covering that part
of the literature concerned with Search Based SPL Testing.

A natural choice in any approach to testing a software
product line (with its characteristic feature combinations) is
the use of Combinatorial Interaction Testing (CIT) [122]. In
CIT, the goal is to form a test suite that exercises all t-way
interactions of features in a feature model, for some choice
of t (known as the ‘strength’ of the interactions tested). As
t increases, the number of test cases required tends to grow
exponentially. However, recent research [130] showed that
higher strength testing can be practical in the presence of
constraints. Fortunately, there is also evidence to suggest
that the feature models used in software product line engi-
neering are typically subject to multiple constraints [17].

The first author to explicitly suggest CIT for SPL was
McGregor [111], whose proposal was subsequently extended
by Cohen et al. [29], though the concept of CIT itself dates
back to Mandl’s work on compiler testing [109].

Perrouin et al. [128, 129] also use CIT to test feature
choices in software product lines. They use a constraint sat-
isfaction approach, implemented using the tool Alloy, and
evaluated on the transactional SPL AspectOPTIMA.

Subsequently, Henard et al. [70, 71] proposed a search
based approach to generate and prioritise combinatorial tests
for SPLs, guided by a similarity measure. Ensan et al. [41]
also use a genetic algorithm to search for SPL feature in-
teractions. Kattepur et al. [86] use CIT for pairwise SPL
testing, evaluating its effectiveness on several attributes of
a crisis management case study.

Henard et al. [75] introduce an automated search-based
process to test and fix feature models so that they ade-
quately represent actual products. They propose [72] two
mutation operators to derive erroneous feature models (mu-
tants) from an original feature model. Henard et al. [73]
also propose a genetic algorithm to handle multiple conflict-
ing objectives in SPL test data generation.

Wang et al. [149] use a weighted GA to minimise SPL test
suites, while seeking to retain fault detecting power, while
Haslinger et al. [69] adapted a version of CASA [51], a well-
known search based CIT tool, to improve its performance for
SPL testing. Haslinger et al. report a speed up of over 60%
on 133 publicly available feature models, while preserving
the coverage of the generated tests.

Lopez-Herrejon et al. [105] propose a benchmark set of 19
different feature models for use in comparing CIT testing
techniques and tools. They apply three different techniques
in order to analyse their comparison framework and bench-
mark suite (and to evaluate these algorithms). The algo-
rithms compared include CASA. Johansen et al. [80] also
compare their proposed SPL CIT-based testing approach to
CASA.

Xu et al. [156] extend the notion of test suite augmenta-
tion [136, 158] to SPLs. As the components of the product
line are integrated to create products, the existing regression
test suite has to be augmented to test the new products.
Typically, a new product is an extension (or augmentation)
of an existing product, expressed as a branch in the prod-
uct line architecture. Therefore, it is likely that the existing
test suite, can be augmented to cover the new product so-
created.

Furthermore, existing test cases, which cover closely re-
lated products, are likely to form good seeds for a computa-
tional search for new test cases that cover the new product.
Xu et al. use a genetic algorithm to augment the existing
test suite in just this way, and also prioritise the order in
which components are integrated into products to facilitate
better test augmentation.

Henard et al. [74] also prioritise product configurations,
seeking to maximise the number of feature interactions cov-
ered by a test suite. They also contributed an open source
CIT tool for prioritised SPL testing called PLEDGE. Xu et
al. and Henard et al. both published in the same year (2013).

Like Xu et al., Henard also seek to prioritise the order
in which product configurations are considered. However,
the prioritisation goals are different in each of the two ap-
proaches: Xu et al. seek to maximise productive reuse of
existing test cases in the generation of new test cases, while
Henard et al. seek to maximise feature interactions. Henard
et al. also seek to maximise the feature interaction coverage
for a given test suite (without changing it), while Xu et al.
seek to augment test suites.

Lopez-Herrejon formulate the bi-objective problem of pair-
wise coverage and test suite minimisation as an exact opti-
misation problem [100]. For pairwise coverage (widely stud-
ied in CIT testing), all four combinations of inclusion and
non-inclusion of each pair of feature values must be covered.
They encode this coverage criterion as a maximisation prob-
lem (subject to constraints) so that a linear programming
solution can be applied. The linear programming problem
is to find the maximum coverage that can be achieved with
n test cases.

By considering different values of n, n > 0, a Pareto front
can be constructed which shows the trade-off between the
number of test cases and the pairwise coverage achieved.
Since Lopez-Herrejon et al. use linear programming for each
value of n, the Pareto front thus-obtained is the exact global
optimum for the software product line. They evaluate on
118 feature models taken from the SPL Conqueror Suite,
ranging in size from 16 to 640 features.

The performance of many search based algorithms can be
improved by seeding solutions known to be reasonable. In
a global search, such as genetic algorithm, this can be done
by seeding the initial population. In a local search, such
as a hill climb, the starting point can also be seeded. Such
seeding strategies have proved to be very effective in search
based software engineering for modularisation [108], genetic
improvement [8] and testing [4, 46]. Lopez-Herrejon et al.
[103] compare seeding strategies for combinatorial testing of
software product lines.

One alternative to CIT for feature models can be found in
mutation testing [79]. Whereas CIT focuses on the interac-
tions between different choices of features, mutation testing
approaches focus on finding faults in feature models by gen-
erating test cases that can detect simulated faults in these
models (mutated feature models).

Historically, mutation testing was used to assess test suite
quality; suites that detect many mutants are good at finding
simulated faults and, therefore, we hope that they will also
reveal many real faults [79, 81]. However, more recently,
research on mutation testing has been extended to generate
test cases that are good at detecting mutants [47, 58].

Henard et al. [76] formulate feature models as boolean
formulæ from which they generate program mutants to sup-
port SPL testing using mutation testing. Mutated feature
models are used to test the software product line. Henard
et al. compare their approach with random testing on 10
software product lines. They show that their approach finds
more mutation faults and is better at minimising the number
of tests required to find faults, when compared to random
testing, a widely used baseline sanity check for SBSE [66].

More work is required to compare mutation and CIT based
approaches to software product line testing. It seems likely
that each approach will be good at finding different classes of
faults and, therefore, this suggests the possibility of hybrid
combinatorial-and-mutation approaches.

Furthermore, one of the advantages of mutation testing is
that it is known to be adaptable; mutation approaches can
easily simulate other test adequacy criteria [79]. Therefore,
an interesting avenue for future work concerns mutation-
based SPL testing approaches that simulate other SPL test-
ing approaches, including combinatorial testing approaches.
This might allow a single mutation based framework to be
used for SPL testing, incorporating the advantages of many
other approaches.

Mutation testing suffers from the problem of equivalent
mutants [67]. That is, mutants are generated syntactically
by altering the source code, but this may not have any se-
mantic effect, leading to a mutant that is syntactically dif-
ferent, yet semantically equivalent, to the original program
from which it is constructed. The problem is particularly
pernicious because mutant equivalence is, in general, unde-
cidable (for program mutants). However, since feature mod-
els are comparatively simple (generally loop free), we may
hope for future work on formulations in which the mutant
equivalence problem becomes decidable because the feature
model language is sub-Turing complete. Such future work
would imbue SPL mutation testing with advantages that
remain unavailable to program mutation testing.

Filho et al. [44] use a random search to search an SPL
counter example space. The counter examples of interest are
constructed for a model based formulation of SPL design, in
which a model separates the concerns of variability mod-
elling from the ‘realisation layer’ (that maps variations to
product choices). For such models, Filho et al. seek counter
examples that yield invalid product models, despite being
derived using valid variability models.

Filho et al. report results to indicate the scalability of their
approach (which will come as no surprise to a search based
software engineer, since random search is typically a very
scalable technique [66]). However, though random search
is typically scalable to large systems, it does not usually
produce the highest quality solutions, nor often the greatest
number of valid solutions.

Filho et al.’s work could be extended by future work on the
formulation of suitable SBSE fitness functions that capture
other important properties of a counter example, such as
feature interactions, number of features and so on. In this
way, model counter example generation could be formulated
as a multi-objective search based test generation [61, 91,
132], selection [56, 157] or prioritisation [97] problem.

3. FUTURE WORK ON SBSE FOR SPL
In this section we present some possibilities for new av-

enues of work in which there community might apply com-
putational search to software product line engineering.

3.1 AutoGrowing New SPL Product Branches
There has been tremendous progress in traditional Ge-

netic Programming, which grows programs and functions
from scratch [87, 133]. However, from the software engi-
neering perspective, the task of growing an entire software
system from scratch is rather akin to seeking to evolve hu-
man beings from bacteria; while theoretically possible, those
seeking the practical application of genetic programming to
this task may face a considerable wait.

In seeking to adapt and incorporate the successes of ge-
netic programming in software engineering, search based
software engineers have turned to a technique that has come
to be known as ‘genetic improvement’ (but is also known as
‘evolutionary improvement’ and ‘program improvement’) [8,
9, 63, 90, 93, 127, 146, 152]. Genetic improvement is a de-
velopment of genetic programming that seeks to improve
existing programs, rather than evolving (or ‘growing’) new
systems from scratch. As such, genetic improvement attacks
a demanding (though significantly less challenging) problem
that is more akin to evolving human beings from apes rather
than from bacteria.

Genetic improvement can be thought of as an approach to
constructing a set of intelligent generative programming [15]
techniques. It can also be viewed as one potential solution
approach to the long-standing challenge of program synthe-
sis, towards which the wider computer science community
has been optimistically (perhaps quixotically) heading for
considerable time [110, 145].

Siegmund et al. [143] highlight the issue of non-functional
properties such as performance, footprint size and energy
consumption and the tensions between them; a choice of
SPL product may have to meet many competing and con-
flicting non-functional properties. They introduce a system
called ‘SPL Conqueror’ for capturing, measuring and choos-
ing among non-functional properties.

Genetic improvement can be used to provide a ‘Pareto
surface’ of programs [63]. This Pareto program surface con-
tains a large number of different programs (‘products’ in SPL
nomenclature), each of which share the same functionality,
yet all of which differ in their non-functional properties.

The surface is constructed along several dimensions, each
of which represents optimisation according to a specific non-
functional property. All programs on the surface are Pareto
optimal; none of them is superior to any of the others ac-
cording to all of the non-functional properties. As such, the
Pareto program surface represents a design space of pro-
grams in which the design dimensions concerned are non-
functional product properties.

The concept of a ‘Pareto front of SPL products’ is not new
to the SPL community. For example, Murashkin et al. [119]
introduce a tool to visualise the Pareto front of optimal SPL
variants according to cost, as well as non-functional prop-
erties such as energy use and security aspects. However,
while existing work on Pareto fronts in the SPL commu-
nity has concerned visualisation and analysis of the front,
genetic improvement may offer a way to automatically con-
struct the front or, more ambitiously, a surface (for multiple
objectives).

In particular, recent results on genetic improvement have
demonstrated that it is possible to evolve new versions of the
system to optimise non-functional properties, while retain-
ing the functional properties [89, 92, 131, 144, 152]. This ap-
proach could be a promising direction for automatically gen-
erating new branches of the product line according to differ-
ences in products that purely pertain to the non-functional
behaviour of each product.

It seems unnecessarily labour-intensive to require human
programmers to devote time and effort to the tedious task
of constructing different versions of the same system for dif-
ferent platforms with different non-functional operating re-
quirements. Surely we should be seeking ways to automati-
cally grow (to ‘AutoGrow’) and optimise new products that
differ simply on non-functional properties.

We may even be able to AutoGrow some new functional-
ity: Grow and Graft Genetic Improvement (GGGI) [62] is a
recent approach to genetic improvement in which new fea-
tures are semi-automatically grown using genetic program-
ming in isolation from the system into which they are sub-
sequently grafted using search based software engineering.
This is an instance of software transplantation [64], in which
code from a donor program is transplanted into a host using
SBSE. In this case, the donor of the transplantation process
is not an existing system, but a piece of code that is grown
in isolation.

Utility

Message
Composer

EMS MMSSMS

Utility

Package

Message Composer

SMS EMS EMS

Translation
Component

Translation

Grow

Graft

Translation
(new feature)

Translation
(new feature)

Translation
(new feature)

Translation Translation

Figure 4: Growing and Grafting New SPL Features

In this ‘grow’ phase, the small fragment of code to be
grown is evolved using genetic programming, guided by hints
and suggestions from the programmer. These hints augment
the more traditional (test-based) genetic programming fit-
ness function. This code fragment so-grown (the donor) is
subsequently grafted into an existing system (the host), by
searching for a suitable insertion point and interface that
connects the name spaces of donor and host. While soft-
ware transplantation (in general) is analogous to biological
organ transplantation, the GGGI approach is analogous to
the proposed medical development of in vitro organ growth
from stem cells for subsequent transplantation.

Perhaps more adventurous future work might investigate
the degree to which genuinely new functionality could be
grown as a branch of an existing product line using the
GGGI approach. GGGI has been used to grow a natural
language translation feature and graft it into the 200KLoC
Pidgin Instant Messaging system [62]. This recent result in-
dicates that future work could use GGGI to automatically
grow similar new features and graft them into each product
that needs the new feature (see Figure 4).

Such an approach would not necessarily lead to automated
production code construction. Rather, the growth of the
product line branch may remain the human programmer’s
responsibility, with GGGI providing valuable decision sup-
port. For example, a software engineer may be relieved to
know that they could potentially ‘autogrow’ a customer’s
desired new feature. They may not ultimately deploy such
autogrown code, but this knowledge may be useful in nego-
tiations. Where such a branch cannot be easily autogrown,
this may also provide valuable decision support; suggesting
caution in the promises offered to the customer, because an
unknown quantity of human effort will be required.

In a prototyping phase, developers may also speculatively
grow and graft new branches to investigate the possibilities
in the space of all possible products. Since these automati-
cally grown extensions are essentially disposable (and there-
fore almost cost free), they provide programmers and their
managers with ways to cheaply explore sub-regions of the
product design space.

3.2 AutoMerging to Tackle Branchmania
It is easy for a feature model to grow alarmingly, leav-

ing the developer with and unmanageably large number of
different product variants. This situation has been termed
‘branchmania’ [18], because the product line architecture
contains so many different branches that it becomes impos-
sible to maintain and evolve a cost-effective product line.

One solution to the problem is to try and recognise when
a product line is spiralling out of control and thereby take
steps to intervene. A more radical solution is to slash and
burn; in cases of branchmania perhaps the only obvious so-
lution is to reduce the number of branches.

Unfortunately, neither of these solutions is ideal. Seek-
ing to intervene raises all of the usual software engineering
concerns of how and when to intervene and how to reconcile
business and technical goals. Simply removing branches may
provide a temporary amelioration, yet simultaneously re-
duce longer-term customer satisfaction, without even guar-
anteeing the absence of future branchmania.

SBSE and related techniques can be used to extract im-
plicit parameters, making them tuneable [20, 59, 77]. Com-
putational search can also tune [99, 150] parameters that
may be already explicit, or otherwise rendered explicit.

Future work could therefore develop techniques to control
branchmania by identifying branch similarities, extracting
parameters and subsequently searching for suitable tunings
that yield individual products. A set of child branches of a
shared parent could thereby be merged into a single modified
parent with an additional set of parameters that capture the
variability previously present in the children. In this way,
a combination of parameter extraction and tuned parame-
ter instantiation could merge several products into a single
parameterised product. We would be migrating apparently
varying features into a parent branch parameter.

3.3 Retargetting Existing SBSE at SPL
The previous subsection focussed exclusively on genetic

programming for SPL engineering. We suggested approaches
in which the products themselves are automatically improved
using techniques extended from recent advances in genetic
improvement. In the next subsection we broaden our focus
to consider SBSE techniques, more generally, that might find
application in SPL engineering. We suggest ways in which
other computational search algorithms can be used to sup-
port SPL planing, testing and scalability, without directly
modifying the products themselves.

SPL Project Planning
There has been a great deal of work on search based ap-

proaches to software project management. Problems of the
assignment of staff to projects [14, 25], management of risk
[7, 42], and project scheduling [6, 26] have all been addressed
in the literature.

Chastek and McGregor [23] suggest that careful project
planning is even more important for software product lines
than for physical product lines, such as ‘consumer white
goods’ and automobiles. Results from search based software
project management may therefore find further applications
in software product line project planning.

Searching for Model Counter Examples
Classen et al. [28] apply model checking to SPLs, to check

properties of all products generated from the SPL, while
Cordy et al. [35] use model checking to search for SPL counter
examples. Search based techniques such as Ant Colony Op-
timisation have proved effective at finding counter examples
in other large model checking state spaces [3]. Formulations
of software product line verification as model checking may
therefore also benefit from search based software engineer-
ing.

Multicore Parallelisation for Scalability
Computational search algorithms are often referred to as

‘embarrassingly parallel’ because they naturally allow par-
allel formulations that can yield significant scalability en-
hancement. For instance, the fitness computation for each
genetic algorithm individual can easily be computed in par-
allel. A more local search, such as a hill climbing algorithm,
typically performs multiple restarts in a sequential setting,
but all such restarts could also be performed in parallel.

Search based software engineers have realised the possibil-
ity of parallelisation as a route to scalability using comput-
ing clusters [108, 116] and, more recently, adapting General-
Purpose Graphics Processing Units (GPGPUs) for search
based regression test selection and prioritisation [97, 160]
and for combinatorial interaction testing applied to SPLs
[104]. Parallel SBSE may prove to be particularly impor-
tant in scaling computational search algorithms to handle
large-scale software product lines.

4. CONCLUSIONS
We attempted to comprehensively survey work on SBSE

for SPL, an area for which we reveal a large recent upsurge in
activity. Our literature search found 58 papers on SBSE for
SPL, of which 52 were published since 2010. The most active
area is SPL testing (22 papers), followed by SPL feature
selection (18 papers), PLA improvement (12 papers) and
SPL feature extraction (6 papers).

We also highlighted several recent advances in the use
of genetic programming in SBSE research, explaining how
these might address challenging problems for software prod-
uct lines, such as search based branch merge (to reduce
branchmania) and Grow and Graft Genetic Improvement
(GGGI) to automatically augment a software product line
with new branches.

5. ACKNOWLEDGEMENTS
We are grateful to the SPLC 2014 Organising Commit-

tee for the invitation to write this paper for the conference,
and the invitation to Mark Harman to give the associated
keynote talk on SBSE for SPL. Thanks also to Myra Cohen,
Thelma Elita Colanzi Lopes, Roberto Erick Lopez-Herrejon,
Tim Menzies, Mike Papadakis and Guenther Ruhe for their
comments on an earlier draft of this paper.

Having sent the final draft for review by these authors we
were made aware of the mapping study by Lopez-Herrejon
et al. [106], which appeared online 2 days before our camera
ready copy was due. Readers interested in our paper may
also wish to consult this mapping study.

This work is supported by the Engineering and Physi-
cal Sciences Research Council (the EPSRC) grants Genetic
Improvement of Software for Multiple Objectives (GISMO:
EP/I033688) and Dynamic Adaptive Automated Software
Engineering (DAASE: EP/J017515).

DAASE is an EPSRC ‘programme grant’ collaborative in-
vestment in SBSE in the UK. It is funded from June 2012
to May 2018, with matching support from EPSRC and Uni-
versity College London (UCL) and the Universities of Birm-
ingham, Stirling and York. These four host universities will
complement the 22 EPSRC-funded post doctoral researchers
with 26 fully funded PhD studentships and 6 permanent fac-
ulty positions (assistant and associate professorships).

6. REFERENCES
[1] W. Afzal and R. Torkar. On the application of

genetic programming for software engineering
predictive modeling: A systematic review. Expert
Systems Applications, 38(9):11984–11997, 2011.

[2] W. Afzal, R. Torkar, and R. Feldt. A systematic
review of search-based testing for non-functional
system properties. Information and Software
Technology, 51(6):957–976, 2009.

[3] E. Alba and F. Chicano. ACOhg: Dealing with Huge
Graphs. In 9th Conference on Genetic and
Evolutionary Computation, pages 10–17, July 2007.

[4] N. Alshahwan and M. Harman. Automated web
application testing using search based software
engineering. In 26th International Conference on
Automated Software Engineering, pages 3–12, Nov.
2011.

[5] N. Andersen, K. Czarnecki, S. She, and A. Wasowski.
Efficient synthesis of feature models. In 16th
International Software Product Line Conference,
pages 106–115, 2012.

[6] G. Antoniol, M. Di Penta, and M. Harman. The use
of search-based optimization techniques to schedule
and staff software projects: An approach and an
empirical study. Software – Practice and Experience,
41(5):495–519, Apr. 2011.

[7] G. Antoniol, S. Gueorguiev, and M. Harman.
Software project planning for robustness and
completion time in the presence of uncertainty using
multi objective search based software engineering. In
ACM Genetic and Evolutionary Computation
COnference (GECCO 2009), pages 1673–1680,
Montreal, Canada, 8th – 12th July 2009.

[8] A. Arcuri, D. R. White, J. A. Clark, and X. Yao.
Multi-objective improvement of software using
co-evolution and smart seeding. In 7th International
Conference on Simulated Evolution and Learning,
pages 61–70, Dec. 2008.

[9] A. Arcuri and X. Yao. A novel co-evolutionary
approach to automatic software bug fixing. In IEEE
Congress on Evolutionary Computation, pages
162–168, June 2008.

[10] E. Bagheri, M. Asadi, D. Gasevic, and S. Soltani.
Stratified analytic hierarchy process: Prioritization
and selection of software features. In 14th
International Conference on Software Product Lines,
pages 300–315, Sept. 2010.

[11] A. Bagnall, V. Rayward-Smith, and I. Whittley. The
next release problem. Information and Software
Technology, 43(14):883–890, Dec. 2001.

[12] M. Bakal and C. W. Krueger. The Rhapsody/Gears
bridge – SPL for MDD. In 11th International
Conference on Software Product Lines, pages
139–140, Sept. 2007.

[13] P. Baker, M. Harman, K. Steinhöfel, and A. Skaliotis.
Search based approaches to component selection and
prioritization for the next release problem. In 22nd
International Conference on Software Maintenance,
pages 176–185, Sept. 2006.

[14] A. Barreto, M. de Oliveira Barros, and C. M. L.
Werner. Staffing a software project: a constraint
satisfaction and optimization-based approach.

Computers & Operations Research, 35(10):3073–3089,
Oct. 2008.

[15] B. Barth, G. Butler, K. Czarnecki, and U. W.
Eisenecker. Generative programming. In ECOOP
Workshops, pages 135–149, 2001.

[16] K. Berg, J. Bishop, and D. Muthig. Tracing software
product line variability – from problem to solution
space. In Annual research conference of the South
African institute of computer scientists and
information technologists on IT research in
developing countries, pages 182–191, 2005.

[17] T. Berger, S. She, R. Lotufo, A. Wasowski, and
K. Czarnecki. Variability modeling in the real: a
perspective from the operating systems domain. In
25th International Conference on Automated
Software Engineering, pages 73–82, Sept. 2010.

[18] C. Bird and T. Zimmermann. Assessing the value of
branches with what-if analysis. In 20th Symposium
on the Foundations of Software Engineering, pages
45(1–10), 2012.

[19] Y. Bontemps, P. Heymans, P.-Y. Schobbens, and
J.-C. Trigaux. The semantics of FODA feature
diagrams. In Workshop on Software Variability
Management for Product Derivation, Aug. 2004.

[20] N. Brake, J. R. Cordy, E. Dancy, M. Litoiu, and
V. Popescu. Automating discovery of software tuning
parameters. In International Workshop on Software
Engineering for Adaptive and Self-Managing
Systems, pages 65–72, 2008.

[21] L. C. Briand, Y. Labiche, and M. Shousha. Stress
testing real-time systems with genetic algorithms. In
Genetic and Evolutionary Computation Conference,
pages 1021–1028, 2005.

[22] K. Y. Chan, C. K. Kwong, and T. C. Wong.
Modelling customer satisfaction for product
development using genetic programming. Journal of
Engineering Design, 22(1):55–68, Jan. 2009.

[23] G. Chastek and J. D. McGregor. Production
planning in a software product line organization. In
12th International Software Product Line Conference,
pages 369–369, Sept. 2008.

[24] S. Chen and M. Erwig. Optimizing the product
derivation process. In 15th International Conference
on Software Product Lines, pages 35–44, Aug. 2011.

[25] W.-N. Chen and J. Zhang. Ant colony optimization
for software project scheduling and staffing with an
event-based scheduler. IEEE Transactions on
Software Engineering, 39(1):1–17, Jan. 2013.

[26] F. Chicano, F. Luna, A. J. Nebro, and E. Alba.
Using multi-objective metaheuristics to solve the
software project scheduling problem. In 13th Annual
Conference on Genetic and Evolutionary
Computation, pages 1915–1922, July 2011.

[27] A. Classen, Q. Boucher, and P. Heymans. A
text-based approach to feature modelling: Syntax
and semantics of TVL. Science of Computer
Programming, 76(12):1130–1143, 2011.

[28] A. Classen, M. Cordy, P.-Y. Schobbens, P. Heymans,
A. Legay, and J.-F. Raskin. Featured transition
systems: Foundations for verifying
variability-intensive systems and their application to
LTL model checking. IEEE Transactions on Software

Engineering, 39(8):1069–1089, Aug. 2013.

[29] M. B. Cohen, M. B. Dwyer, and J. Shi. Coverage and
adequacy in software product line testing. In
Workshop on the Role of Software Architecture for
Testing and Analysis, pages 53–63, July 2006.

[30] T. E. Colanzi. Search based design of software
product lines architectures. In 34th International
Conference on Software Engineering, pages
1507–1510, 2012.

[31] T. E. Colanzi and S. R. Vergilio. Applying search
based optimization to software product line
architectures: Lessons learned. In 4th International
Symposium on Search Based Software Engineering,
pages 259–266, Sept. 2012.

[32] T. E. Colanzi and S. R. Vergilio. Representation of
software product line architectures for search-based
design. In 1st International Workshop on Combining
Modelling and Search-Based Software Engineering,
pages 28–33, 2013.

[33] T. E. Colanzi and S. R. Vergilio. A feature-driven
crossover operator for product line architecture
design optimization. In 38th International
Computers, Software and Applications Conference,
Västeras, Sweden, 2014. To appear.

[34] T. E. Colanzi, S. R. Vergilio, I. M. S. G. S., and
W. N. Oizumi. A search-based approach for software
product line design. In 18th International Software
Product Line Conference, 2014. To appear.

[35] M. Cordy, P. Heymans, A. Legay, P.-Y. Schobbens,
B. Dawagne, and M. Leucker. Counterexample
guided abstraction refinement of product-line
behavioural models. In 22nd International
Symposium on the Foundations of Software
Engineering, 2014. To appear.

[36] J. Cruz, P. S. Neto, R. Britto, R. Rabelo, W. Ayala,
T. Soares, and M. Mota. Toward a hybrid approach
to generate software product line portfolios. In IEEE
Congress on Evolutionary Computation, pages
2229–2236, 2013.

[37] D. Dhungana and I. Groher. Genetics as a role model
for software variability management. In 31st
International Conference on Software Engineering
Companion Volume, pages 239–242, May 2009.

[38] D. Dhungana, P. Grünbacher, and R. Rabiser. The
DOPLER meta-tool for decision-oriented variability
modeling: a multiple case study. Automated Software
Engineering, 18(1):77–114, 2011.

[39] S. Elbaum, A. Malishevsky, and G. Rothermel.
Incorporating varying test costs and fault severities
into test case prioritization. In 23rd International
Conference on Software Engineering, pages 329–338,
May 2001.

[40] E. Engström and P. Runeson. Software product line
testing – a systematic mapping study. Information &
Software Technology, 53(1):2–13, 2011.

[41] F. Ensan, E. Bagheri, and D. Gasevic. Evolutionary
search-based test generation for software product line
feature models. In 24th International Conference on
Advanced Information Systems Engineering, pages
613–628, 2012.

[42] F. Ferrucci, M. Harman, J. Ren, and F. Sarro. Not
going to take this anymore: Multi-objective overtime

planning for software engineering projects. In 35th
International Conference on Software Engineering,
2013.

[43] F. Ferrucci, M. Harman, and F. Sarro. Search based
software project management. In Software Project
Management in a Changing World. Springer, 2014.
To appear.

[44] J. B. F. Filho, O. Barais, M. Acher, B. Baudry, and
J. L. Noir. Generating counterexamples of
model-based software product lines: an exploratory
study. In 17th International Software Product Line
Conference, pages 72–81, Aug. 2013.

[45] G. Fraser and A. Arcuri. Evosuite: automatic test
suite generation for object-oriented software. In 8th
European Software Engineering Conference and the
Symposium on the Foundations of Software
Engineering, pages 416–419, Sept. 2011.

[46] G. Fraser and A. Arcuri. The seed is strong: Seeding
strategies in search-based software testing. In 5th
International Conference on Software Testing,
Verification and Validation, pages 121–130, Apr.
2012.

[47] G. Fraser and A. Zeller. Mutation-driven generation
of unit tests and oracles. In International Symposium
on Software Testing and Analysis, pages 147–158,
2010.

[48] F. G. Freitas and J. T. Souza. Ten years of search
based software engineering: A bibliometric analysis.
In 3rd International Symposium on Search based
Software Engineering, pages 18–32, Sept. 2011.

[49] C. K. Fung, C. Kwong, K. Y. Chan, and H. Jiang. A
guided search genetic algorithm using mined rules for
optimal affective product design. Engineering
Optimization, 46(8):1094–1108, 2014.

[50] D. Garlan. Software architecture: A travelogue. In
Future of Software Engineering, pages 29–39, 2014.

[51] B. J. Garvin, M. B. Cohen, and M. B. Dwyer.
Evaluating improvements to a meta-heuristic search
for constrained interaction testing. Empirical
Software Engineering, 16(1):61–102, 2011.

[52] G. Guizzo, T. E. Colanzi, and S. R. Vergilio.
Applying design patterns in product line search-based
design: Feasibility analysis and implementation
aspects. In Chilean Computing Conference, 2013.

[53] G. Guizzo, T. E. Colanzi, and S. R. Vergilio.
Applying design patterns in search-based product
line architecture design. In 6th Symposium on Search
Based Software Engineering, Aug. 2014. To appear.

[54] J. Guo, J. White, G. Wang, J. Li, and Y. Wang. A
genetic algorithm for optimized feature selection with
resource constraints in software product lines. The
Journal of Systems and Software, 84(12):2208–2221,
Dec. 2011.

[55] M. Harman. How SBSE can support construction
and analysis of predictive models (keynote). In 6th
International Conference on Predictive Models in
Software Engineering, 2010.

[56] M. Harman. Making the case for MORTO: Multi
objective regression test optimization (invited
position paper). In 1st International Workshop on
Regression Testing, 2011.

[57] M. Harman, E. Burke, J. A. Clark, and X. Yao.

Dynamic adaptive search based software engineering
(keynote paper). In 6th International Symposium on
Empirical Software Engineering and Measurement,
pages 1–8, Sept. 2012.

[58] M. Harman, Y. Jia, and B. Langdon. Strong higher
order mutation-based test data generation. In 8th
European Software Engineering Conference and the
Symposium on the Foundations of Software
Engineering, pages 212–222, Sept. 2011.

[59] M. Harman, Y. Jia, W. B. Langdon, J. Petke, I. H.
Moghadam, S. Yoo, and F. Wu. Genetic
improvement for adaptive software engineering
(keynote). In 9th International Symposium on
Software Engineering for Adaptive and Self-Managing
Systems, pages 1–4, 2014.

[60] M. Harman and B. F. Jones. Search based software
engineering. Information and Software Technology,
43(14):833–839, Dec. 2001.

[61] M. Harman, K. Lakhotia, and P. McMinn. A
multi-objective approach to search-based test data
generation. In 9th Annual Conference on Genetic and
Evolutionary Computation, pages 1098–1105, July
2007.

[62] M. Harman, W. B. Langdon, and Y. Jia. Babel
pidgin: SBSE can grow and graft entirely new
functionality into a real world system. In 6th
Symposium on Search Based Software Engineering,
Aug. 2014. To appear.

[63] M. Harman, W. B. Langdon, Y. Jia, D. R. White,
A. Arcuri, and J. A. Clark. The GISMOE challenge:
Constructing the pareto program surface using
genetic programming to find better programs
(keynote paper). In 27th International Conference on
Automated Software Engineering, pages 1–14, Sept.
2012.

[64] M. Harman, W. B. Langdon, and W. Weimer.
Genetic programming for reverse engineering
(keynote paper). In 20th Working Conference on
Reverse Engineering, Oct. 2013.

[65] M. Harman, A. Mansouri, and Y. Zhang. Search
based software engineering: Trends, techniques and
applications. ACM Computing Surveys,
45(1):11:1–11:61, Nov. 2012.

[66] M. Harman, P. McMinn, J. Souza, and S. Yoo.
Search based software engineering: Techniques,
taxonomy, tutorial. In Empirical software engineering
and verification: LASER 2009-2010, pages 1–59.
Springer, 2012.

[67] M. Harman, X. Yao, and Y. Jia. A study of
equivalent and stubborn mutation operators using
human analysis of equivalence. In 36th International
Conference on Software Engineering, June 2014. To
appear.

[68] E. N. Haslinger, R. E. Lopez-Herrejon, and
A. Egyed. Reverse engineering feature models from
programs’ feature sets. In 18th Working Conference
on Reverse Engineering, pages 308–312, Oct. 2011.

[69] E. N. Haslinger, R. E. Lopez-Herrejon, and
A. Egyed. Improving CASA runtime performance by
exploiting basic feature model analysis. CoRR,
abs/1311.7313, 2013.

[70] C. Henard, M. Papadakis, G. Perrouin, J. Klein,

P. Heymans, and Y. Le Traon. Bypassing the
combinatorial explosion: Using similarity to generate
and prioritize T-wise test configurations for software
product lines. IEEE Transactions on Software
Engineering, 2014. To appear.

[71] C. Henard, M. Papadakis, G. Perrouin, J. Klein,
P. Heymans, and Y. L. Traon. Bypassing the
combinatorial explosion: Using similarity to generate
and prioritize T-wise test suites for large software
product lines. CoRR, abs/1211.5451, 2012.

[72] C. Henard, M. Papadakis, G. Perrouin, J. Klein, and
Y. L. Traon. Assessing software product line testing
via model-based mutation: An application to
similarity testing. In 6th International Conference on
Software Testing, Verification and Validation
Workshops, pages 188–197, 2013.

[73] C. Henard, M. Papadakis, G. Perrouin, J. Klein, and
Y. L. Traon. Multi-objective test generation for
software product lines. In 17 International Software
Product Line Conference, pages 62–71, 2013.

[74] C. Henard, M. Papadakis, G. Perrouin, J. Klein, and
Y. L. Traon. Pledge: A product line editor and test
generation tool. In 17th International Software
Product Line Conference Co-located Workshops,
pages 126–129, 2013.

[75] C. Henard, M. Papadakis, G. Perrouin, J. Klein, and
Y. L. Traon. Towards automated testing and fixing of
re-engineered feature models. In 35th International
Conference on Software Engineering, pages
1245–1248, 2013.

[76] C. Henard, M. Papadakis, and Y. L. Traon.
Mutation-based generation of software product line
test con
figurations. In 6th Symposium on Search Based
Software Engineering, Aug. 2014. To appear.

[77] H. Hoffmann, S. Sidiroglou, M. Carbin, S. Misailovic,
A. Agarwal, and M. Rinard. Dynamic knobs for
responsive power-aware computing. In Sixteenth
International Conference on Architectural Support for
Programming Languages and Operating Systems,
pages 199–212, Mar. 2011.

[78] Y. Jia and M. Harman. Milu: A customizable,
runtime-optimized higher order mutation testing tool
for the full C language. In 3rd Testing Academia and
Industry Conference – Practice and Research
Techniques, pages 94–98, Aug. 2008.

[79] Y. Jia and M. Harman. An analysis and survey of the
development of mutation testing. IEEE Transactions
on Software Engineering, 37(5):649–678, 2011.

[80] M. F. Johansen, Ø. Haugen, and F. Fleurey. An
algorithm for generating T-wise covering arrays from
large feature models. In 16th International Software
Product Line Conference, pages 46–55, 2012.

[81] R. Just, D. Jalali, L. Inozemtseva, M. D. Ernst,
R. Holmes, and G. Fraser. Are mutants a valid
substitute for real faults in software testing? In 22nd
International Symposium on the Foundations of
Software Engineering (FSE 2014), 2014. To appear.

[82] K. C. Kang, S. G. Cohen, J. A. Hess, W. E. Novak,
and A. S. Peterson. Feature-oriented domain analysis
(FODA) feasibility study. Technical Report
CMU/SEI-90-TR-21, Carnegie-Mellon University,

Software Engineering Institute, 1990.

[83] M. R. Karim and G. Ruhe. Bi-objective genetic
search for release planning in support of themes. In
6th Symposium on Search Based Software
Engineering, Aug. 2014. To appear.

[84] R. Karimpour and G. Ruhe. Bi-criteria genetic
search for adding new features into an existing
product line. In 1st International Workshop on
Combining Modelling and Search-Based Software
Engineering, pages 34–38, May 2013.

[85] J. Karlsson and K. Ryan. A cost-value approach for
prioritizing requirements. IEEE Software,
14(5):67–74, 1997.

[86] A. Kattepur, S. Sen, B. Baudry, A. Benveniste, and
C. Jard. Variability modeling and QoS analysis of
web services orchestrations. In International
Conference on Web Services, pages 99–106, 2010.

[87] J. R. Koza. Genetic Programming: On the
Programming of Computers by Means of Natural
Selection. MIT Press, Cambridge, MA, 1992.

[88] K. Lakhotia, M. Harman, and H. Gross. AUSTIN:
An open source tool for search based software testing
of C programs. Journal of Information and Software
Technology, 55(1):112–125, Jan. 2013.

[89] W. B. Langdon and M. Harman. Genetically
improved CUDA C++ software. In 17th European
Conference on Genetic Programming (EuroGP),
Granada, Spain, April 2014. To Appear.

[90] W. B. Langdon and M. Harman. Optimising existing
software with genetic programming. IEEE
Transactions on Evolutionary Computation, 2014. To
appear.

[91] W. B. Langdon, M. Harman, and Y. Jia. Efficient
multi objective higher order mutation testing with
genetic programming. Journal of Systems and
Software, 83(12):2416–2430, 2010.

[92] W. B. Langdon, M. Modat, J. Petke, and
M. Harman. Improving 3D medical image registration
CUDA software with genetic programming. In 16th
Conference on genetic and evolutionary computation
conference (GECCO 2014), Vancouver, Canada,
12-15 July 2014. ACM. To Appear.

[93] C. Le Goues, S. Forrest, and W. Weimer. Current
challenges in automatic software repair. Software
Quality Journal, 21(3):421–443, 2013.

[94] C. Le Goues, T. Nguyen, S. Forrest, and W. Weimer.
GenProg: A generic method for automatic software
repair. IEEE Transactions on Software Engineering,
38(1):54–72, 2012.

[95] J. Lee, S. Kang, and D. Lee. A survey on software
product line testing. In 16th International Software
Product Line Conference – Volume 1, pages 31–40,
2012.

[96] J. Li, X. Liu, Y. Wang, and J. Guo. Formalizing
feature selection problem in software product lines
using 0-1 programming. In 6th International
Conference on Intelligent Systems and Knowledge
Engineering, 2011.

[97] Z. Li, Y. Bian, R. Zhao, and J. Cheng. A fine-grained
parallel multi-objective test case prioritization on
GPU. In 5th International Symposium on Search
Based Software Engineering, pages 111–125, Aug.

2013.

[98] L. Linsbauer, R. E. Lopez-Herrejon, and A. Egyed.
Feature model synthesis with genetic-programming.
In 6th Symposium on Search Based Software
Engineering, Aug. 2014. To appear.

[99] S. Lohar, S. Amornborvornwong, A. Zisman, and
J. Cleland-Huang. Improving trace accuracy through
data-driven configuration and composition of tracing
features. In 9th joint meeting of the European
Software Engineering Conference and the Symposium
on the Foundations of Software Engineering, pages
378–388, Aug. 2013.

[100] R. E. Lopez-Herrejon, F. Chicano, J. Ferrer,
A. Egyed, and E. Alba. Multi-objective optimal test
suite computation for software product line pairwise
testing. In 29th International conference on software
maintenance, pages 404–407, 2013.

[101] R. E. Lopez-Herrejon and A. Egyed. Searching the
variability space to fix model inconsistencies: A
preliminary assessment. In 3rd International
Symposium on Search based Software Engineering,
Sept. 2011. Fast Abstract.

[102] R. E. Lopez-Herrejon and A. Egyed. SBSE4VM:
Search based software engineering for variability
management. In 17th European Conference on
Software Maintenance and Reengineering, pages
441–444, 2013.

[103] R. E. Lopez-Herrejon, J. Ferrer, F. Chicano,
A. Egyed, and E. Alba. Comparative analysis of
classical multi-objective evolutionary algorithms and
seeding strategies for pairwise testing of software
product lines. In IEEE Congress on Evolutionary
Computation, pages 387–396, July 2014.

[104] R. E. Lopez-Herrejon, J. Ferrer, F. Chicano, E. N.
Haslinger, A. Egyed, and E. Alba. A parallel
evolutionary algorithm for prioritized pairwise testing
of software product lines. In Genetic and
Evolutionary Computation Conference, 2014. To
appear.

[105] R. E. Lopez-Herrejon, J. Ferrer, F. Chicano, E. N.
Haslinger, A. Egyed, and E. Alba. Towards a
benchmark and a comparison framework for
combinatorial interaction testing of software product
lines. CoRR, abs/1401.5367, 2014.

[106] R. E. Lopez-Herrejon, J. Ferrer, F. Chicano,
L. Linsbauer, A. Egyed, and E. Alba. A hitchhiker’s
guide to search-based software engineering for
software product lines. CoRR, abs/1406.2823, 2014.

[107] R. E. Lopez-Herrejon, J. A. Galindo, D. Benavides,
S. Segura, and A. Egyed. Reverse engineering feature
models with evolutionary algorithms: An exploratory
study. In 4th International on Search Based Software
Engineering – Symposium, pages 168–182, Sept. 2012.

[108] K. Mahdavi, M. Harman, and R. M. Hierons. A
multiple hill climbing approach to software module
clustering. In International Conference on Software
Maintenance, pages 315–324, Sept. 2003.

[109] R. Mandl. Orthogonal latin squares: an application
of experiment design to compiler testing.
Communications of the ACM, 28(10):1054–1058, Oct.
1985.

[110] Z. Manna and R. J. Waldinger. Toward automatic

program synthesis. Communications of the ACM,
14(3):151–164, 1971.

[111] J. McGregor. Testing a software product line.
Technical Report CMU/SEI-2001-TR-022, Software
Engineering Institute, Carnegie Mellon University,
Pittsburgh, Pennsylvania, 2001.

[112] P. McMinn. Search-based software testing: Past,
present and future. In International Workshop on
Search-Based Software Testing, pages 153–163, Mar.
2011.

[113] A. Metzger and K. Pohl. Software product line
engineering and variability management:
Achievements and challenges. In Future of Software
Engineering, pages 70–84, 2014.

[114] B. Meyer, H. Gall, M. Harman, and G. Succi.
Empirical answers to fundamental software
engineering problems (panel paper). In European
Software Engineering Conference and the Symposium
on the Foundations of Software Engineering, pages
14–18. ACM, Aug. 2013.

[115] B. S. Mitchell and S. Mancoridis. On the automatic
modularization of software systems using the bunch
tool. IEEE Transactions on Software Engineering,
32(3):193–208, 2006.

[116] B. S. Mitchell, M. Traverso, and S. Mancoridis. An
architecture for distributing the computation of
software clustering algorithms. In IEEE/IFIP
Working Conference on Software Architecture, pages
181–190, 2001.

[117] I. H. Moghadam and Mel Ó Cinnéide. Code-Imp: A
tool for automated search-based refactoring. In 4th
Workshop on Refactoring Tools, pages 41–44, 2011.

[118] J. Muller. Value-based portfolio optimization for
software product lines. In 15th International Software
Product Line Conference, pages 15–24, Aug. 2011.

[119] A. Murashkin, M. Antkiewicz, D. Rayside, and
K. Czarnecki. Visualization and exploration of
optimal variants in product line engineering. In 17th
International Software Product Line Conference,
pages 111–115, 2013.

[120] P. A. S. Neto, I. d. Machado, J. D. McGregor, E. S.
de Almeida, and S. R. d. Meira. A systematic
mapping study of software product lines testing.
Information & Software Technology, 53(5):407–423,
2011.

[121] A. Ngo-The and G. Ruhe. A systematic approach for
solving the wicked problem of software release
planning. Soft Computing – A Fusion of
Foundations, Methodologies and Applications,
12(1):95–108, Aug. 2008.

[122] C. Nie and H. Leung. A survey of combinatorial
testing. ACM Computing Surveys, 43(2):11:1–11:29,
2011.

[123] A. Nöhrer and A. Egyed. Optimizing user guidance
during decision-making. In 15th International
Conference on Software Product Lines, pages 25–34,
Aug. 2011.

[124] L. Northrop and P. Clements. Software Product
Lines: Practices and Patterns. Addison-Wesley
Longman Publishing Co., Inc., 2001.

[125] M. Ó Cinnéde, L. Tratt, M. Harman, S. Counsell,
and I. H. Moghadam. Experimental assessment of

software metrics using automated refactoring. In 6th
International Symposium on Empirical Software
Engineering and Measurement, pages 49–58, Sept.
2012.

[126] I. Ognjanović, B. Mohabbati, D. Gaevic, E. Bagheri,
and M. Bokovic. A metaheuristic approach for the
configuration of business process families. In
International Conference on Services Computing,
pages 25–32, June 2012.

[127] M. Orlov and M. Sipper. Flight of the FINCH
through the java wilderness. IEEE Transactions
Evolutionary Computation, 15(2):166–182, 2011.

[128] G. Perrouin, S. Oster, S. Sen, J. Klein, B. Baudry,
and Y. L. Traon. Pairwise testing for software
product lines: comparison of two approaches.
Software Quality Journal, 20(3–4):605–643, 2012.

[129] G. Perrouin, S. Sen, J. Klein, B. Baudry, and Y. L.
Traon. Automated and scalable T-wise test case
generation strategies for software product lines. In
3rd International Conference on Software Testing,
Verification and Validation, pages 459–468, 2010.

[130] J. Petke, M. B. Cohen, M. Harman, and S. Yoo.
Efficiency and early fault detection with lower and
higher strength combinatorial interaction testing. In
European Software Engineering Conference and the
Symposium on the Foundations of Software
Engineering, pages 26–36, Aug. 2013.

[131] J. Petke, M. Harman, W. B. Langdon, and
W. Weimer. Using genetic improvement & code
transplants to specialise a C++ program to a
problem class. In 17th European Conference on
Genetic Programming (EuroGP), Granada, Spain,
April 2014. To Appear.

[132] G. H. L. Pinto and S. R. Vergilio. A multi-objective
genetic algorithm to test data generation. In 22nd
International Conference on Tools with Artificial
Intelligence, pages 129–134, 2010.

[133] R. Poli, W. B. Langdon, and N. F. McPhee. A field
guide to genetic programming. Published via
http://lulu.com and freely available at
http://www.gp-field-guide.org.uk, 2008. (With
contributions by J. R. Koza).

[134] O. Räihä. A survey on search–based software design.
Computer Science Review, 4(4):203–249, 2010.

[135] M. O. Saliu and G. Ruhe. Bi-objective release
planning for evolving software systems. In European
Software Engineering Conference and the
International Symposium on Foundations of Software
Engineering, pages 105–114. ACM, Sept. 2007.

[136] R. A. Santelices, P. K. Chittimalli,
T. Apiwattanapong, A. Orso, and M. J. Harrold.
Test-suite augmentation for evolving software. In
23rd Automated Software Engineering, pages
218–227, 2008.

[137] A. S. Sayyad, K. Goseva-Popstojanova, T. Menzies,
and H. Ammar. On parameter tuning in search-based
software engineering: A replicated empirical study. In
International Workshop on Replication in Empirical
Software Engineering Research, Oct. 2013.

[138] A. S. Sayyad, J. Ingram, T. Menzies, and H. Ammar.
Optimum feature selection in software product lines:
Let your model and values guide your search. In 1st

International Workshop on Combining Modelling and
Search-Based Software Engineering, pages 22–27,
2013.

[139] A. S. Sayyad, J. Ingram, T. Menzies, and H. Ammar.
Scalable product line configuration: A straw to break
the camel’s back. In 28th International Conference
on Automated Software Engineering, pages 465–474,
2013.

[140] A. S. Sayyad, T. Menzies, and H. Ammar. On the
value of user preferences in search-based software
engineering: a case study in software product lines.
In 35th International Conference on Software
Engineering, pages 492–501, 2013.

[141] P. Schobbens, P. Heymans, and J.-C. Trigaux.
Feature diagrams: A survey and a formal semantics.
In 14th International Conference on Requirements
Engineering, pages 139–148, Sept. 2006.

[142] S. Segura, J. A. Parejo, R. M. Hierons, D. Benavides,
and A. R. Cortés. Automated generation of
computationally hard feature models using
evolutionary algorithms. Expert Systems
Applications, 41(8):3975–3992, 2014.

[143] N. Siegmund, M. Rosenmüller, M. Kuhlemann,
C. Kästner, S. Apel, and G. Saake. SPL Conqueror:
Toward optimization of non-functional properties in
software product lines. Software Quality Journal,
20(3–4):487–517, 2012.

[144] P. Sitthi-amorn, N. Modly, W. Weimer, and
J. Lawrence. Genetic programming for shader
simplification. ACM Transactions on Graphics,
30(6):152:1–152:11, 2011.

[145] J. Stark and A. Ireland. Towards automatic
imperative program synthesis through proof
planning. In Conference on Automated Software
Engineering, pages 44–51, 1999.

[146] J. Swan, M. G. Epitropakis, and J. R. Woodward.
Gen-o-fix: An embeddable framework for dynamic
adaptive genetic improvement programming.
Technical Report CSM-195, Computing Science and
Mathematics, University of Stirling, 2014.

[147] P. Tonella. Evolutionary testing of classes. In
International Symposium on Software Testing and
Analysis, pages 119–128, July 2004.

[148] R. E. O. Velazco. Comparison of exact and
approximate multi-objective optimization for
software product lines. Master’s thesis, University of
Waterloo, 2013.

[149] S. Wang, S. Ali, and A. Gotlieb. Minimizing test
suites in software product lines using weight-based
genetic algorithms. In 15th Annual Conference on
Genetic and Evolutionary Computation, pages
1493–1500, July 2013.

[150] T. Wang, M. Harman, Y. Jia, and J. Krinke.
Searching for better configurations: a rigorous
approach to clone evaluation. In European Software
Engineering Conference and the Symposium on the
Foundations of Software Engineering, pages 455–465,
Aug. 2013.

[151] Y. Wang and J. Pang. Ant colony optimization for
feature selection in software product lines. Journal of
Shanghai Jiaotong University (Science), 19(1):50–58,

2014.

[152] D. R. White, A. Arcuri, and J. A. Clark.
Evolutionary improvement of programs. IEEE
Transactions on Evolutionary Computation,
15(4):515–538, 2011.

[153] J. White, B. Doughtery, and D. C. Schmidt. Filtered
cartesian flattening: An approximation technique for
optimally selecting features while adhering to
resource constraints. In 12th International
Conference on Software Product Lines, pages
209–216, Sept. 2008.

[154] Z. Wu, J. Tang, C. K. Kwong, and C. Y. Chan. An
optimization model for reuse scenario selection
considering reliability and cost in software product
line development. International Journal of
Information Technology & Decision Making,
10(5):811–841, 2011.

[155] Z. Wu, J. Tang, and L. Wang. An optimization
framework for reuse component selection in software
product line. In Control and Decision Conference,
pages 1880–1884, June 2009. In Mandarin Chinese.

[156] Z. Xu, M. B. Cohen, W. Motycka, and G. Rothermel.
Continuous test suite augmentation in software
product lines. In 17th International Software Product
Line Conference, pages 52–61, Aug. 2013.

[157] S. Yoo and M. Harman. Using hybrid algorithm for
pareto efficient multi-objective test suite
minimisation. Journal of Systems and Software,
83(4):689–701, 2010.

[158] S. Yoo and M. Harman. Test data regeneration:
Generating new test data from existing test data.
Journal of Software Testing, Verification and
Reliability, 22(3):171–201, May 2012.

[159] S. Yoo, M. Harman, P. Tonella, and A. Susi.
Clustering test cases to achieve effective and scalable
prioritisation incorporating expert knowledge. In
International Conference on Software Testing and
Analysis, pages 201–212, July 2009.

[160] S. Yoo, M. Harman, and S. Ur. GPGPU test suite
minimisation: search based software engineering
performance improvement using graphics cards.
Journal of Empirical Software Engineering,
18(3):550–593, June 2013.

[161] H. Zhang, R. Lin, H. Zou, F. Yang, and Y. Zhao.
The collaborative configuration of service-oriented
product lines based on evolutionary approach. In
International Conference on Services Computing,
pages 751–752, 2013.

[162] Y. Zhang, A. Finkelstein, and M. Harman. Search
based requirements optimisation: Existing work and
challenges. In International Working Conference on
Requirements Engineering: Foundation for Software
Quality, pages 88–94, 2008.

[163] Y. Zhang, M. Harman, and S. L. Lim. Empirical
evaluation of search based requirements interaction
management. Journal of Information and Software
Technology, 55(1):126–152, Jan. 2013.

[164] Y. Zhang, M. Harman, and A. Mansouri. The
multi-objective next release problem. In 9th Annual
Conference on Genetic and evolutionary
computation, pages 1129–1137, July 2007.

