
State Aware Test Case Regeneration for Improving Web
Application Test Suite Coverage and Fault Detection

Nadia Alshahwan and Mark Harman
CREST Centre

University College London, Malet Place, London, WC1E 6BT, U.K.
{nadia.alshahwan.10,mark.harman}@ucl.ac.uk

ABSTRACT
This paper introduces two test cases regeneration approaches
for web applications, one uses standard Def-Use testing but
for state variables, the other uses a novel value-aware data-
flow approach. Our overall approach is to combine requests
from a test suite to form client-side request sequences, based
on dataflow analysis of server-side session variables and data-
base tables. We implemented our approach as a tool SART
(State Aware Regeneration Tool) and used it to evaluate
our proposed approaches on 4 real world web applications.
Our results show that for all 4 applications, both server-side
coverage and fault detection were statistically significantly
improved. Even on relatively high quality test suites our
algorithms improve average coverage by 14.74% and fault
detection by 9.19%.

Categories and Subject Descriptors
D.2.5 [Software Engineering]: Testing and Debugging

General Terms
Reliability, Verification

Keywords
Testing, Web applications, Regeneration, State

1. INTRODUCTION
Web application developers have little control over how

their applications are used due to browser functions such as
Back and Refresh. This can lead to unexpected execution
paths that may cause unanticipated behaviour. An analy-
sis by Ricca and Tonella [27] found that more than 40% of
user sessions contained paths that are considered ‘infeasi-
ble’ by the application model, but which are,nevertheless,
achievable in practice, using browser functions.

The order in which requests are supplied to the server
affects the behaviour of the application. This order can also

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
ISSTA ’12, Minneapolis, MN, USA
Copyright 20XX ACM X-XXXXX-XX-X/XX/XX ...$10.00.

have a crucial influence on the degree of coverage and faults
detected during testing. When Sprenkle et al. [26] replayed
test requests multiple times in random orders without re-
setting the application state between requests, they observed
increased server-side coverage and elevated fault detection.

These findings suggest that additional testing value can
be added to a test suite, by execution of multiple re-ordered
request sequences. However, exhaustive exploration of all
possible such re-orderings will be prohibitively expensive,
even for small test suites. Therefore, to get additional value
from request orderings we need to develop intelligent algo-
rithms for recombination of requests. The sequences gener-
ated must be likely to achieve increased coverage and fault
detection without encountering an exponential explosion in
the number of sequences to be executed.

To achieve this, we seek to use server-side dataflow analy-
sis of the server state to guide the choice of request orderings
that increase effectiveness. Of course, the Hypertext Trans-
fer Protocol (HTTP) itself, is stateless; the server processes
each request independently without requiring any knowledge
of previous requests from the user. The overall state of the
web application is thus maintained between multiple HTTP
requests using other techniques, such as session variables,
cookies, hidden variables and the database.

Cookies and hidden variables are stored on the client-side,
making it possible for the tester to force either of these two
state carriers to contain arbitrary values of choice. Faults
exposed by setting either a cookie or a hidden variable to
some chosen value are, by definition ‘real’ faults, because
there is nothing to prevent the user of the application from
setting either in just this manner. However, on the server
side, things are different: The only way that the user can set
a session variable or a database table to a particular value,
is through the execution of client-side requests that cause
the server to execute some part of its code that affects these
two forms of state carrier.

The tester could artificially insert values into database
tables or into session variables, but there would then be no
guarantee that any faults detected by such artificial value
insertion would be true positives; perhaps there is no client-
side request sequence that can create such values. Therefore,
we seek request sequences that cause the server to exercise
the server-side web application state.

We introduce two techniques for generating new sequences
of HTTP requests from an existing test suite of requests.
Both our techniques are inspired by dataflow testing, specif-
ically seeking to execute a definition of a state variable (a
session variable or database table) and to ensure that this

value flows unchanged to a corresponding use. Though data-
flow testing is well understood in conventional applications,
there has been no previous work on state-based dataflow
testing of web applications.

We introduce a ‘standard’ Def-Use (DU) approach that
seeks to ensure that each definition flows to each use. We
also introduce a novel form of dataflow testing, value-aware
dataflow testing, which seeks to ensure that each possible
different value obtained at a session variable flows into each
use and that each different dynamically generated database
invocation reaches a corresponding use. We implement each
of these techniques in a tool SART (State Aware Regen-
eration Tool) and use this to experiment with our two ap-
proaches.

We report the results of an empirical study on four real
world web applications for our state-based and value-aware
dataflow techniques and also, as a baseline comparator, for
random recombination. In all experiments we start with
high quality test suites drawn from those whose cases alone,
when executed individually, already achieve good coverage
and fault detection. We do this in order to test the abil-
ity of our recombination to add value; clearly were we to
start with a low-coverage request set, then any recombina-
tion can be excepted to produce additional coverage and may
thereby be sufficiently fortunate to reveal additional faults.
However, we show that our approach (and in particular the
value-aware approach) can statistically significantly improve
coverage and fault detection for relatively high quality test
suites.

The primary contributions of the paper are as follows:

1. The first application of server-side state-based data-
flow testing techniques to web applications for test se-
quence regeneration.

2. The introduction of a novel value-aware DU approach
that is sensitive to the specific state instance: session
variable values and database SQL statements and a
tool that implements it.

3. An empirical evaluation of the two approaches on 4
real-world web applications that confirms the effective-
ness and efficiency of these approaches. The evaluation
shows that an average improvement of up to 25.31%
can be obtained for branch coverage and 14.31% for
fault detection.

The rest of this paper is organized as follows: Section
2 provides a background concerning web application state.
Section 3 introduces the two proposed approaches, whilst
Section 4 introduces our tool called SART that implements
the approaches. Section 5 presents the evaluation together
with a discussion of the results. Section 6 presents related
work and Section 7 concludes.

2. WEB APPLICATION STATE
In web applications, several techniques that propagate the

state to subsequent requests are used to overcome the state-
less nature of HTTP requests. These techniques include the
use of session variables, client-side cookies and hidden Form

variables. In applications that use a database, the database
state can also affect request behaviour.

In this paper we focus on PHP server-side code for con-
creteness, but the techniques we introduce can be applied to
other server-side languages.

2.1 Server Session Variables
In PHP, session variables are created by the server for

a single user session and maintained until the session is
terminated. Session variables are saved in a global array
($_SESSION) which can be accessed and modified by the
server-side code:

$_SESSION[’Var’] = value;

The index of the array is the variable name while the array
element holds the value. The variables in the session hold
their values for the duration of the session: when a variable
is set, it can be accessed in any HTTP request that is sub-
mitted by the same user until the session is terminated and
the session array is destroyed. A common use-case example
is a session variable flag that determines the state ‘logged
in’. Such a flag is used to record whether a user has logged
in to prevent execution of any requests prohibited to non-
logged-in users.

In addition to the global array $_SESSION, built-in func-
tions are used to modify and/or use the global session array
as a whole. For example the functions start_session()

and destroy_session() create and destroy a session (and
its associated session array) respectively. A complete list of
session functions can be found on the PHP language web-
site1.

2.2 Database State
The database is an integral part of many web applications’

operation. For example, online shopping applications use
a database to keep track of their inventories, while social
networks store user profiles and interactions.

A PHP program manipulates the database state through
an API; a library is provided that includes functions to con-
nect to the database and to execute SQL statements. For
example, a simple SQL query to a MySQL database can be
executed by calling:

$result = mysql_query("SELECT * FROM TABLE");

SQL statements are treated as strings in the native PHP
code and can be constant or dynamically constructed (and
therefore will have values that depend upon user inputs and
conditional paths through the program). Many other web
languages (and non-web specific languages) use the same
approach.

The database state could affect the way a request is pro-
cessed, resulting in different behaviour in response to the
same request when executed with different database states.
An example of this is a request to create a user account.
The first time the request is executed, the application ac-
cepts the request and creates the account, but subsequent
requests will, of course, be rejected.

3. APPROACH
For our purposes, a test suite will be considered to be a set

of sequences of HTTP requests to the server-side issued at
the client-side. We seek to take an existing test suite and to
regenerate it. That is, to combine fragments of the request
sequences to achieve improved coverage and fault detection.
The starting test suite from which we regenerate can come
from any existing approach [2, 5, 15, 24, 28].

1http://php.net/manual/en/ref.session.php

Ideally, regeneration should try every possible order and
combination of all requests in the test suite. However, this
is likely to be infeasible even with small test suites, because
the number of possible sequences grows exponentially.

In order to focus on a manageable yet valuable subset, we
propose an approach that generates test sequences by com-
bining HTTP requests that define and use the server-side
state. Our approach shares the same principles embodied in
existing dataflow testing approaches [18, 22]. However, the
Def-Use approach we propose is defined at the page level,
represented by an HTTP request, rather than the statement
or block level. A Def-Use pair (DU pair) is a sequence where
one test case (or request) defines the state and one uses the
state. We use statement locations to identify distinct defini-
tion and use points. We employ dataflow testing principles
and augment them to generate test sequences that are more
likely to enhance the effectiveness of the original test suites
in both coverage and fault finding.

Our approach is to seek HTTP request sequences that
cause server-side code to be executed to define the value
of a session variable or database table. We then append
to this definition sequence, an extra request that causes the
server-side code to execute a corresponding use of the session
variable or database table. This is a variation of standard
Def-Use (DU) testing for web application server-side state.
The main difference being our focus on session variables and
database tables and the need to execute a sequence of re-
quests to activate server-side definitions and uses.

We also introduce a value-aware Def-Use testing approach
that is more fine grained; it considers each different value de-
fined and used not merely each Def-Use pair. In a conven-
tional application this would be simply impractical because
there would be too many different values to consider. How-
ever, as we shall show in our empirical results, for web ap-
plications this approach is not only feasible, but it produces
a significant improvement in coverage and fault detection.

In the reminder of this section we describe our state-based
DU and value-aware DU approaches in more detail.

3.1 State-based DU
The first approach we propose is based on a standard DU

approach but adapted to web application state. For every
distinct DU pair of session variables and database tables,
we construct a test sequence that covers each pair from the
available HTTP requests in the test suite.

We first perform a simple static analysis to determine lo-
cations in the code at which session variables or database
tables are defined or used. For session variables, a definition
is an assignment and a use is any other reference to the vari-
able, much as definitions and uses are constructed in non
web applications. However, unlike non-web-based systems,
we can only execute a Def-Use pair by issuing a sequence of
requests from the client-side. For session functions, we clas-
sify them into functions that define the state and functions
that use the state based on their descriptions. Because most
session functions operate on the session as a whole and not
on specific variables, when constructing sequences to cover
DU pairs that are caused by session functions, we consider
the session array to be the session variable.

For the database, UPDATE, DELETE and INSERT statements
are considered to be definitions, while SELECT statements are
considered to be uses.

To identify database tables’ definitions and uses, we need

to identify the locations of database calls within the code
as well as the type of operation (UPDATE, DELETE, INSERT

or SELECT) and the affected table. We collect locations of
calls to the function mysql_query in the code and the SQL
statements used at each call to extract table names and op-
erations.

SQL statements that manipulate the database are treated
as regular strings in the PHP code. These strings can be
constructed dynamically. For example a code fragment that
implements a database call from FAQForge, one of the sub-
ject applications we use in the evaluation, is:

$q="UPDATE FaqPage SET page_num=$new_num WHERE ";

$q .="page_num=$page_num AND owner_id=$id";

$result=mysql_query($q,$dbLink);

In this example, the SQL statement $q is constructed by
concatenating the constant string and the user-provided in-
put and dynamically computed variables. In these cases we
approximate the SQL statement by using constant propa-
gation and removing the dynamic parts of the statement.
The approximated string might not be a valid SQL state-
ment, but for the purpose of this paper it is sufficient for
the approximated string to contain sufficient information to
identify the table name and SQL operation.

For example for the code fragment above, the approxi-
mated string would be:

"UPDATE FaqPage SET page_num= WHERE

page_num= AND owner_id="

From this string we can automatically extract the oper-
ation UPDATE and the affected table FaqPage and conclude
that this is a definition of table FaqPage.

The next step is to dynamically analyse the original test
suite to match its test cases to the definition and use locations
that were discovered by the static analysis. Each test case
is executed on an instrumented version of the application to
discover which definition or use locations it executes.

Algorithm 1 Test sequence generation approach for State-
based DU. The state identifier (SI) refers to a session vari-
able name or a table name. Test sequences are generated for
every DU pair for each session variable and database table.

Require: Test Suite TS
Require: State identifiers SI
Require: SI definition locations SIDL
Require: SI use locations SIUL

1: TS′ = φ
2: for all si in SI do
3: for all defloc in SIDL do
4: deftest = getdeftestcase(TS,si,defloc)
5: for all useloc in SIUL do
6: usetestid = getusetestcase(TS,si,useloc)
7: newSeq = (deftest,usetestid)
8: TS′ = TS′ ∪ newSeq
9: end for

10: end for
11: end for
12: return TS′

Algorithm 1 describes how test sequences are generated.
A state identifier (SI) refers to a session variable name or
database table name. The algorithm uses the analysis data
to construct new test cases using the HTTP requests in the
original test suite. For every state identifier, all definition
locations are retrieved from a State Identifier Definition Lo-
cations (SIDL) set created during the static analysis phase.
A test case that covers that definition location is then re-
trieved (Line 4). For all use locations of that same identi-
fier, a HTTP request that executes that location is used to
construct a new test sequence (Lines 5-8). The output of
the algorithm is a set of new test sequences (TS′).

Figure 1: DU Sequence construction technique: The
sequence that contains the definition HTTP request
is truncated after the request and combined with
the use HTTP request to form the new sequence.

When constructing a sequence, the algorithm first finds
a test case that contains an HTTP request that defines the
state identifier. When the required test case is found, the
part of the test case leading to the definition HTTP request
is extracted to form the first part of the new sequence. This
maintains all requests that are required for the definition to
be executed. The algorithm finds an HTTP request that
uses the state identifier for every use location (if at least
one exists; if none exist then there is no DU pair). New
sequences are generated by applying the use HTTP request
to the definition sequence. The use test cases are chosen so
that the test case traverses a definition-clear path (if one
exists). Figure 1 illustrates how sequences are generated.

In the reminder of the paper we will refer to this approach
as State-based DU (or DU for short).

3.2 Value-Aware DU
The State-based DU approach, since it is based on a tradi-

tional DU testing approach, does not take into account the
specific values session variables hold nor the specific data-
base statements executed when database invocations are cre-
ated dynamically.

Since session variables are used to hold information needed
by the server to process the user’s next request, we expect
that the value that each variable holds will ipso facto affect
how the server behaves. For example, a DU pair for a defini-
tion of a session variable that holds the user type and a use
that checks the user type to perform the appropriate action,
would behave differently depending on the value assigned to
the session variable in the definition.

We therefore develop a dataflow testing approach that
takes into account these different values and effectively treats
each distinct value as a separate definition. We believe that
this is feasible for web applications, even though it is not
typically feasible with DU testing of non-web-based applica-

tions. This belief is tested empirically in RQ1 of our evalu-
ation.

While performing the dynamic analysis of the original test
suite, for each HTTP request we also note session variable
values after the request is executed. This information is used
together with the static analysis results to identify definition
points based on session variable values as well as definition
locations.

Algorithm 2 describes our new Value-Aware DU (VADU)
testing approach. For every session variable, the algorithm
iterates through all definition locations. For every definition
location (defloc), a test case is retrieved for every distinct
value that was observed when dynamically analyzing the
original test suite (Line 5). For every use location of the
same variable, an HTTP request that covers that location is
paired with the definition test case to form a new sequence
(Line 8). The output of the algorithm is a set of new test
sequences (TS′).

SQL statements can be generated dynamically depending
on the user input making it possible for the same database
call in the program to execute different SQL statements.
Just as different session variable values may have different
effects, we expect that different string values used as SQL
calls may also denote different application behaviours.

We monitor how each test case interacts with the database
by collecting every concrete SQL statement it executes. We
use this information to construct the new sequences. Using
this dynamic analysis we also avoid the limitations of static
analyses in the approximation of dynamic strings, since at
run-time, we know the value of the SQL statement string.

Algorithm 3 describes our Value-Aware DU approach for
generating test sequences for database tables. The algo-
rithm only uses the dynamic analysis results that determine
the SQL statements executed by each HTTP request and
does not use the static analysis results. For every database
table, all distinct SQL statements (including those generated
dynamically) that alter the database are retrieved (Line 4).

Algorithm 2 Value-Aware DU: Test Sequence Generation
Algorithm for Session Variables - a test sequence is generated
for every DU pair for every distinct session variable value.

Require: Test Suite TS
Require: Session Variables SV
Require: SV definition locations SVDL
Require: SV use locations SVUL
Require: SV distinct values Val

1: TS′ = φ
2: for all sv in SV do
3: for all defloc in SVDL do
4: for all val in Val do
5: deftest = getdeftestcase(TS,sv,defloc,val)
6: for all useloc in SVUL do
7: usetestid = getusetestcase(TS,sv,useloc)
8: newSeq = (deftest,usetestid)
9: TS′ = TS′ ∪ newSeq

10: end for
11: end for
12: end for
13: end for
14: return TS′

A test case that executes the definition statement is then
paired with all HTTP requests that use the same table.
Because we append all uses to the same definition, we re-
duce the computational effort involved in testing multiple
uses. The definition part will only need to be executed once
instead of being repeated for every use. However, we in-
sure that the path from the definition to every use in the
sequence is definition-clear (where no definition-clear path
exists, there is no Def-Use pair). Figure 2 illustrates how
VADU database table sequences are generated.

Figure 2: VADU Sequence construction technique:
The sequence that contains the definition HTTP re-
quest is truncated after the request and combined
with all use HTTP request to form the new sequence.

The output of the algorithm is a set of new test sequences
(TS′′). The union of TS′ from Algorithm 2 and TS′′ from
Algorithm 3 is the overall output test sequence set for the
VADU approach.

In the reminder of the paper we will refer to this approach
as VADU.

Algorithm 3 Value-Aware DU: Test Sequence Generation
Algorithm for Database - a test sequence is generated for ev-
ery distinct alter SQL statement and all SQL use statements
with distinct paths.

Require: Test Suite TS
Require: Table names Tables
Require: Distinct SQL alter statements SA
Require: Distinct SQL use statements SU

1: TS′′ = φ
2: for all tab in Tables do
3: newSeq = φ
4: for all stmt in SA do
5: deftest = getdeftestcase(TS,stmt)
6: newSeq = newSeq ∪ deftest
7: for all stmt in SU do
8: usetestids = getusetestcases(TS,stmt)
9: for all testid in usetestids do

10: newSeq = newSeq ∪ testid
11: end for
12: end for
13: TS′′ = TS′′ ∪ newSeq
14: end for
15: end for
16: return TS′′

4. THE SART IMPLEMENTATION

Figure 3: SART architecture

Figure 3 describes the architecture of the prototype tool
SART (State Aware Regeneration Tool) with which we im-
plemented our approaches. The Instrumenter instruments
the code to record branch coverage. The Analyser consists
of a static and dynamic component.

The static component is written in Stratego/xt [7] and
PHP-Front [6] and determines session variable and database
table Def-Use locations from the source code. The results of
the static analysis are stored in the Analysis Data repository.
Stratego/xt is a program transformation language and PHP-
Front provides libraries for Stratego/xt supporting PHP.

The dynamic component executes the test cases in the
original test suite using the Test Harness. When executing
the test cases, the server logs session variable values, exe-
cuted database queries and statement coverage. The anal-
yser parses the logs to analyse each test case and saves the
results in the Analysis Data repository.

To determine which test cases execute the statements that
define or use the state, SART uses Xdebug [23] to record
statement coverage for each test case and then match the
result with session definition and use locations.

To determine session variable values for each HTTP re-
quest, SART implements a function that records the session
variables’ values in the Session Vars log for subsequent access
by the Analyser. SART uses the PHP configuration settings
to prepend the file that defines the function and registers it
as an exit function that is called at the end of each request.

To analyse which test cases alter the database or use it,
the SQL server is configured to log every query to the SQL
Query log which is then parsed by the Analyser.

The Sequence Generator implements Algorithms 1, 2 and
3 using the Analysis Data to generate new test sequences.
The new sequences are then executed by the Test Harness
and coverage and fault data is measured.

The Sequence Generator and Test Harness are both imple-
mented in Perl and use the HTTP, HTML and LWP (Li-
brary for WWW in Perl) libraries.

5. EVALUATION
We designed our evaluation to answer the following re-

search questions:
RQ1: How many new sequences are generated using
VADU compared to DU?

We ask this question to investigate the feasibility of the
proposed VADU approach. The number of test sequences
generated for the State-based DU approach (DU) depends
on the number of definitions and uses present in the code.
However, the Value-Aware DU (VADU) approach defined
in Section 3.2 generates a different sequence for each value.
Therefore, it might generate such a large number of test se-
quences that it becomes infeasible. RQ1 investigates whether
this explosion in VADU test cases occurs in practice for the
four web applications in our study. In answering RQ1, we
also examine the results of the static analysis and report the
numbers of session variables and database calls.
RQ2: How much can branch coverage be improved?

We ask this question to investigate the effectiveness of
DU and VADU in terms of branch coverage. The proposed
approaches generate test sequences that define and use the
state in ways not present in the original test suite. This is
expected to enhance branch coverage of the regenerated test
suite compared to the original test suite from which it was
constructed. We measure additional branch coverage and
compare results for DU and VADU.
RQ3: How much can fault finding ability be im-
proved?

We ask this question to investigate the effectiveness of the
approaches; as with other testing approaches, the real test
is fault detection, not merely coverage.

For RQ2 and RQ3 we also compare both DU and VADU
to random generation of sequences, to provide a baseline for
comparison. We also use random sequences as a baseline
for comparison because random construction of request se-
quences has previously been proposed in the literature [12,
26] and so it denotes the current state of the art for web
application test suite regeneration.

5.1 Web Applications Studied
We selected 4 PHP web applications that use a database

and session variables to perform the evaluation. These appli-
cations have been used by other research on web application
testing [2, 5]. Table 1 provides a brief description of each
application.

Table 1: The web applications used in the study.
PHP PHP

App Name Version Files ELoC Description

FAQForge 1.3.2 19 834 FAQ management tool
Schoolmate 1.5.4 63 3,072 School admin system
Webchess 0.9.0 24 2,701 Online chess game
Timeclock 1.0.3 62 14,980 Employee time tracker

5.2 Experimental Set-up
We use 30 test suites sampled from test cases generated

by a tool called SWAT from previous work [2]. All the test
suites are chosen to have branch coverage within 10% of the
maximum coverage that can be achieved by the tool. We
choose test suites with relatively high coverage because in-

creasing coverage for already high-coverage suites is harder
than seeking to improve low coverage suites. That is, we
wanted to choose test suites to which any increase in cov-
erage or fault detection would be non-trivial to obtain, in
order to pose a demanding challenge to our approach.

Table 2: Static analysis results: numbers of session
variables, functions, tables and Def-Use locations.

Sessions Database
Variables Functions Tables

App Name num Defs Uses num Defs Uses num Defs Uses

FAQForge 2 2 2 7 5 4 2 11 22
Schoolmate 3 3 6 2 2 0 15 79 215
Webchess 11 28 112 2 7 0 6 38 55
Timeclock 3 3 68 2 34 0 3 1 2

Table 3: Average numbers of generated test se-
quences (seqs) and requests (reqs) for VADU and
DU for both session variables and database tables
for 30 test suites for each of the 4 applications.

Original Sessions Database
App Name Seqs Reqs Alg Seqs Reqs Seqs Reqs

FAQForge 34 72
DU 2.4 4.9 38.2 76.5
VADU 7.6 15.1 9.1 145.5

Schoolmate 174 368
DU 6.1 12.1 638.1 1,276.3
VADU 31.9 63.7 83.4 3,706.0

Webchess 44 95
DU 55.6 111.3 49.6 99.3
VADU 109.7 219.4 4.4 68.8

Timeclock 244 507
DU 36.0 72.0 0 0
VADU 133.3 266.5 2.4 102.4

All apps 123 260
DU 25.0 50.1 181.5 363.0
VADU 70.6 141.2 24.8 1,005.7

We apply the State-based DU (DU) approach described
in Algorithm 1 and the Value-Aware DU approach (VADU)
defined in Algorithms 2 and 3. We measure and compare the
improvements in branch coverage and faults found compared
to the original test suite. We also compare the computa-
tional cost that was needed to achieve these improvements.

Computational cost is measured as the total number of
HTTP requests that we needed to execute to achieve the
final improvements in coverage and faults. We believe that
the number of requests executed is a better measure of com-
putational cost because it is not affected by the specifics of
machine and platform on which experiments are performed.
However, we also measure total execution time and report
these results in order to provide data on realistic perfor-
mance expectations. The evaluation was performed on an
Intel Core i5-2450M CPU, running at 2.50 GHz with 2 GB
RAM.

For random sequence generation, an algorithm we simply
call ‘Random’ hereafter, we generate the same number of
test sequences generated for DU and measure coverage and
faults found. The implementation for Random insures that
only distinct sequences are generated. The way two HTTP
requests are combined for Random follows a similar principle
to that used for DU depicted in Figure 1: When an HTTP
request is chosen to form the first part of the new sequence,
any leading requests that set up the state are also included.

We use an automated oracle to identify faults revealed by
the generated new sequences. That is, our oracle automat-
ically reports PHP and SQL execution errors parsed from
PHP error log files and the output HTML pages of each test
case. Only faults that are caused by a unique code location
and have a distinct type are counted (to avoid double count-
ing of faults). We use an automated oracle to evaluate the
approaches because it is unbiased and is unaffected by the
experimenters’ involvement in the evaluation.

We perform a Wilcoxon paired one-sided signed rank test
at the 95% confidence level to determine the statistical sig-
nificance of the observed results. We use the Wilcoxon test
because it is non parametric and we wish to make assump-
tions about neither the distribution of coverage values nor
the faults found. The test is paired because each of the 30
runs of each of the 3 algorithms starts with the same initial
test suite. The test is one-sided because we know that the
median of DU is above that of Random and that the median
of VADU is above that of DU.

5.3 Results
In this section we present the results obtained from our

evaluation on the four web applications for each approach.

5.3.1 Analysis Result and Number of Generated Se-
quences

Table 2 reports the information obtained from the static
analysis of the four applications: The number of session vari-
ables and database tables together with their definitions and
uses. We notice that for Timeclock the static analysis was
not able to extract all definitions and uses of database ta-
bles. When investigating the reason, we found that when
SQL statements are formed in Timeclock, table names are
constructed dynamically by reading a prefix that has been
set at installation time from the database. Since table names
are constructed dynamically, static analysis is unable to dis-
cover their definitions and uses. This observation provides
a further justification for our advocacy of a dynamic ap-
proach when generating sequences for database tables that
is provided in VADU.

An analysis of the session variables found for each applica-
tion reveals that for 3 applications, a relatively low number
of session variables (2-3 variables) were discovered and these
variables were used to keep track of the logged-in users. We-
bchess also has other session variables that hold information
about the selected game and preferences.

Table 3 shows the number of sequences generated for each
approach. We did not include Random because the number
of sequences generated for Random is the same as DU. The
table also reports the number of test cases in the original
test suite. VADU generates more sequences than DU (as
expected) but the average increase in the total number of
requests in all sequences is 2.8 times for session sequences
(70.6 for VADU compared to 25 for DU) and 2.77 for data-
base sequences (1,005.7 for VADU compared to 363 for DU).
As the analysis of computational cost reveals, this increase
in test cases is comfortably manageable with reasonable time
bounds.

When examining Table 2 we can calculate the number of
DU pairs expected. When comparing this number to the
generated sequences for DU, we find that in some cases the
number of sequences is smaller than expected. We examined
this in more detail, revealing two potential causes: Either

no test sequence was found to cover some DU pairs or one
sequence covers multiple DU pairs. In the case of Timeclock,
no database sequences where generated for DU because the
one definition and 2 uses (Table 2) belong to different tables,
therefore no Def-Use pairs were identified.

One interesting observation is that, for Webchess, the
number of sequences and requests generated for database ta-
bles using VADU is lower than those generated for DU. By
using values not definition points, VADU can be more pre-
cise, eliminating false definition points. That is, when using
VADU, SQL statements are collected and parsed dynam-
ically, making it possible to exclude SQL statements that
are invalid (and would be rejected by the database server).
These invalid SQL statements are excluded because they
would have no effect on the database and therefore are nei-
ther definitions nor uses. These invalid SQL statements are
created by dynamic generation of SQL statements that con-
tain user inputs. If these user inputs are not validated before
being concatenated to SQL statement fragments, the final
statement may be invalid.

5.3.2 Coverage
Branch coverage results are reported in Table 4. The re-

ported results are calculated as the improvement in percent-
age over coverage of the original test suites. Each experi-
ment is repeated 30 times to allow for statistical significance
testing and to cater for variations in algorithm performance
for different starting test suites. Therefore, we report mean
and median coverage (and fault detection) values in the ta-
ble.

The results indicate that DU performs better than Ran-
dom for three of the four applications. For Webchess, the
mean coverage for Random is better than the mean for DU.
What is interesting is that even though the mean coverage
improvement for Webchess achieved by Random is 7.75%
(compared to 3.19% for DU), the Wilcoxon test reveals that
DU significantly outperforms Random. This apparent con-
tradiction between mean and significance tests highlights the
importance of understanding the meaning of results from
non-parametric statistical testing.

The box plots of the 30 results for coverage improvements
for each algorithm are depicted in Figure 4(c). As can be
seen, the extreme range of Random is much higher than for
DU. However, over all 30 trails in the sample, DU outper-
forms Random on 21 occasions. This is why the Wilcoxon
test indicates that DU is significantly better than Random, a
finding reflected in the median coverage improvement values
(1.70% for DU, compared to 1.21% for Random).

VADU yields a higher improvement than both DU and
Random for all four applications. This is a particularly pro-
nounced effect for Webchess where the mean additional im-
provement in coverage over DU is 22.12% (25.31% for VADU
compared to 3.19% for DU). The difference in median is even
higher (33.18% for VADU compared to 1.7% for DU).

When investigating the causes of this strong performance
we found that in Webchess, a session variable gameID is
used to store the game selected by the player. If the se-
lected game is valid and active, pairing the test case that
selects it with other HTTP requests that perform different
actions to cover DU paths greatly increases coverage. The
DU pairs selected to construct test sequences for DU are not
value sensitive, so the chosen pair might not include a defi-
nition request for the gameID variable that selects a valid

Table 4: Test case generation results: Improvements in coverage and faults found are calculated in relation
to the original test suite. For improvements, values in bold are statistically significantly better than values
above them using Wilcoxon paired one-sided signed rank test at the 95% confidence level.

Original % Improvement Computational
Coverage Faults Coverage Faults Cost

App Name mean median mean median Algorithm mean median mean median Requests Time (sec)

FAQForge 67.49 67.61 50.97 50.00
Random 2.39 2.11 0.00 0.00 186 36
DU 9.01 8.85 4.12 4.00 233 42
VADU 14.10 14.21 4.12 4.00 291 53

Schoolmate 66.32 66.30 96.30 95.50
Random 0.85 0.83 2.00 1.94 2,278 377
DU 13.66 13.72 12.15 11.73 2,615 600
VADU 14.42 14.34 14.31 13.66 4,547 781

Webchess 38.20 38.06 67.83 68.00
Random 7.75 1.21 1.96 0.75 397 170
DU 3.19 1.70 7.22 7.35 465 210
VADU 25.31 33.18 9.30 8.82 537 273

Timeclock 18.11 18.12 177.40 178.00
Random 0.02 0.00 0.00 0.00 559 231
DU 1.60 1.55 1.17 1.12 538 269
VADU 5.11 5.10 9.02 8.99 1,366 615

All apps 47.53 52.60 98.13 74.50
Random 2.75 0.94 0.99 0.00 855 203
DU 6.86 7.84 6.17 5.19 963 280
VADU 14.74 13.68 9.19 8.97 1,685 431

game. These findings confirm the usefulness of our VADU
approach.

The top row of box plots of Figure 4 demonstrates the
variations in coverage improvement over 30 test suites for
each of the four applications for each approach. The differ-
ence in performance between the three approaches is clear
for FAQForge and Timeclock (Figures 4(a) and 4(d)). In
Schoolmate, the improvement of VADU over DU is compar-
atively lower (Figure 4(b)), though VADU does, neverthe-
less, perform statistically significantly better.

For Webchess (Figure 4(c)), we notice that the improve-
ment in coverage for VADU can be as small as 1.3% and as
high as 43% (over the 30 trails). We examined this pecu-
liarly high variance, finding that the gameID session vari-
able also played a pivotal role in these observations. The
coverage improvement is limited in cases where the original
test suite fails to include a single test case that selects a
valid and active game. This suggests a relationship between
the quality of the original test suite and the effectiveness of
the approach. In this case, it also suggests a potential fault
because the application allows the user to select invalid val-
ues for gameID and registers these values in the session
variable without checking the validity of the selected game.

5.3.3 Faults
Fault detection results for the 30 original test suites and

the new test sequences generated by each of the three ap-
proaches for the four applications studied are reported in
Table 4.

Random only finds new faults in two of the four applica-
tions (Webchess and Schoolmate). DU finds an overall mean
of 6.17% new faults that were not discovered by the original
test suite with a median of 5.19%. VADU performs better
than DU in all applications except FAQForge. VADU im-
proves the fault finding ability of the original test suite by a
mean of 9.19% over all applications and a median of 8.97%.

Although the improvement in branch coverage for FAQ-
Forge is higher for VADU compared to DU, both approaches
find the same number of additional faults. We also notice

that although Random improves branch coverage, the re-
sults of the evaluation show that it is not as effective at
fault detection. This suggests (as is widely believed for non-
web applications also) that although coverage affects fault
finding ability, other factors also influence the effectiveness
of a test suite in finding faults.

The bottom row of box plots in Figure 4 shows the varia-
tions in the percentage improvement in faults found for each
of the three approaches over 30 test suites for each of the
four applications compared to the original test suites. It
is interesting to observe that, for Webchess, although the
difference in performance of DU and Random for branch
coverage is relatively unclear, in fault finding, it is clearer
that DU performs better than Random. This suggests that
the way two sets of test sequences are constructed (in this
case DU and Random) has an effect on fault detection even
when coverage is identical or comparable.

5.3.4 Computational Cost
In this section, we report the computational cost of our

experiments (executed requests and elapsed time). However,
in our evaluation all processes are fully automated includ-
ing checking the oracle and reporting fault results. Since
the whole process is automated, differences in elapsed time
merely mean that a tester needs to wait a few minutes longer
for the results (VADU, the most computationally expensive
algorithm, takes an average of 13 minutes for the slowest
application).

Results for the computational cost spent to achieve the
reported improvements in branch coverage and fault finding
are presented in Table 4. Computational cost is represented
using two measures: Number of requests executed and total
execution time. The number of requests is the total num-
ber of HTTP requests that needed to be executed to achieve
the reported improvements. This includes every HTTP re-
quest that we needed to execute for the dynamic analysis
needed for DU and VADU as well as the execution of the
new sequences and the measurement of improvements.

VADU requires the largest number of requests, while Ran-

(a) FAQForge (b) Schoolmate (c) Webchess (d) Timeclock

(e) FAQForge (f) Schoolmate (g) Webchess (h) Timeclock

Figure 4: Variations in coverage and fault detection improvement results over 30 test suites for each of the 3
approaches on each of the 4 web applications. The top row illustrates branch coverage improvements while
the bottom row shows fault detection. The y-axis is the improvement(%) in branch coverage (or faults found)
compared to the coverage (or faults found) for the original test suites.

dom requires the least. This result is expected because Ran-
dom does not need any dynamic analysis and VADU gener-
ates the largest number of requests in the new test sequences
as examined in Table 3.

Execution time is measured as the total elapsed time for
all activities needed to generate and execute the new se-
quences. Random is the fastest running, on average, in 3.38
minutes (203 seconds) over all applications with the slowest
application (Schoolmate) running, on average, in 6 minutes
(377 seconds). DU, on average, runs in less than 5 minutes
(280 seconds) for all applications. Schoolmate is the slowest
executing in 10 minutes (600 seconds). VADU, on average,
takes 7.18 minutes (431 seconds) over all applications. The
slowest application is also Schoolmate, taking ,on average,
13 minutes (781 seconds).

These results show that with the improvements in cov-
erage and faults found (reported in previous sections) the
overhead in execution times is relatively small, and certainly
within acceptable bounds even on standard equipment.

5.4 Answers to Research Questions
In this section we answer the research questions we posed

at the beginning of the evaluation section, based on the em-
pirical results from the evaluation.

5.4.1 RQ1: How many new sequences are generated
using VADU compared to DU?

The empirical evaluation showed that, although VADU
generates more sequences than DU, the increase in the num-

ber of requests generated for the combination of session vari-
ables and database tables is, on average, 2.78 times; this
suggests that VADU is feasible. Of course the tester should
decide on whether to use DU or VADU based on the time
and resources available for testing.

5.4.2 RQ2: How much can coverage be improved?

DU improves mean branch coverage for all four applica-
tions studied compared to the original test suite and per-
forms better than Random for three of the four applications.
When comparing the median, DU performs better than Ran-
dom for all four applications. The overall improvement in
percentage in branch coverage for DU has a mean of 6.86%
over all 30 test suites for all four applications.

For VADU improvement is even higher with a mean of
14.74% and VADU performs better than both Random and
DU for all four applications. Statistical testing confirms
that these improvements, for DU compared to Random and
VADU compared to DU and Random, are statistically sig-
nificant for all four applications using Wilcoxon paired one-
sided signed rank test at the 95% confidence level.

5.4.3 RQ3: How much can fault finding ability be
improved?

The empirical evaluation shows that using the automated
oracle, DU can increase the number of faults found by a
mean of 6.17%, compared to the original test suite (over the
30 test suites evaluated for the four web applications). DU

performs better than Random over all test suites and all four
applications. VADU increases the number of faults found
by a mean of 9.19% and performs better than the other two
approaches for all applications. The Wilcoxon paired one-
sided signed rank test at the 95% confidence level confirms
that these improvements are statistically significant.

5.5 Threats to Validity and Limitations
Internal threats: The internal threats that affect the

validity of the results depend on the implementation of the
approaches and the set-up of the evaluation. We tried to
minimize factors that affect the measurement of execution
times by sharing code between the implementations of the
approaches whenever possible. We also provide the number
of requests executed as an additional measure of computa-
tional cost, this is an algorithmic rather than implementa-
tion specific quantity.

External threats: The applications that were chosen
and the starting test suites used might affect the degree to
which the results can be generalized. We chose applications
that were used by previous research on web application test-
ing and that are also used in current practice. We also se-
lected these applications because they use both session vari-
ables and a database. The test suites selected can also affect
results. This is why we selected 30 different test suites for
each application that have relatively high coverage.

Construct threats: Construct threats are related to the
measurements we used to compare the three approaches. We
used branch coverage and faults found, two measurements
that are widely used in research to compare effectiveness.

Limitations: The current implementation of the tool is
not able to handle complex SQL statements that are, for
example, nested or use joins. The tool will only be able to
recognize the first table that is used. Enhancing the tool
to handle these SQL statements types may further improve
effectiveness. The implementation generates test sequences
to cover DU pairs without checking whether the original test
suite already contains a test case that covers the pair. To
enhance the implementation to check the original test suites
might reduce the number of sequences produced and make
the approaches still more efficient.

6. RELATED WORK
Dataflow-based approaches to testing have a long history

of application to conventional applications, dating back to
the seminal work of Rapps and Weyuker [21, 22] and Laski
and Korel [18]. Harrold and Rothermel [17] adapted data-
flow testing techniques to classes of Object Oriented sys-
tems, while, Liu et al. [19, 20] applied a data flow testing
approach to web applications.

Liu et al. used traditional data flow modelling of the
server code, seeking to generate test cases for structural cov-
erage of web application server-side code. By contrast, our
approach seeks to generate test sequences that take into ac-
count client interactions (using browser functions) and tar-
gets the server-side state (including session variables and
database tables), whereas Liu et al. concentrate on server-
side source code variables (applying traditional Def-Use test-
ing in much the way in which it was originally designed for
non web-based applications).

Our argument is that the interactions of state have a piv-

otal role in affecting the application’s behaviour, and re-
quire a different approach to dataflow testing. Simply test-
ing server-side code for structural coverage may overlook the
effect of these interactions.

Sprenkle et al. [26] investigated the effect of state on
coverage and fault finding by executing sessions in differ-
ent random orders without initializing the state. The ex-
periment showed that different request orderings result in
elevated coverage and the detection of new faults. Elbaum
et al. [11, 12] also suggested combining parts of different
sessions to produce new test suites. These previous studies
indicate that recombining or re-ordering test cases can lead
to more effective test suites. However, the new test suites
were generated purely randomly. By contrast, in this paper
we propose an approach to produce these new test suites by
analyzing the effect on the server-side state. As our results
show, this state-aware approach significantly improves both
server-side coverage and fault detection.

Alshahwan and Harman [1] repaired test sequences for
regression testing by adding and/or removing requests from
sequences. The repairs where based on changes in how the
application is connected (by links), while in this paper we
consider state interactions to regenerate request sequences
that improve coverage and fault detection.

Several test data generation approaches have been pro-
posed for web applications in the literature [1, 2, 4, 5, 14,
15, 24, 28]. The test suites generated by these approaches
aim to maximize structural coverage and all are thus good
candidates for the production of the starting test suite re-
quired by our regeneration approach.

Regeneration and augmentation has also been applied to
test suites for conventional applications, [3, 25, 29], but these
approaches have not, hitherto, been applied to web applica-
tions, with their separation of client-side and server-side and
their close coupling to back-end databases.

Other authors have also considered the problem of testing
database applications [8, 9, 10, 13, 16], though these fo-
cus on structural coverage of database dependent branches,
whereas our approach targets database state interactions for
web-based applications.

7. CONCLUSION
In this paper we introduced two approaches to regenerate

test sequences from existing pools of HTTP requests present
in the original test suites. The approaches we propose ex-
ploit server-side state manipulation to generate new test se-
quences that define and use the state in ways not present
in the original test suite. We introduce the Value-Aware
DU approach that is aware of the values and specific state
modifying SQL statements as well as traditional DU pair
information.

We introduced a tool, SART (State Aware Regeneration
Tool), that implements our approaches for PHP applica-
tions. We report the results of an empirical evaluation on
four real world web applications. We report and compare
branch coverage information and faults found for the two
approaches and also compare to the random recombination
approach currently advocated in the literature. Our results
provide evidence to support the claim that DU significantly
increases coverage and fault detection while our novel value
aware approach further improves both coverage and fault
detection (at reasonable computational cost).

8. REFERENCES
[1] N. Alshahwan and M. Harman. Automated session

data repair for web application regression testing. In
Proceedings of the First International Conference on
Software Testing, Verification and Validation (ICST
’08), pages 298–307, 2008.

[2] N. Alshahwan and M. Harman. Automated web
application testing using search based software
engineering (ASE’11). In Proceedings of the 26th
IEEE/ACM international Conference on Automated
software engineering, pages 3–12, 2011.

[3] A. Arcuri. Longer is better: On the role of test
sequence length in software testing. In Proceedings of
the Third International Conference on Software
Testing, Verification and Validation (ICST’10), pages
469–478, 2010.

[4] S. Artzi, A. Kiezun, J. Dolby, F. Tip, D. Dig,
A. Paradkar, and M. D. Ernst. Finding bugs in
dynamic web applications. In Proceedings of the
International Symposium on Software Testing and
Analysis (ISSTA’08), pages 261–272, 2008.

[5] S. Artzi, A. Kiezun, J. Dolby, F. Tip, D. Dig,
A. Paradkar, and M. D. Ernst. Finding bugs in web
applications using dynamic test generation and
explicit-state model checking. IEEE Transactions on
Software Engineering, 36:474–494, 2010.

[6] E. Bouwers and M. Bravenboer. PHP-front: Static
analysis for PHP. strategoxt.org/PHP/PhpFront.

[7] M. Bravenboer, K. T. Kalleberg, R. Vermaas, and
E. Visser. Stratego/xt 0.17. a language and toolset for
program transformation. Science of Computer
Programming, 72(1-2):52–70, 2008.

[8] M. Y. Chan and S. C. Cheung. Testing database
applications with sql semantics. In Proceedings of the
2nd International Symposium on Cooperative Database
Systems for Advanced Applications (CODAS’99),
pages 363–374, 1999.

[9] D. Chays, Y. Deng, P. G. Frankl, S. Dan, F. I.
Vokolos, and E. J. Weyuker. An agenda for testing
relational database applications: Research articles.
Software Testing, Verification and Reliability,
14:17–44, 2004.

[10] Y. Deng, P. Frankl, and J. Wang. Testing web
database applications. SIGSOFT Software
Engineering Notes, 29:1–10, 2004.

[11] S. Elbaum, S. Karre, and G. Rothermel. Improving
Web application testing with user session data. In
Proceedings of the 25th International Conference on
Software Engineering (ICSE’03), pages 49–59, 2003.

[12] S. Elbaum, G. Rothermel, S. Karre, and M. Fisher II.
Leveraging user-session data to support web
application testing. IEEE Transactions on Software
Engineering, 31:187–202, 2005.

[13] M. Emmi, R. Majumdar, and K. Sen. Dynamic test
input generation for database applications. In
Proceedings of the 2007 International Symposium on
Software Testing and Analysis (ISSTA’07), pages
151–162, 2007.

[14] W. Halfond, S. Anand, and A. Orso. Precise interface
identification to improve testing and analysis of web
applications. In Proceedings of the 2009 International
Symposium on Software Testing and Analysis

(ISSTA’09), pages 285–296, 2009.

[15] W. Halfond and A. Orso. Improving test case
generation for web applications using automated
interface discovery. In Proceedings of the the 6th joint
meeting of the European Software Engineering
Conference and the ACM SIGSOFT symposium on
the Foundations of Software Engineering
(ESEC-FSE’07), pages 145–154, 2007.

[16] W. G. J. Halfond and A. Orso. Command-form
coverage for testing database applications. In
Proceedings of the 21st IEEE/ACM International
Conference on Automated Software Engineering
(ASE’06), pages 69–80, 2006.

[17] M. J. Harrold and G. Rothermel. Performing data
flow testing on classes. SIGSOFT Software
Engineering Notes, 19:154–163, 1994.

[18] J. W. Laski and B. Korel. A data flow oriented
program testing strategy. IEEE Transactions on
Software Engineering, 9:347–354, 1983.

[19] C.-H. Liu, D. C. Kung, P. Hsia, and C.-T. Hsu.
Object-based data flow testing of web applications. In
Proceedings of the The First Asia-Pacific Conference
on Quality Software (APAQS’00), pages 7–16, 2000.

[20] C.-H. Liu, D. C. Kung, P. Hsia, and C.-T. Hsu.
Structural testing of web applications. In Proceedings
of the 11th International Symposium on Software
Reliability Engineering (ICSE’00), pages 84–96, 2000.

[21] S. Rapps and E. J. Weyuker. Data flow analysis
techniques for test data selection. In Proceedings of the
6th International Conference on Software Engineering
(ICSE’82), pages 272–278, 1982.

[22] S. Rapps and E. J. Weyuker. Selecting software test
data using data flow information. IEEE Transactions
on Software Engineering, 11:367–375, 1985.

[23] D. Rethans. Xdebug. xdebug.org.

[24] F. Ricca and P. Tonella. Analysis and testing of web
applications. In Proceedings of the 23rd International
Conference on Software Engineering (ICSE’01), pages
25–34. IEEE Computer Society, 2001.

[25] R. A. Santelices, P. K. Chittimalli,
T. Apiwattanapong, A. Orso, and M. J. Harrold.
Test-suite augmentation for evolving software. In
Proceedings of the 23rd IEEE/ACM International
Conference on Automated Software Engineering
(ASE’08), pages 218–227. IEEE, 2008.

[26] S. Sprenkle, E. Gibson, S. Sampath, and L. Pollock.
Automated replay and failure detection for web
applications. In Proceedings of the 20th IEEE/ACM
international Conference on Automated Software
Engineering (ASE’05), pages 253–262, 2005.

[27] P. Tonella and F. Ricca. Statistical testing of web
applications. Software Maintenance and Evolution:
Research and Practice, 16:103–127, 2004.

[28] G. Wassermann, D. Yu, A. Chander, D. Dhurjati,
H. Inamura, and Z. Su. Dynamic test input generation
for web applications. In Proceedings of the
International Symposium on Software Testing and
Analysis (ISSTA’08), pages 249–260, 2008.

[29] S. Yoo and M. Harman. Test data regeneration:
generating new test data from existing test data.
Software Testing, Verification and Reliability, 2010.

