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ABSTRACT
Software engineering is plagued by problems associated with un-
reliable cost estimates. This paper introduces an approach to sensi-
tivity analysis for requirements engineering. It uses Search-Based
Software Engineering to aid the decision maker to explore sensitiv-
ity of the cost estimates of requirements for the Next Release Prob-
lem (NRP). The paper presents both single- and multi-objective for-
mulation of NRP with empirical sensitivity analysis on synthetic
and real-world data. The results show strong correlation between
the level of inaccuracy and the impact on the selection of require-
ments, as well as between the cost of requirements and the impact,
which is as intuitively expected. However, there also exist a few
sensitive exceptions to these trends; the paper uses a heat-map style
visualisation to reveal these exceptions which require careful con-
sideration. The paper also shows that such unusually sensitivity
patterns occur in real-world data and how the proposed approach
clearly identifies them.

Categories and Subject Descriptors
D.2.1 [SOFTWARE ENGINEERING]: Requirements/ Specifica-
tions—Methodologies

General Terms
Algorithms, Measurement, Experimentation.

1. INTRODUCTION
One of the common problems in requirements engineering is

caused by the uncertainties that are inherent in the decisions made
by the requirement engineer. Most of the data needed by the re-
quirement engineer, such as expected revenue, development cost or
duration, is inherently unknown at the time of requirement plan-
ning stage. The clients of the product also contribute to these un-
certainties because often they do not possess clear idea about which
features they want before actually see it. Naturally, the requirement
engineer has to balance many complex criteria based on estimated
data.

It is a well-known fact that cost estimation is a difficult and de-
manding activity [1, 6]. It is also widely believed that the cost
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estimates produced by software engineers tend to include a great
degree of inaccuracy [10, 11]. This is not due to the ineptness of
the requirement engineer; it is rather because of the astonishingly
wide variety in the problems that software engineering faces. Un-
like other engineering disciplines, there are fewer well-understood
construction approaches.

This paper does not attempt to resolve the inaccurate cost esti-
mate problem; it seems that the problem will remain unsolved for
the foreseeable future of software engineering. Rather, the paper
seeks to introduce an approach to provide the requirements engi-
neer with a decision support system guided by Search-Based Soft-
ware Engineering (SBSE). The approach assesses the impact of in-
accuracies of the cost estimation of each requirement on the solu-
tions to the requirements allocation problem, known as the Next
Release Problem [2]. The Next Release Problem is the problem of
selecting the software requirements to be implemented in the next
release of a product so that benefits such as customer satisfaction
or revenue are maximised while all the constraints such as bud-
get are satisfied. The decision support system aids the requirement
engineer by identifying the sensitive regions in the estimated data
which will lead to relatively higher impact on the selection of the
requirements. This information then can be used to focus the effort
on obtaining more accurate estimation of those requirements.

Each set of estimates and customer choices denotes a separate
and unique optimisation problem. The structure of the data and the
relationships between estimated data may create unexpected inter-
actions between requirement estimates, which can yield a butterfly
effect; a small inaccuracy in a low cost requirement can have an un-
expectedly large effect on the overall decision. Because of the size
of the data sets involved and the inherent complexity of the inter-
actions between estimates, it is nearly impossible for an engineer
to fully comprehend these hidden relationships without automated
decision support.

The intuitive answer to the sensitivity of cost estimation problem
is that the more expensive the requirement is, the greater impact it
will have on the result when estimated inaccurately. Also, similarly,
it can be expected that the higher the level of inaccuracy, the big-
ger the impact it has. The paper indeed statistically confirms these
intuitive assumptions. However, the paper also reports that there
are exceptions to these trends. It is these exceptions that require
careful cost estimation, because they can have unexpectedly high
impact on the selection of requirements. The paper uses a heat-
map style visualisation, generated using a search-based approach,
to identify these sensitive exceptions in the data. The hot-spots on
the heat map will indicate areas where a particular inaccuracy level
for a particular requirement estimate can lead to high impact. The
heat-map provides an intuitive visual aid to comprehend the com-
plex interaction in the data set.
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The paper presents two different formulations of the problem.
With the single-objective formulation, the requirements engineer
assesses the impact of inaccuracy at a specific level on weighted
customer satisfaction values. In this model, the requirements en-
gineer knows the expected inaccuracy and seeks to identify overall
budget levels and particular requirements that are sensitive to this.
The second formulation is the multi-objective formulation in which
the requirements engineer simply seeks to reduce estimated cost
and increase estimated revenue, but does not know how inaccurate
the estimates are likely to be. The single-objective formulation is
more appropriate for a mature organisation with a history of de-
velopment and a consequent knowledge of likely levels of estimate
inaccuracy. The multi-objective formulation has the advantage that
it can be applied without any knowledge of likely estimate inaccu-
racy levels.

Both formulations are applied to both synthetic and real world
data. The primary contributions of the paper are as follows:

1. The paper shows how SBSE can be used as a technique for
sensitivity analysis in requirements engineering.

2. The paper presents two formulations of the NRP of require-
ments engineering and shows how SBSE can be used for both
formulations, presenting an evaluation using real world data
and synthetic data.

3. The paper shows how heat-maps can be used to intuitively
identify unexpectedly sensitive requirements estimates to guide
the decision maker, providing insight into the structure of
their estimate data.

2. BACKGROUND
The paper presents a sensitivity analysis for two different formu-

lations of the Next Release Problem (NRP): single-objective ver-
sion and multi-objective version.

2.1 Single-objective Next Release Problem
The single-objective formulation follows the definition of NRP

by Bagnall et al. [2]. First, it is assumed that for an existing soft-
ware system there is a set of possible software requirements, de-
noted by: R = {r1, . . . , rn}

For the sake of simplicity, it is also assumed that there is no de-
pendency relation between those requirements. Bagnall et al. note
that any instance of NRP with dependency relation can be con-
verted to a basic NRP by merging the requirements that belong to
dependency chains [2].

The cost of fulfilling this set of requirements ri (1 ≤ i ≤ n) is
denoted by:

Cost = {cost1, . . . , costn}
The expected revenue of every possible requirement is denoted

by:
Revenue = {revenue1, . . . , revenuen}

The decision problem form of NRP is the question of finding
the optimal subset(s) of requirements to maximise the total revenue
and minimise the cost of development.

The decision vector,
−→
X , is represented by:
−→
X =< x1, . . . , xn >

where the ith element of
−→
X is 1 if the ith requirement is to be im-

plemented and 0 if it is not. Now, given an instance of the decision
vector,

−→
X1, its fitness, F(

−→
X1), is the sum of expected revenues for

the requirements to be implemented by
−→
X1:

F(
−→
X1) =

n∑

i=1

revenuei · xi

Similarly, the cost of implementing a set of requirements repre-
sented by

−→
X1 is:

cost(
−→
X1) =

n∑

i=1

costi · xi

Given a budget of b, the single-objective NRP is a problem of
finding a decision vector

−→
X such that F(

−→
X ) is maximised while

satisfying cost(
−→
X ) ≤ b:

Maximise
n∑

i=1

revenuei · xi

while subject to
n∑

i=1

costi · xi ≤ b

2.2 Multi-objective Next Release Problem
The multi-objective Next Release Problem (MONRP) is a multi-

objective optimisation version of NRP. In multi-objective optimi-
sation problems, there are multiple objectives expressed in fitness
functions, which are often in conflict with each other [14]. In case
of MONRP, it can be said that the expected revenue and the devel-
opment cost of a product are in conflict with each other.

The multi-objective formulation is defined following Zhang et
al. [18]. Unlike the single-objective formulation, the cost is no
longer a constraint. In multi-objective formulation, the develop-
ment cost is minimised while the expected revenue is maximised.

Maximise
n∑

i=1

revenuei · xi, and

Minimise
n∑

i=1

costi · xi

In multi-objective optimisation, a solution A is said to dominate
a solution B if and only if A is at least equal to B in all objec-
tives, and excels B in at least one objective. This is called Pareto-
optimality. As a result, a solution of a multi-objective optimisation
problem is expressed in a Pareto-front, which is a set of multiple
solutions that do not dominate each other.

3. SENSITIVITY ANALYSIS IN NRP
Since the models used in the empirical studies are small enough

to be solved quickly, a brute force approach is implemented for
sensitivity analysis: simply modify the initial input data and run
the algorithm repeatedly to see how the result changes. Figure 1
illustrates the difference between the general optimisation process
and sensitivity analysis. The cost of each requirement is modified
to simulate the inaccurate estimation. The data are then fed into
a meta-heuristic optimisation algorithm designed for NRP, which
will produce an alternative solution. The impact is then evaluated
by measuring the distance between the original solution and the
alternative solution.

There are two critical elements that are required in order to simu-
late what-if scenarios in which a particular estimation is inaccurate.
First, the algorithm used to solve NRP has to be deterministic; oth-
erwise it is impossible to determine whether the observed change
in the result is due to the inaccurate estimation or the randomness
of the algorithm.

In most (if not all) of multi-objective evolutionary algorithms,
Pseudo Random Numbers(PRNs) are used in the procedure of evo-
lutionary calculation. For instance, pseudo random numbers are
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Figure 1: Sensitivity Analysis Flow Chart

used in generating the initial population, selecting the bits in candi-
dates to perform mutation and crossover. Due to the inherent ran-
domness of the evolutionary algorithms, and the fact that it cannot
guarantee the global optimum, every ‘run’ of the implementation
would provide a different result even if the input data are identical.
In order to perform the sensitivity analysis, we need to distinguish
the difference between the indeterminacy of the algorithm itself and
the changes caused by the modification on the input data.

We introduce a fixed seed for PRN to provide an identical se-
quence of PRNs for each execution of the implementation. Because
the problem definition and the problem model are not changed dur-
ing the optimisation process, given the identical sequence of PRN,
we ensure that the change on the result is caused by the change on
the input data only.

The second element required by sensitivity analysis is a method
that can measure the changes brought in by the error in quantitative
manner. If it is not possible to express the changes in quantitative
forms, it would also be impossible to compare the criticality of er-
rors. The actual method of measurement is specific to the definition
and representation of the problem.

With the single-objective formulation, we evaluate the difference
between two decision vectors by their Hamming distance. This is
possible because the greedy algorithm, which we use to solve the
single-objective NRP, produces a single solution to an instance of
NRP problem. However, the NSGA-II, which is the algorithm we
use to solve the multi-objective NRP, does not produce a single
solution, but a set of solutions that form Pareto Frontier. There-
fore, the difference should be measured between two sets of solu-
tions (two optimal fronts), not two different solutions. In order to
measure the distance between two sets of solutions, the Generation
Distance is used [17]. It is based on the calculations of Euclidean
Distance of the solutions between two fronts.

To calculate the distance between two fronts ( fa, fb) of two dif-
ferent executions of optimisation, we define (A1, A2, ..., An) to de-
note the n solutions belonging to front fa while (B1, B2, ..., Bm)
denote the m solutions belonging to front fb, where n and m are the
numbers of solutions contained by each front respectively.

The distance from solution A to solution B is the Euclidean dis-
tance between objective values normalised to [0,1]. In the case of
two-objectives NRP, the distance between A and B is defined as:

Dis(A,B) = ±
√

(xa − xb)2 + (ya − yb)2

where, in our case, xa and xb is the normalised overall cost for
solution A and B respectively while ya and yb are the normalised
revenues.

The distance from one particular point A to fb is considered as
the same distance from A to its geometrically closest point on front
fb. Distance between A and front fb is defined as:

Dis(A, fb) = Dis(A,B)

where B is the closest point to A on front fb.

The distance from front fa to fb is then calculated as the mean
value of the distance from every point on fa to fb.

Dis∗( fa, fb) =
∑n

i=1 Dis(Ai, fb)
n

where n is the number of optimal solutions on front fa.
Finally, in order to achieve fair contributions from both fronts

to the distance calculation, we develop the formulation to calculate
the distance between two Pareto fronts fa and fb as below:

Distance( fa, fb) =
Dis∗( fa, fb) + Dis∗( fb, fa)

2

4. EXPERIMENTAL SETUP
The argument of the data sensitivity problem is based on the as-

sumption that some of the estimated quantitative data may contain
some error. The amount of the actual error will be known only af-
terwards. However, it is possible to measure the repercussions of
the potential errors by trying out various what-if scenarios. If an
introduction of a certain deliberate error to a specific part of data
creates large amount of change in the final solution, it would be
safe to say that the specific part of data is highly sensitive to an
error. With this knowledge, the decision maker can manage the po-
tential risks more efficiently, as well as concentrate on elaborating
the estimation of more sensitive data.

In case of NRP, the most important scenarios are the cases when
the costs of some requirements are based on wrong estimation. The
decision maker would want to know which requirement will create
the most significant change in the final solution if there is an error
in the estimation of its development cost. Therefore, the scenarios
in this case will be different versions of the data, each containing a
requirement with modified development cost. The alternative solu-
tion will be a subset of requirements selected based on the modified
data. If the alternative solution is radically different from the origi-
nal solution, it indicates that the introduced error brings in a signif-
icant change. If this process is repeated for each requirement with
the same margin of error, it is possible to identify the requirement
that is most sensitive to the same level of inaccuracy.

The intuitive answer to the cost sensitivity analysis problem is
that the more expensive a requirement is, the bigger impact it will
have if its cost is estimated inaccurately. Similarly, it can be said
that the more inaccurate the estimation is, the bigger impact it will
have on the result of NRP. We hereby call this the Positive Cor-
relation Assumption (PCA). More specifically, we denote the first
assumption (between cost and impact) by PCA-1, and the second
assumption (between inaccuracy and impact) by PCA-2. These as-
sumptions are statistically tested against both synthetic and real-
world requirement data. For this, the empirical studies utilise the
greedy algorithm and NSGA-II to single- and multi-objective for-
mulations of NRP with deliberate errors in the data set.

4.1 Greedy Algorithm
The greedy algorithm is known to be efficient and effective for

0-1 knapsack problem, which is the basis of NRP. It is constructive
in nature and start with an empty set of selected requirement. At
each iteration, a requirement is added to the set until no further
additions can be made without exceeding the given budget. The
choice of which requirement to select at each iteration is guided by
the fitness value.

First of all, all the requirements are sorted by their revenue in de-
scending order and then by cost in ascending order if their revenues
are the same. All those requirements at the front of the queue will
be then selected into the solution vector until the budget bound has
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been reached. Algorithm 1 shows the pseudo-code of the greedy
algorithm used in the paper.

input : N:number of requirements; cost; budget
output: solution; currentCost

Sort the requirements in the order of descending revenue1
and then in the order of ascending cost if they share the
same revenue
for i← 1 to N do2

if currentCost + cost(i) ≤ budget then3
currentCost ← currentCost + cost(i);4
solution(i)← 1;5

end6

end7
Algorithm 1: Greedy Algorithm

4.2 NSGA-II
The recent implementation of NSGA-II [9] from Zhang et al. [18]

for multi-objective NRP is used in a simplified version. Initially,
a random parent population P0 is created. The population size is
N. The population is sorted using the non-dominated relations.
Each solution is assigned a fitness value equal to its non-domination
level. Binary tournament selection, crossover, and mutation oper-
ators are used to create a child population Q0 of size N. Then the
NSGA-II procedure goes to the main loop which is described in
Algorithm 2. Maximising the overall revenue and minimising the
overall cost of each solution are considered as the two objectives
for NSGA-II.

while not stopping rule do1
Let Rt = Pt ∪ Qt;2
Let F = fast-non-dominated-sort(Rt);3
Let Pt+1 = ∅ and i = 1;4
while |Pt+1| + |Fi | ! N do5

Apply crowding-distance-assignment(Fi );6
Let Pt+1 = Pt+1 ∪ Fi;7
Let i = i + 1;8

end9
S ort(Fi,≺ n);10
Let Pt+1 = Pt+1 ∪ Fi[1 : (N-|Pt+1|)];11
Let Qt+1 = make-new-pop(Pt+1);12
Let t = t + 1;13

end14
Algorithm 2: NSGA-II Algorithm

4.3 Requirement Data
The paper uses two sets of synthetically generated data as well as

a set of real-world requirements data obtained from a large telecom-
munication company. The first synthetic data is generated purely
randomly, i.e. there is no correlation between the cost of a require-
ment and its expected revenue, which is connected to its fitness
value in the optimisation problem. The second set is generated so
that the cost of a requirement has a positive correlation with its ex-
pected revenue. Each of the two sets of synthetic data contains 30
requirements. The cost and revenue for each requirement are gen-
erated using the uniform distribution over the interval of [1, 1500]
and [1, 10] respectively. Comparing the results from these two syn-
thetic data set allows us to test the statistical significance of PCA.

The real-world requirement data is obtained from Motorola. It
originally contains 40 different features that are interference-free,
i.e. any combination of which can be implemented into a single
product. However, 5 features that represent the core functionality of
the product were combined by dependencies between themselves,

and it was decided that they will always be included in the final
selection of requirements. This left us 35 features with so sparse a
dependency relationship that it could be ignored.

4.4 Evaluation
We modify the cost of each requirement only one at a time us-

ing 21 different Percentage Increase in Actual Cost (PIAC) values
ranging from −50% to 50% with steps of 5%. A positive PIAC
value means that the actual cost has increased compared to the es-
timated cost, which means an underestimation; a negative PIAC
value means that the actual cost has decreased compared to the es-
timated cost, which means an overestimation. The Hamming dis-
tance and the Euclidean distance between the results from the mod-
ified data and the original data is used to quantify the difference
observed in the multiple executions. Spearman’s rank correlation
coefficient is used to test PCA and analyse how the changes on re-
sult relates to the modifications of initial data.

4.5 Research Questions
The paper presents the following research questions. RQ1 and

RQ2 concern the statistical significance of PCA.
RQ1: Does the sensitivity analysis confirm PCA-1, i.e. the cor-

relation between the cost of a requirement and its impact on NRP
with statistical significance?

RQ2: Does the sensitivity analysis confirm PCA-2, i.e. the cor-
relation between the level of inaccuracy and its impact on NRP with
statistical significance?

RQ1 and RQ2 is quantitatively answered using Spearman’s rank
correlation analysis in Section 5. The third research question inher-
ently requires qualitative analysis.

RQ3: Is there any exception to the general trend observed by
PCA?

RQ3 is answered by analysing the heat-map visualisation in Sec-
tion 5.

5. RESULTS AND ANALYSIS
5.1 Result From Single-Objective Formulation

Figure 21shows four heat-map visualisations from the results of
sensitivity analysis on Motorola’s data set, using single-objective
formulation of NRP. The x-axis corresponds to different instances
of NRP, sorted in ascending order of the budget assigned to each
instance. The y-axis corresponds to different requirements, sorted
in ascending order of their estimated cost. The two heat-maps on
the left show the Hamming distance between the original greedy
algorithm solutions and the alternative solutions with PIAC value of
±25%, i.e. the underestimate or overestimate error by 25% margin.
Similarly, the two on the right show the results with PIAC value of
±50%, i.e. the underestimate overestimate error by 50% margin. A
darker colour represents a bigger Hamming distance.

The heat-map reveals the complex interaction between the bud-
get and the revenue and cost of each requirement. A single re-
quirement shows varying levels of sensitiveness depending on the
combination of the budget and the margin of error. However, some
straightforward patterns can be easily observed. First, errors on ex-
pensive requirements do not have any impact on smaller budgets
if the original estimated cost and the modified cost are both larger
than the given budget, of which the fact is reflected by the white
area in the left lower corner of all four heat-maps. Second, when
comparing the PIAC value of four heat-maps, the bigger PIAC

1The animated GIF that depicts the evolution of sensitivity as budget level
could be found at: http://www.dcs.kcl.ac.uk/pg/renjian/gecco2009.gif.
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Figure 2: Hamming distance from the original solution to the solution obtained by the greedy algorithm with PIAC value of ±25% and ±50%.

value tend to bring more impact on the results. Third, when com-
paring the cost of each requirement, more expensive requirements
tend to have bigger impact on the results. On the other hand, some
cheaper requirements do not have any impact on the result if and
only if their cost is overestimated (PIAC = −25%,−50%), in which
cases the amount of errors is too small to free enough space on
given budget for a more expensive requirement to be filled in. The
last interesting observation is that some expensive requirements but
with low revenue do not have any impact on Hamming distance
across all budget values, since these requirements are sorted into
the tail of the waiting queue, where the requirements are not likely
to be selected.

However, due to the existence of budget constraint, it is not pos-
sible to visualise the trend with respect to the cost, the expected
revenue, and the PIAC value at the same time. For this, we turn to
the multi-objective formulation; since the Euclidean distance be-
tween two fronts incorporate differences in both the revenue and
the cost, we can observe the trend between PIAC and its impact.

5.2 Result From Multi-Objective Formulation
Figure 3 shows the heat-map visualisation generated from the

sensitivity analysis for the MONRP formulation. The x-axis repre-
sents different PIAC values, ranging from −50% (overestimation)
to 50% (underestimation). The y-axis represents different require-
ments, sorted by their development cost. By cross-referencing x-
axis and y-axis, it is possible to observe how much impact it makes
to underestimate or overestimate the cost of a specific requirement
by the given degree of error. The darker the colour is, the bigger
impact the particular error has.

A few trends can be easily observed. First, one of the dominant
trends across all three data sets is that the distance between the orig-
inal and inaccurate front increases as PIAC value increases. Sec-
ond, when comparing the cost of those requirements, more expen-
sive requirements tend to have bigger impact on the results. These
two observations are statistically tested in Section 5.3.

However, there are a few exceptions to the general trend. Certain
requirement almost consistently has significant impact on the re-
sult. For example, the second requirement in the real-world data set
consistently produces a noticeable Euclidean distance from PIAC
value of −5% to −50%. This consistency provides two interesting
insights into the real-world data set. First, this particular require-
ment brings about significant impact on the result even when its
cost is reduced only by 5% (PIAC = −5%). Second, and more in-
terestingly, further reduction in its cost still produces the same level
of impact up to reduction of 50% (PIAC = −50%). This is due
to the fact that the particular requirement has the lowest cost and
lowest expected revenue among the requirements. It is possible to
conclude that the threshold for overestimation of this particular re-
quirement is 5%. If the PIAC value reaches the threshold value, the
final solution will be different from the original solution.

5.3 Statistical Analysis
Figure 4 and Figure 5 show the boxplots of Euclidean distances

measured with different sets of data. Each boxplot in Figure 4
represents the Euclidean distances measured from all requirements
that share the same value of development cost. Each boxplot in
Figure 5 represents the Euclidean distances measured from all re-
quirements in the data set for a specific PIAC value. In both fig-
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Figure 3: Euclidean distance between original estimated Pareto-front
and actual Pareto-front by different PIAC values.

ures, the general trend is a positive correlation between Euclidean
distance and PIAC or cost, meaning that larger PIAC values and
larger development cost will have greater impact on the result.

The random data set with no correlation between cost and rev-
enue shows a several unique data points that do not follow the over-
all trend. The position and number of these exception correspond
to the exceptions observed in the corresponding heat-map in Fig-
ure 3. This implies that, if the data set contains requirements that
do not fit the Positive Correlation Assumption, there are likely to
exist exceptional requirements. With the random data set with pos-
itive correlation between cost and revenue, the PCA trend is more
consistent and smooth.
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Figure 4: Boxplots of Euclidean distances between Pareto-fronts for
different costs of requirements

To test PCA statistically, Spearman’s rank correlation coefficient
ρ is used to quantitatively describe the relationship between two
pairs of separate variables. On the other hand, the p-value, which
is the result of the permutation test, indicates whether the calcu-
lated value of ρ is significant to prove that there is a monotonic
relationship between the pair of variables. The smaller the p-value
is, the stronger monotonic correlation between the pair of compared
variables exists. A p-value of 0.05 indicates that 95 times in 100
the monotonic relationship between two sets of variables occurred
because a correlation exists, and not because of pure chances.

Figure 4 and Figure 5 are statistically analysed using Spearman’s
rank correlation analysis. The ρ (rho) values and the corresponding
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Figure 5: Boxplots of Euclidean distances between Pareto-fronts for
different PIAC values

p-values are calculated and plotted in each figure. All the p-values
are very close to zero,which indicates strong monotonic correlation
between each pair of variables, meaning that larger PIAC values
and larger development cost will have greater impact on the result.
The visual observations of general trend of PCA-1 and PCA-2 are
confirmed.

Table 1 shows the Spearman’s correlation coefficient and the p-
values calculated for the relation between cost of requirements and
Euclidean distance between two Pareto fronts for Motorola’s data
set on each level of PIAC. All the p-values are smaller than 0.05
which indicates the strong monotonic correlation between cost and
impact. Again, this confirms the general trend predicted by PCA-1
at each level of PIAC.

PIAC ρcost pcost PIAC ρcost pcost
+50% 0.6648 0.0000 −50% 0.9246 0.0000
+45% 0.8204 0.0000 −45% 0.8918 0.0000
+40% 0.7386 0.0000 −40% 0.8912 0.0000
+35% 0.8093 0.0000 −35% 0.8940 0.0000
+30% 0.7104 0.0000 −30% 0.8646 0.0000
+25% 0.6194 0.0001 −25% 0.8520 0.0000
+20% 0.5704 0.0003 −20% 0.7560 0.0000
+15% 0.8155 0.0000 −15% 0.6370 0.0000
+10% 0.6256 0.0001 −10% 0.4645 0.0049
+5% 0.4239 0.0112 −5% 0.3600 0.0336
0% 0.5026 0.0021

Table 1: Spearman’s rank correlation coefficient and p-values be-
tween cost and impact. For all PIAC values, the ρ values are statistically
significant at the confidence level of 95%.

Req. ρPIAC p Req. ρPIAC p
1 0.9474 0.0000 19 0.7318 0.0002
2 0.8591 0.0000 20 0.8929 0.0000
3 0.8825 0.0000 21 0.7188 0.0002
4 0.8591 0.0000 22 0.8591 0.0000
5 0.9604 0.0000 23 0.7786 0.0000
6 0.9630 0.0000 24 0.7890 0.0000
7 0.7942 0.0000 25 0.8721 0.0000
8 0.7890 0.0000 26 0.9136 0.0000
9 0.9032 0.0000 27 0.6929 0.0005
10 0.4487 0.0413 28 0.8617 0.0000
11 0.8643 0.0000 29 0.2071 0.3676
12 0.8773 0.0000 30 0.8877 0.0000
13 0.9266 0.0000 31 0.9578 0.0000
14 0.3188 0.1589 32 0.8123 0.0000
15 0.6305 0.0022 33 0.9162 0.0000
16 0.8981 0.0000 34 0.8331 0.0000
17 0.2461 0.2822 35 0.7838 0.0000
18 0.6929 0.0005

Table 2: Spearman’s rank correlation coefficient between PIAC value
and impact. For most requirements, the observed ρ values are statisti-
cally significant at the confidence level of 95%.

Similarly, Table 2 shows the ρ and the p-value for the PIAC val-
ues and Euclidean distance for each requirement from Motorola’s
data set. Again, the result confirms the general trend predicted by
PCA-2.

5.4 Answers to the Research Questions
RQ1 and RQ2 are answered by the statistical analysis shown in

Table 1 and Table 2. The Spearman’s rank correlation coefficient
confirms that there exists a positive correlation between the cost of
each requirement and the impact, and between the level of inaccu-
racy and the impact. The correlation is statistically significant with
confidence level of 95%.

However, it is the overall trends and the exceptions observed in
Figure 3, Figure 4 and Figure 5 that would be of particular interest
to the decision maker. First, while the PCA is statistically con-
firmed in general, there are exceptions to the trends. In Figure 3,
the heat-map for the random data set with no correlation shows
that the requirements that have relatively high and low impact fac-
tor from distinct horizontal bands. This phenomenon is weakened
in the second heat-map for the random data set with correlation. Fi-
nally, the real world data shows much more complex patterns with
very few distinct horizontal bands.

Comparing the first and the second heat-map, it can be said that
the correlation between the cost and the expected revenue of re-
quirements is an important factor in sensitivity analysis. More
specifically, if it is likely that some requirements have high cost
and low revenue, or vice versa, these requirements are more likely
to contribute to create the sensitive region in NRP solution.

Figure 4 and Figure 5 also visually confirm PCA-1 and PCA-
2 respectively. In Figure 4, we can observe unique boxplots with
very small variance which correspond to the low-impact horizontal
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bands observed in the first heat-map in Figure 3. Another interest-
ing observation found in Figure 5 is that overestimation tends to
have bigger impact on the solutions of NRP than underestimation;
boxplots on the right side of Figure 5 shows steeper increase in
mean values than those on the left side. This trend has a very inter-
esting implication to practitioners, because under uncertainties, a
human decision maker is more likely to overestimate than underes-
timate. This qualitative assessment of the statistical analysis forms
the answer to RQ3.

6. RELATED WORK
In the Next Release Problem (NRP), the goal is select an optimal

subset of requirements for the next release of a product. Bagnall
et al. first suggested the term NRP and applied various modern
heuristics including greedy, hill climbers and simulated annealing
algorithm [2]. Baker et al. [3] applied Search-Based Software En-
gineering approach to NRP by using single objective optimisation
algorithms: the greedy algorithm and the simulated annealing algo-
rithm. A variation of the problem using integer linear programming
is studied in Van den Akker’s work [16], to find exact solutions
within budgetary constraints.

Zhang et al. [18] introduced new formulations of Multi-objective
Next Release Problem(MONRP). In Zhang’s MO-NRP formula-
tions, at least two parameters (possibly conflicting) are considered
as two optimisation objectives simultaneously.

Sensitivity analysis has been widely applied in various areas in-
cluding complex engineering system, environmental studies, eco-
nomics, health care, etc. [4, 7, 12, 13] It has been used as one of
the principal quantitative techniques in risk management [5]. It can
be used to provide an insight of the reliability and robustness of a
problem model result when making decisions [15]. However, the
present paper is the first to introduce Sensitivity Analysis in multi-
objective optimisation problem in the area of software engineering.

The proof-of-principle study by Deb et al. [8] introduced robust
optimisation procedures to multi-objective optimisation problems
for the purpose of searching for robust Pareto-optimal solutions
in multi-objective optimisation problems. It is worth mentioning
that robust optimisation is concerned with finding areas of the so-
lution space that change little. Our approach to sensitivity analysis
is concerned with measuring the impact on the solution proposed
to changes (small and large) in the components that serve to make
up a candidate solutions. Whereas robustness helps the decision
maker to choose a good solution, sensitivity analysis helps the de-
cision maker to re-focuss estimation effort on the problem descrip-
tion data that most requires careful estimation.

7. CONCLUSIONS AND FUTURE WORK
The paper introduces an SBSE approach to identify requirements

that are anomaly sensitive to inaccurate cost estimation. Sensitive
requirements are those that have significant impact on the final so-
lution of NRP when their cost estimates are inaccurate. The paper
presents an automated sensitivity analysis approach based on SBSE
for both single- and multi-objective NRP formulations. The results
of the sensitivity analysis is summarised in an intuitive heat-map
style visualisation to aid the decision maker to identify sensitive
regions in the data.

Through the empirical studies of both synthetic and real-world
requirement data, the paper presents a statistical analysis that con-
firms the Positive Correlation Assumption, i.e. more expensive re-
quirements and higher level of inaccuracies tend to have greater
impact on NRP. However, the heat-map visualisation also reveals
that there exist exceptions to this assumption. Identifying these ex-
ceptions can guide the decision maker towards more accurate esti-

mation and safer decision making. Future work will consider more
complex aspects of NRP such as complex dependency relation be-
tween requirements.
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