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ABSTRACT
There has been a considerable body of work on search–based
test data generation for branch coverage. However, hitherto,
there has been no work on multi–objective branch coverage.
In many scenarios a single–objective formulation is unreal-
istic; testers will want to find test sets that meet several
objectives simultaneously in order to maximize the value
obtained from the inherently expensive process of running
the test cases and examining the output they produce.

This paper introduces multi–objective branch coverage.
The paper presents results from a case study of the twin ob-
jectives of branch coverage and dynamic memory consump-
tion for both real and synthetic programs. Several multi–
objective evolutionary algorithms are applied. The results
show that multi–objective evolutionary algorithms are suit-
able for this problem, and illustrates the way in which a
Pareto optimal search can yield insights into the trade–offs
between the two simultaneous objectives.
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1. INTRODUCTION
Generating test data by hand is tedious, expensive and

error–prone. Nonetheless, for many organizations this ac-
tivity cannot be avoided, because adequate levels of testing
are increasingly required or recommended by internationally
accepted standards [7, 26] for quality assurance and safety.
This combination of problem difficulty and importance has
made automated test data generation a widely studied topic
and one for which Search–Based Software Engineering tech-
niques have proved to be particularly useful [4, 5, 16, 17, 19,
25, 28, 29, 32, 33].

This paper is concerned with the problem of structural
test data generation and, in particular, the problem of gen-
erating branch adequate test sets. A test set is branch ad-
equate if and only if, for each reachable branch b of the
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program’s Control Flow Graph, there exists a test case that
causes execution to traverse b. Branch adequate testing is
recommended by the British Computer Society standard on
testing [7] and is mandatory for avionics standards [26].

The problem of generating such a branch adequate test
set has been formulated by several previous authors as a set
of search problems, in which the fitness function measures
the distance between the path traversed by a candidate test
case, and a path required to execute the branch of interest
[4, 5, 16, 19, 25, 29]. Each branch is considered in turn,
yielding a separate search for each branch that has yet to
be covered. This branch becomes the new test goal and a
search is performed, guided by a fitness function that as-
sesses proximity of the execution trace to this branch.

In all previous work on search–based branch adequate
test data generation, the problem has been formulated as
a single–objective search problem1; the sole objective is to
cover the branch in question. While this is valuable, in many
situations the tester may have additional goals that they
would like to achieve using the same test set. For example,
the tester may also wish to find test cases that are more
likely to be fault–revealing, or test cases that combine dif-
ferent non–subsuming coverage based criteria. The tester
might also be concerned with test cases that exercise the
usage of the stack or the heap, potentially revealing prob-
lems with the stack size or with memory leaks and heap
allocation problems. There may also be additional domain–
specific goals the tester would like to achieve, for instance,
exercising the tables of a database in a certain way, or caus-
ing certain implementation states to be reached.

In any such scenario in which the tester has additional
goals over and above branch coverage, existing approaches
represent an over simplification of the problem in hand. A
multi–objective optimization approach would be a more re-
alistic approach. The lack of any previous work on multi–
objective test data generation therefore highlights an im-
portant gap in the literature. This paper takes a first step
towards filling this gap. The paper formulates the test data
generation problem as a multi–objective optimization prob-
lem, presenting results from a study of a Pareto optimal
approach and a weighted fitness approach.

In order to scope the problem, it was necessary to consider
a suitable multi–objective scenario. As the previous discus-
sion indicates, there are many choices. The scenario adopted

1Hermadi and Ahmed [12] propose a multi–objective approach
whereby they try to find the minimal set of test cases which cover
a set of target paths, but do not use a Pareto–based approach.



is one in which the tester wishes to achieve branch coverage,
while also constructing test cases that exercise the dynamic
memory allocation of the program under test. This scenario
would occur where, for example, the tester knows that mem-
ory is highly constrained or where the tester believes that
there may be memory leaks or possible null pointer derefer-
ences.

The paper presents results from five case studies of this
multi–objective problem when applied to real code from the
Software–artifact Infrastructure Repository [1] and also to
specially constructed examples that denote extreme cases
where the two objectives are either in full agreement or total
opposition. These extreme cases allow the approaches to be
explored at the limits for which they might be expected to
be applied. The primary contributions of the paper are as
follows:

1. The paper introduces the first formulation of test data
generation as a multi–objective problem. It describes
the particular goal oriented nature of the coverage cri-
terion, showing how it presents interesting algorithmic
design challenges when combined with the non goal
oriented memory consumption criterion.

2. The paper presents results that confirm that multi–
objective search algorithms can be used to address the
problem, by applying the ‘sanity check’ that search–
based approaches outperform a simple multi–objective
random search.

3. The paper presents results that suggest that a suit-
ably constructed weighted multi–objective approach,
though simplistic, can be effective for this problem in
some cases. However, there is also evidence that a
Pareto optimal approach can find better solutions in
other cases, with respect to a certain objective. The
paper shows how a weighted and Pareto hybrid ap-
proach can be used to complement each other.

4. The paper also presents results from the application of
a Pareto optimal evolutionary algorithm, assessing the
impact of the interdependencies that arise between the
set of search problems denoted by the set of branches
to be covered.

The rest of this paper is organised as follows. Section 2
provides an overview of background information on multi–
objective evolutionary algorithms. Section 3 describes two
different approaches for attempting branch coverage while
maximizing dynamic memory allocation. It also outlines the
NSGA-II algorithm by Deb et al. [8] used in one approach.
Sections 4 and 5 present the experimental setup and five
case studies comparing both approaches when applied to
synthetic and real world programs. Insights gained during
the studies are revealed in Section 6. Section 7 presents
related work and Section 8 concludes.

2. BACKGROUND
Multi–Objective Evolutionary Algorithms (MOEAs) are

algorithms designed for solving problems where no single
optimal solution exists and a set of solutions is required in-
stead. An example of a Mutli–Objective Problem (MOP)
is the Knapsack problem [18], where weight has to be mini-
mized and profit maximized. This is also a typical example
where two objectives are in direct conflict with each other.

As stated, MOPs require a set of solutions known as a
Pareto optimal set. Such a set contains only non–dominating
solutions. The concept of domination is defined as

Individual X dominates Y if, and only if, X is
better than Y in at least one objective, and no
worse in all other objectives.

A Pareto front and Pareto optimal set can be defined as
([13])

Pareto Optimal Set: For a given MOP ~f(~x),
the Pareto Optimal Set (P∗) is defined as: P∗ :=

{~x ∈ F | ¬∃~x′ ∈ F ~f(~x′) ≤ ~f(~x)}, where F is the
decision variable space.

Genetic Algorithms (GAs) are naturally suited for MOPs
because they maintain a number of individuals in every pop-
ulation, each of which may be better suited for one objective
than another. Another benefit is that a GA can optimize
multiple objectives in parallel. A Pareto GA exploits this
feature, giving it the ability to generate a Pareto optimal
set in a single run.

A special type of single–objective GA, such as a weighted
GA, might achieve the same results over a number of runs.
However, for each run, the objectives have to be formulated
as a set of constraints rather than optimization problems.

Most MOPs, such as the Knapsack problem mentioned
above, have a large set of ‘good compromise’ solutions com-
pared to the set of ‘unpractical’ solutions. For example, the
only ‘useless’ solutions for the Knapsack problem are the
zero weight or minimal profit solutions, i.e. the very extreme
points on a Pareto front.

The opposite is true for the MOP addressed in this paper.
Branch coverage is attempted at a subgoal level, with each
goal corresponding to a branch in a program. It follows that
branch coverage can only have a boolean outcome; either
a test case traverses the branch or it fails to do so. The
latter test cases are of no practical use, therefore branch
coverage has to be achieved, even if this should mean failing
to allocate any memory. Hence, the set of desirable solutions
is very restricted; it may only contain one solution.

This observation would suggest that a weighted GA is
better suited for this problem. However, as memory alloca-
tion may be optimizable for some branches (e.g. by increas-
ing loop–iterations which allocate memory), a Pareto GA
might also be adequate, especially since finding the right
set of ‘weights’ can prove challenging and a different set of
weights might be required for each branch.

In a weighted GA, each objective is given a coefficient,
acting as a ‘weight’ for its fitness value. The fitness values
for each objective are then combined into a single value,
from which point onwards the multi–objective GA becomes
identical to a single–objective GA. In order for a weighted
GA to be effective, particularly when two objectives are in
conflict, the objectives have to be ordered or prioritized in
some way. This is in contrast to a MOEA, which treats all
objectives as equally important.

For the problem considered in this paper, one objective,
maximizing memory allocation, is not clearly definable or
quantifiable, because memory consumption may not have
an obvious ‘optimum’. Giving it too much weighting might
inhibit branch coverage, because of the adverse effect on the
overall fitness value (depending on the code/inputs). On the
other hand, excessively reducing its weighting might render



it insignificant. The aim of maximizing memory allocation
would thus be reduced to a random search.

3. IMPLEMENTATION
The IGUANA tool [21] was adapted for the implemen-

tation of the two algorithms, which are based on a model
described by Wegener et al. [29]. In addition to the stan-
dard branch distance computed for a test case with respect
to a branching condition, Wegener’s model uses an approach

level. It reflects the distance between branching nodes in a
Control–Flow Graph and a target and is aimed at helping
the GA find the ‘quickest’ path to a target by incorporating
path information into the fitness function.

In order to measure memory allocation, the source code
was instrumented with a global variable, used to count all
bytes allocated during the execution of a function. The free-
ing of memory by dereferencing a pointer was not accounted
for in this study, because all the memory was allocated to
global pointers which were released outside the scope of the
function under test. The next section describes the opera-
tions used by the GAs and their configuration.

Two different types of selection operators were used for
the implementation of the weighted and Pareto GA. For the
Pareto approach an elitist selection and reinsertion strategy
was chosen. Elitism ensures that the current best individual
(or a set of best individuals in case of a multi–objective GA)
is copied across into the next generation. The weighted GA
uses stochastic universal sampling [2] as a selection method,
where the probability of an individual being selected is pro-
portionate to its fitness value. This means ‘fitter’ individuals
have more chance of being selected, but an ‘unfit’ individual
may still be included, thereby partially maintaining diver-
sity within the population in order to prevent a premature
convergence at a sub–optimal solution.

Before individuals are selected for crossover, they must
be ranked according to their fitness value within the pop-
ulation. The weighted-GA uses linear ranking [31] with a
selection pressure Z of 1.7 (in accordance with the Wegener
model), where ordered individuals are assigned fitness values
such that the best individual has a fitness of Z, the median
individual a fitness of 1.0 and the worst individual a fitness
of 2−Z, where Z = [1.0, 2.0]. These ranked values are then
converted into proportionate fitness values before selection
takes place. Ranked fitness values for the Pareto GA are
calculated based on the Pareto-ranking method described
in Section 3.1.

Discrete recombination [23] was used to produce offspring
and the mutation algorithm is based on the breeder genetic
algorithm [23]. It defines a mutation probability of 1/len,
where len is the length of the input vector. Each of the
breeding populations contains a different mutation step size
p, ranging from 0.1 to 0.000001. A mutation range ri is
defined for each input parameter xi by the product of p and
the domain size of xi, with 0 ≤ i < len. The ‘mutated’ value
vi of xi can thus be computed as vi = xi±ri ·δ. Addition or
subtraction is chosen with an equal probability. The value
of δ is defined to be

P
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x=0
αx ·2

−x, where each αx is 1 with a
probability of 1/16 else 0. If vi is outside the allowed bounds
of xi, its value is set to either the minimum or maximum
value for xi.

A competition manager controls the number of individ-
uals each population evolves. Every 20 generations, 10%
of the individuals are randomly chosen for migration from

one population to another. A migration manager ensures
a population will only receive individuals from at most one
other population. The competition manager also calculates
a progress value for each population at the end of a gener-
ation. This progress value p is computed for a population
at generation g as follows: 0.9 · p + 0.1 · rank. rank indi-
cates the average fitness of a population and is obtained by
linearly ranking the individuals within a population, as well
as the populations amongst themselves. Again, a selection
pressure of 1.7 was used for obtaining each rank value.

Every n number of generations, where n is configured via
the competition manager, the populations are ranked ac-
cording to their progress values. After this, a reallocation
parameter is computed for each population, which controls
how many individuals from the worst performing popula-
tions are transfered to the best performing ones. However,
a population is not allowed to loose its last five individuals
to prevent it from dying out. The transfer of individuals
between populations is aimed at improving the overall per-
formance of the GA. Thus, in effect, the best performing
population is seeded every n number of generations and, as
a result, will contribute most to the number of fitness eval-
uations.

3.1 Pareto GA Implementation
The implementation adapted for this paper is based on the

NSGA-II algorithm described by Deb et al. [8]. The main
difference between a standard GA and a multi–objective
GA is the way fitness values are computed and individu-
als ranked within a population. The NSGA-II algorithm
creates a set of front lines, each front containing only non–
dominating solutions. Within a front, individuals are re-
warded for being ‘spread out’. The algorithm also ensures
that the lowest ranked individual of a front still has a better
fitness value than the highest ranked individual of the next
front.

The remainder of this section explains the ranking algo-
rithm’s steps in detail.

The first stage of the algorithm calculates two entities for
each solution [8]; 1) a count c for the number of individuals
which dominate the current individual; 2) a set of individu-
als which are dominated by the current individual.

All individuals with a count of zero, i.e. those not domi-
nated by any other individual, are grouped together to form
the first front. The individuals from this front are then it-
erated and for each individual in their ‘domination set’, the
count is reduced by one. Individuals that subsequently end
up with a count of zero are again grouped together to form
the next front. This process is repeated until all individuals
are assigned to a front.

In order to encourage diversity within a front and prevent
premature convergence, individuals are rewarded for lying
either at extreme ends or less crowded regions of a front.
This is done by assigning a ‘distance’ attribute d to each in-
dividual, which measures the distance of an individual to its
closest neighbours. The value of d is defined to be

P

n−1

x=0
δx

where n is the number of objectives and δx the combined
distance of an individual from its closest neighbours with
respect to the current objective.

Thus, if two individuals have the same non–domination
count c, the individual with the greater ‘distance’ d ranks
higher.



3.2 Weighted GA Implementation
Unlike the Pareto GA, a weighted GA can only find a

single best solution. This approach is commonly applied to
multi–objective problems where it is possible to prioritize or
order objectives in a meaningful way.

Branch coverage is a minimization task, where an ideal
solution has an objective value of zero. In order to com-
bine the objective value for the memory allocation with the
distance measures, the inverse of the normalized number of
bytes allocated was used. As this value can never reach
zero, a cut–off point of 10−5 was chosen as the ‘ideal’ mem-
ory value and thus ideal overall fitness. If a branch fails to
allocate any memory, a worst case value of 1000 was used as
the objective value for the memory allocation.

Thus, if a test case allocates memory, the formula used to
obtain the objective value is: 1.001−b ·w−1

b
+1.0 ·d, where b

is the raw number of bytes allocated, wb is the weight for the
memory objective, with 0 < wb ≤ 105, and d the distance
measure composed of branch distance and approach level.
The weight for d was left constant at 1.0.

4. EXPERIMENTAL SETUP
Five case studies were carried out into the effectiveness of

different search methods in generating branch adequate test
data while maximizing dynamic memory allocation. The
three searches considered are a random, Pareto optimal and
a weighted search. Two case studies are based on real world
C code and three on synthetic programs. The synthetic pro-
grams were chosen to evaluate the performance of a search
in the context of ‘extreme’ examples. Although very small
with respect to lines of code, the input domain for the syn-
thetic programs ranges up to 1010. The degree of difficulty
for search–based testing is determined by the size of the
search space as well as the shape of the fitness landscape,
ensuring the synthetic examples are not trivial. In addition,
the dynamic memory allocation was designed to add further
complexity to the problem.

A search was terminated if either

1. an ideal solution was found, or

2. 100,000 fitness evaluations had been performed, or

3. no progress, with respect to the current best solution,
had been made over 25 generations.

For the Pareto GA, an ideal solution was considered to be
the best solution with respect to memory allocation, which
also achieved the branch target.

5. CASE STUDY RESULTS
Each Case Study consists of the three algorithms run 10

times. The results of the case studies are presented in Fig-
ure 1.

Case Study 1 is the addscan function from the space

program, used by the European Space Agency for scanning
star field patterns. Memory is allocated without releasing
it, thus to avoid memory leaks, the function was modified
for test purposes to free the allocted memory.

Summary: Overall the Pareto GA allocates 66% more
bytes than the weighted GA at the expense of branch cover-
age. The function contains 32 branches and its domain size
is approximately 10539 . The weighted GA is deliberately

directed towards covering branches, making it more likely
to succeed within the limits set by the stopping conditions
described above. The 3 branches left uncovered were either
infeasible or the search simply failed for these.

In order for the Pareto GA to cover a branch it needs to
find an ‘extreme’ point on the Pareto front. These points
will only be ‘discovered’ quite late in the search, because a
Pareto GA always tries to find a good spread of solutions
across the front, evolving from a central region towards the
‘end points’ of a front–line.

Case Study 2 is a function taken from the cgi-util.c

source, which is based on post-query.c and query.c by
NCSA. It takes a string and a ‘stop’ character as input, and
parses the string until either a terminating null or a stop
character is found. The new substring is removed from the
input string and returned by the function. Both parameters
of the function have a direct impact on the amount of mem-
ory being allocated. However, this amount is constant for all
branches because the memory allocation occurs at the start
of the function. The length of the input string was restricted
to 104 characters for practical reasons. This function also
had to be modified to release the memory allocated after
each test run to prevent memory leaks.

Summary: The results from Figure 1 confirm that a ran-
dom search is good at achieving high branch coverage for
‘easy to cover’ branches. However, over 10 runs the search
only manages to allocate 33% of the optimum for memory
allocation. The weighted GA used a weight distribution of
3:2 in favour of branch coverage for this Case Study. It man-
ages to beat the Pareto GA in 1 run, allocating the max-
imum amount of memory possible. However, over 10 runs
the weighted GA allocates slightly less (263 bytes) than the
Pareto GA and only manages to cover 100% of the branches
during 1 run, compared to a 100% coverage achieved by the
Pareto GA in 7 runs. Thus, the Pareto GA can be consid-
ered better suited for this Case Study, because achieving full
branch coverage is required.

Case Study 3 is a function containing four predicates.
The first three follow an if()else if() structure and allo-
cate a constant amount of memory. The true branch of the
first predicate allocates 20 bytes, the true branch of the sec-
ond predicate 10 bytes and the third predicate, 5 bytes. The
last predicate does not allocate any memory. This example
was chosen to investigate an inverse relationship between
‘approach level’ for branch coverage and memory allocation
and the effects on finding a Pareto optimal set.

Summary: The random search is uninteresting as it nei-
ther achieves 100% coverage nor allocates any memory at
all in 9 of the 10 runs. The Pareto GA finds the maxi-
mum amount of bytes that can be allocated in 50% of the
runs. However, it also leaves at best 3 branches uncovered.
By achieving 100% branch coverage, the weighted GA man-
ages to optimize the input vector to allocate the maximum
amount of memory possible in all runs, clearly outperform-
ing the Pareto GA at less computational cost.

Case Study 4 is a program that generates a random se-
quence of characters from the alphabet and stores them in
a string. The length of the string generated depends on the
input parameters. The first parameter affects the path to
be taken through the function; the second parameter spec-
ifies the length of the string. The branching nodes ensure
that the second parameter only influences the memory al-
location if the test case traverses the true branch of the



first predicate. If a test case fails to cover this branch, the
memory allocation for the rest of the function will either be
constant, or, in one case, the function will exit prematurely
and no memory will be allocated.

Summary: The input domain for Case Study 4 is 105

and the maximum number of bytes that can be allocated
is restricted to 256. Even though the input domain is quite
small, all methods fail to cover 100% of the branches. One of
the uncovered branches is controlled by a predicate checking
if the memory allocation was successful. The true branch
of this predicate can be considered infeasible because of the
restrictions imposed on the memory allocation. All other
branches are covered by the weighted GA 40% of the time.
Both the Pareto GA and random search fail to cover at least
1 more branch than the weighted GA. One of these uncov-
ered branches is controlled by a flag–containing predicate.
Flags are known to inhibit the performance of a GA [3] and
flag controlled branches are unlikely to be covered by a ran-
dom search. The success of the weighted GA in covering
this branch can be explained by the distribution of weights.
These ensure more resource is spent on the branch cover-
age objective compared to the Pareto GA, which shares its
resources amongst the objectives.

Case Study 5 is a function constructed to produce a
‘difficult to search’ fitness landscape for the GAs [22]. To
further add complexity, the memory allocation is constant
for all but one branch. The false branch of a ‘hard to
cover’ predicate contains an additional reallocation of mem-
ory, which in effect ‘rewards’ a search for missing the target,
creating a deliberate conflict between the two objectives.

Summary: The random search fails to allocate more than
33% of the total possible memory and only covers 17% of all
branches. Perhaps surprisingly the Pareto GA outperforms
the weighted GA by covering at least 1 more branch than the
weighted GA in all but 1 run. It also consistently allocates
the maximum number of bytes possible over the 10 runs,
whereas the weighted GA only manages to do so in 50% of
the runs.

6. DISCUSSION
This section discusses the findings of the case studies from

Section 5 and the results presented in Figure 1. It also
includes some insights gained during the case studies.

For Case Studies 3 and 4 the weighted GA clearly outper-
forms the Pareto GA in all objectives. Case Study 1 presents
a trade–off between the two GAs. The weighted GA covers
an average 88% of the branches, compared to just under
80% covered by the Pareto GA. However, the weighted GA
only manages to allocate about 34% of the number of bytes
the Pareto GA allocates over 10 runs. In Case Study 2
the Pareto GA achieves an overall higher branch coverage
than the weighted GA, while allocating an equal number of
bytes. Finally, in Case Study 5 the Pareto GA again beats
the weighted GA over a total of 10 runs.

The maximum number of bytes recorded during the case
studies refer to the highest values found by a test case which
covered a particular target. Any ‘better’ value found for this
objective whilst attempting the target was not recorded if
the test case missed the target and covered another branch,
e.g. branch b instead. However, Figure 2 shows that the
ideal solution for branch b will allocate at least the same
amount of memory.

Overall, the findings suggest that it is not possible to pick

one search method over another, as each performs better
in some cases. For example, Table 1 illustrates that both
the weighted and Pareto GA, cover branches missed by ei-
ther Pareto or weighted GA respectively. Equally, both ap-
proaches have a number of disadvantages; the high compu-
tational cost associated with the Pareto GA and the dif-
ficulty of finding the most efficient set of weights for the
weighted GA. For some example functions even a slight in-
crease in the weight for the memory objective resulted in a
significant drop in branch coverage. For others, adjusting
the weights did not seem to affect the branch coverage and
only marginally improved the memory allocation, even with
a ‘drastic’ redistribution of weights. A set of experiments
were carried out to investigate the impact different weights
have on the behaviour of the weighted GA, but space pro-
hibits a full discussion of these results.

Given the results presented in Table 1 and Figure 1, a
hybrid approach may be advisable. For example, a weighted
GA could be used to cover branches for which the Pareto GA
failed to find test cases. This would also solve the issue of not
being able to evaluate the performance of a weighted GA for
an objective with an undefined optimum. Case Study 1 is an
example where the maximum number of bytes allocated by
the weighted GA is meaningless without a point of reference.
The Pareto GA is more likely to find a good approximation
to the ‘real’ optimum because it has less room for error,
e.g. by not having an ideal distribution of weights.

The case studies also revealed that, in most cases, the
Pareto GA does not produce a front–line. It converges at
a single solution instead (see Figure 3). Where a front–line
exists, it often lacks diversity. While this is not entirely due
to the subgoal approach, it is emphasized by it.

For a front–line to contain many points, the target branch
needs to either allocate varying amounts of memory, or an
inverse relationship between the distance of a test case from
the target and the memory allocated by it must exist (see
Figure 2).

In any other scenario the front–line contains at most two
points; one point representing a case that reached the target
and the other, any test case that happens to allocate more
memory than the first but misses the target.

Another issue revealed is that 100% branch coverage is
very hard to achieve for programs containing malloc/calloc/

realloc statements. After allocating memory, a well writ-
ten program should check whether the allocation has been
successful. It is these cases that are of interest, and which
partly motivated the exploration of applying a Pareto GA
to the branch coverage problem. However, to exhaust a
program’s heap space can be very challenging, possibly re-
quiring a large number of loop–iterations or the presence of
a memory leak to name but a few scenarios. Once the heap
space is exhausted, the C program may crash, especially if
it is not well written. As a result, the test environment will
also terminate, thus being unable to log the test case that
caused the crash.

7. RELATED WORK
The first research in this area used symbolic execution

[15] and constraint solving [9, 24]. More recently, search–
based approaches to test data generation have proved to be a
popular application of Search–Based Software Engineering.

Many test data generation scenarios can be attacked using
a search–based approach, with examples in the literature



Case Study 1 Case Study 2 Case Study 3

Case Study 4 Case Study 5

Figure 1: Results of the branch coverage and memory allocation achieved by three different algorithms: a
random search, a Pareto GA and weighted GA

...
int p*;
if( a == 0)
{

/*target 1T*/
}
else
{

/*target 1F*/
p = (int*)malloc(a*sizeof(int));

}
...

Figure 2: Final Pareto fronts produced for targets 1T and 1F. The upper point on the y–axis represents
the ‘ideal’ solution for target 1F. As can be seen, once the branch has been reached, a single solution will
dominate all others because it is the only branch allocating memory. When attempting to cover target 1T
on the other hand, the Pareto optimal set potentially consists of an infinite number of solutions. The graph
combines five runs which reveal little variance between the front–lines produced. Interestingly, the ‘ideal’
point for target 1F corresponds to the maximum value contained within the Pareto optimal set for target 1T
with respect to memory allocation.

including temporal testing [30], stress testing [6], finite state
machine testing [10] and exception testing [27].

The present paper is concerned with the problem of gen-
erating test data for structural testing; in particular branch
coverage. Hitherto, this has turned out to be by far the
most popular of all the applications of search–based test
data generation. Korel [16] was one of the first authors to
apply search–based techniques to the problem of branch ad-
equate test data generation. Korel used a variation of hill
climbing called the alternating variable method. Like other
authors, for Korel the goal was a single–objective; to cover
some ‘difficult’ branch not yet covered by a more lightweight

random search. Xanthakis et al. [32] were the first au-
thors to apply evolutionary computation algorithms to test
data generation problems. They formulated the problem as
a single–objective function of achieving coverage of paths.
McMinn [20] provides a comprehensive survey of search–
based test data generation.

In the past decade many authors have also addressed the
problem of automated search for branch adequate test sets
[5, 14, 16, 17, 19, 25, 28, 29, 32, 33]. For example, Baresel
et al. and Bottaci consider the problems of fitness func-
tion definition [4, 5]. Jones et al. [14], McGraw et al. [19],
Pargas and Harrold [25] and Wegener et al. [29] introduce



Branch ID Example Function

char *makeword(char *line, char stop) {
int x = 0,y;
char *word;
word=(char *)malloc(sizeof(char)*(strlen(line)+ 1));

1T/1F for(x=0;((line[x]) && (line[x] != stop));x++)
word[x] = line[x];

word[x] = ’\0’;

2T/2F if(line[x]) ++x;
y=0;

3T/3F while(line[y++] = line[x++]);

return word;
}

branch bytes

ID allocated

1T {9634}
1F {9856}
2T {9692}
2F {1194}
3T {9553}
3F {9649}

Pareto optimal set

Figure 3: The table to the right presents the Pareto optimal sets for each ‘subgoal’ of the example function
used in Case Study 2. It combines the results collected over five runs and illustrates that it is often not
possible to generate a Pareto front–line when considering branch coverage and memory allocation as a MOP.
Although the amount of dynamic memory allocated depends on the input parameters, it is constant for all
branches. As a result one solution will dominate all others with respect to a particular target.

branch bytes allocated distance
ID Pareto/weighted Pareto/weighted
7 2826560/690360 0.001997004/0
9 2494888/534160 0.005979056/0
10 5622848/1529968 1.001997004/0
11 5978016/1309352 2.001997004/0
12 6372608/586784 2.001997004/0
15 6969776/518320 0.000699161/0
16 1374560/1304160 0.5/0
17 2644048/758032 1.000999001/0
21 2455024/195888 3.000999001/0
28 6728128/291368 0/6.2

Table 1: The table shows the branches covered
by the weighted GA and not the Pareto GA, or
vice versa. The ‘distance’ measure illustrates how
close the best solution came to traversing the tar-
get branch. It combines the normalized branch dis-
tance and the approach level. A 0 distance indicates
a branch has been covered. These results were ob-
tained during Case Study 1.

approaches to evolutionary search for branch adequate test
data.

Other authors address closely related structural test ade-
quacy criteria. For example, Xiao et al. [33] compare Evo-
lutionary Testing with simulated annealing for the problem
of condition-decision coverage, an alternative structural test
data generation goal which can be reformulated as a branch
adequacy problem using a testability transformation [11].
Mansour and Salame [17] consider the problem of path cov-
erage, which is a stronger form of test adequacy than branch
coverage, comparing evolutionary testing, hill climbing and
simulated annealing.

However, despite the large body of work on search–based
test data generation, all previous work has considered the
problem as a single–objective problem. The present paper
is the first to introduce a multi–objective formulation of the

problem, considering both weighted and Pareto formulations
of multi–objective optimality for the structural adequacy
criterion of branch coverage.

Many other non–structural test data generation goals have
been considered in the literature [6, 10, 30, 27], and these
have also been formulated as single–objective search prob-
lems. These other forms of search–based test data genera-
tion may also benefit from a multi–objective approach, as
there may be several goals which the tester would like to
achieve in determining a set of test data. However, the con-
sideration of multi–objective formulations of non–structural
test data generation remains a problem for future work.

8. CONCLUSION AND FUTURE WORK
This paper has presented a first multi–objective approach

to branch coverage. Traditionally, the aim of branch cov-
erage has solely been to find test cases which traverse a
specific branch. The paper supplements this goal with the
additional objective of consuming as much dynamic memory
as possible at the same time.

Five case studies, two based on real world C code and
three created to push the techniques to the extremes, com-
pared the performance of three search methods: a random
search, Pareto GA and weighted GA. The results show that
a weighted GA is best suited in most cases, achieving the
same results as a Pareto GA more efficiently. However, the
studies also reveal that a hybrid approach between the two
algorithms may offer the best overall results.

One of the issues revealed during the case studies was the
balancing of weights between the different objectives. For
example, the ratios used for the case studies presented in
Section 5 were obtained by ‘trial and error’. Future work
will investigate if a meta–heuristic search method could be
used to find an ideal set of weights. An empirical evaluation
on larger real world programs is also planned, comparing
various algorithms applied to multi–objective branch cov-
erage problems. For this, additional techniques, such as a
hierarchical GA, will be considered.
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