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Abstract

This thesis is concerned with program conditioning, a technique which combines sym-

bolic execution [76, 33, 109] and theorem proving [] to identify and remove a set of

statements which cannot be executed when a condition of interest holds at some point in

a program. It has been applied to problems in maintenance, testing, reuse and reengineer-

ing.

All current program conditioning algorithms tend to be exponential. This is due to the

fact that the computational cost of a conditioning algorithm is dominated by both the

exponential growth of the conditioned state and the response time of the theorem prover.

This thesis reports on a lightweight approach to program conditioning using the FermaT

simplify decision procedure. This is used as a component toConSUS, a program condi-

tioning system for a subset of the Wide Spectrum Language WSL. The thesis describes

the symbolic execution algorithm used byConSUS, which prunes as it conditions.

The thesis also gives analytical evidence that, although exponential in the worst case, on

average, the conditioning system reduces its exponential behaviour by several orders of

magnitude, thereby making it more effecient than previous approaches.
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Chapter 1

Introduction

1.1 Aim

The aim of this thesis is to present an intraprocedural program conditioning algorithm

and its implementation for a subset of the Wide Spectrum Language WSL. This algo-

rithm/implemantation forms a central part of the conditioned slicing systemConSUS.

The thesis also aims to present a stochastic framework whereby it is possible to compare

the approach reported here to previous approaches, model both the expected computa-

tional cost of the algorithm, and the expected tradeoff between precision and speed when

constraining the time allocated to the analysis.

In this chapter, Section 1.2 briefly outlines the broad field of study and then leads into

the focus of the research problem. Section 1.3 outlines the core idea of the research.

Section 1.4 presents a justification for this thesis research problem. Section 1.5 outlines

an introductory overview of the methodology. Section 1.6 outlines the contributions of

this work. Section 1.7 briefly describes each chapter of this thesis. Section 1.8 key and

controversial terms are defined. Section 1.9 delimitations of scope and key assumptions

are presented. Finally, Section 1.10 summarizes this chapter.

8



1.2 Background to the research 9

1.2 Background to the research

Understanding a large program can be a daunting task. Program slicing [] is useful for

many applications involving program comprehension [], because it reduces the size of the

program, making the task less daunting. Applications which require comprehension and

which use slicing include maintenance [], debugging [], and the identification and reuse

of subcomponents []. All of these approaches share the observation that it is not essential

to understand the behaviour and contribution ofall of the program. Rather, it is possible,

indeed preferable, to concentrate solely upon some part of the overall computation.

The original formulation of slicing was static. That is, the slicingcriterion contained

no information about the input to the program. Later work on slicing created different

paradigms for slicing including dynamic slicing [] (for which the input is known) and

quasi-static slicing [] (for which an input prefix is known).

Static slicing has now reached a mature stage of development. Tools, such as the Gram-

matech CodeSurfer system [], can efficiently slice real-worlC programs of the order of

hundreds of thousands of lines of code in reasonable time [].

This research is concerned with a generalization of slicing called conditioned slicing.

Conditioned slicing forms a theoretical bridge between the two extremes of static and dy-

namic slicing. It augments the traditional slicing criterion with a condition which imposes

a constraint on a particular state, and/or particular variables. This additional condition

can be used to simplify the program before applying a traditional static slicing algorithm.

Such pre-simplification is called conditioning. and it is achieved by eliminating state-

ments which do not contribute to the computation of the variables of interest when the

program execution satisfies the condition. However, the extra simplification potential of

program conditiong comes at a high computational cost.

This thesis focuses on theconditioningprocess of conditioned slicing. Program condi-

9



1.3 The problem 10

tioning involves attempting to simplify a program assuming that the states it reaches at

various points in its execution satisfy certain properties. These properties are specified by

addingassertionsat arbitrary points in the program.

The construction of a conditioned program is computationally more expensive than that

of a static slice. This is because program conditioning requires both symbolic execution

and theorem proving. However, there exist several implementations, which are capable of

producing conditioned slices for small programs.

1.3 The problem

• This section outlines the idea of the research, starting with the research problem.

• The problem addressed in this research is:

• Essentially I argue that

• or I conclude that ..... I also propose a new agenda for future research which centres

on a few, key research areas and opens up research to new ....

• After the research problem and a brief summary of how it will be solved is pre-

sented,section 1.3 presents the research questions or hypotheses.

1.4 Justification for the research

a thesis about Program Conditioning could justify its research problem through:

• importance of program conditioning

• relative neglect of the specific research problem by previous researchers

10



1.5 The approach 11

• this section should emphasis the whole research problem

• it is not simply used for the sake of novelty

• usefulness of potential applications of the research’s findings

1.5 The approach

• This section is an introductory overview of the approach.

• The section should refer to sections where the methodology is justified and de-

scribed.

• justify the chosen methodology based upon the purpose of the research (wanting to

optomize previous approach)

The importance of the approach advocated in this report is that the performance time is

exponential in the number of control flow statementof the computed conditioned program

unlike in previous approaches where this is exponential in the number of control flow

statements of the program to be conditioned.

1.6 Outline of Contributions

The main contributions of this thesis are:

1.

2.

3.

11



1.7 Outline of the thesis 12

1.7 Outline of the thesis

Each chapter is briefly described in this section.

1.8 Definitions

Key and controversial terms are defined in this section.

1.9 Delimitations of scope and key assumptions

Object Language, Conditions considered in this research.

1.10 Conclusion

This chapter laid the foundations for the report. It introduced the research problem and

research questions. Then the research was justified, definitions were presented, the ap-

proach was briefly described and justified, the report was outlined, and the limitations

were given. On these foundations, the report can proceed with a detailed description of

the research.

12



1.10 Conclusion 13

n:=10;
s:=0;
p:=0;
WHILE (n>1)
DO
s:=s+n;
p:=p*n;
n:=n-1;
OD

Figure 1.1: A program fragment to be statically sliced

Program slicing is a program analysis technique that reduces a program to those state-

ments that are relevant for a particular computation.

The original motivation for program slicing was to aid the location of faults during de-

bugging activities. The idea was that the slice will contain the fault, but would not contain

lines of code which could not have caused the failure observed. This is achieved by set-

ting the slicing criterion to be the variable for which an incorrect value is observed.

Consider the example in Figure 1.1. The program is supposed to calculate the sum and

product of the sequence of numbers from 1 to 10, but the value of the productp is always

found to be zero. In order to locate the cause of this errant behaviour, we can construct

a static slice for the variable p at the end of the program, as shown in Figure 1.2. Since

the slice is simpler than the original program, it is easier to locate the bug (in this case,p

should be initialises to 1, instead of 0).

Although static slicing can assist in simplifying programs, the slices constructed by static

13



1.10 Conclusion 14

n:=10;

p:=0;
WHILE (n>1)
DO

p:=p*n;
n:=n-1;
OD

Figure 1.2: A static slice of 1.1

slicing tend to be rather large. This is particularly true for well-constructed programs,

which are typically highly cohesive. This high level of cohesion results in programs

where the computation of the value of each variable is highly dependent upon the values

of many other variables.

The original formulation of slicing [126] was static. That is, the slicing criterion contained

no information about the input to the program. Fortunately, we can provide information

to the slicing tool about the input without being so specific as to give the precise values.

Consider the program in Figure 1.3, we can use a boolean expression, for example

x=y+4 , to relate the possible values of the two inputsx andy . When the program is

executed in a state that satisfies this boolean condition, we know that the assignment

z:=2; will not be executed. Any slice constructed with respect to this condition may

therefore omit that statement. This approach to slicing is calledconditioned slicing, be-

cause the slice is conditioned by knowledge about the condition in which the program is

to be executed.

14



1.10 Conclusion 15

Conditioned slicingadresses just the kind of problems software maintainers face when

presented with the task of understanding large legacy systems. Often, in this situation, we

find ourselves asking questions such as:

’Suppose we know thatx is greater thany and thatz is equal to 4, then which

statements would effect the value of the variablev at line 38 in the program’.

Using conditioned slicing, we can obtain an answer to this question automatically. The

slice would be constructed forv , at 38, onx>y AND z=4. By building up a collage

of conditioned slices which isolate different aspects of the program’s behaviour, we can

quickly obtain a picture of how the program behaves under various conditions. Condi-

tioned slicing is really a tool-assisted form of the familiar approach to program compre-

hension of devide and conquer.

A conditioned slice can be computed by first simplifying the program with respect to the

condition on the input (i.e., discarding infeasible paths with respect to the input condition)

and then computing a slice on the reduced program. A symbolic executor [75, 34] can be

used to compute the reduced program, also called aconditioned programin [18].

Crucial to conditioned slicing is theconditioningprocess. Program conditioning involves

attempting to simplify a program assuming that the states it reaches at various points in

its execution satisfy certain properties. These properties are specified by addingasser-

tionsat arbitrary points in the program. Program conditioning relies upon bothsymbolic

executionandreasoningabout symbolic predicates and therefore requires some form of

automated theorem proving.

The simplifying power of a program conditioner depends on two things:

15



1.10 Conclusion 16

{x=y+4 } ;
IF x>y
THEN z:=1
ELSE z:=2
FI

Key

Conditioned program: boxed lines of code
Condition: x=y+4

Figure 1.3: A conditioned program

1. The precision of the symbolic executor which handles propagation of state and path

information.

2. The power of the underlying theorem prover which determines the truth of propo-

sitions about states and paths.

Unfortunately, implementation is not straightforward because the full exploitation of con-

ditions requires the combination of symbolic execution and theorem proving. Hitherto,

this difficultly has hindered development of fully automated conditioning slicing tools.

Fox et al. describe the first fully automated conditioned slicing system,ConSIT[36].

They detaile the theory that underlies it, its architecture and the way it combines sym-

bolic execution, theorem proving and slicing technologies .

The problem withConSIT’s conditioning algorithm is that it is exponential even in the best

case as described in section 2.5.ConSITgenerates all possible paths to each statement,

and have to check the accessibility of each one. One way in which this can be improved

is to “fold” the reasoning and symbolic execution processes together.

In this thesis we show that we can instead make use of the monotonicity of the propo-

sitions that we have to analyse: if a path becomes infeasible, then it will remain infea-

16



1.10 Conclusion 17

sible for all subsequent statements. The algorithm defined in this thesis is at the heart

of ConSUS, a light-weight program conditioned slicer for WSL.ConSUS’ conditioner

prunes symbolic execution paths based on the validity of path conditions, thereby remov-

ing unreachable code. UnlikeConSIT, theConSUSsystem integrates the reasoning and

symbolic execution within a single system. The symbolic executor can eliminate paths

which can be determined to be unexecutable in the current symbolic state. This pruning

effect makes the algorithm moreefficientas it has a significant effect on the size of the

propositions handed to the theorem prover, thus speeding up the analysis. Furthermore,

the reasoning is achieved, not using the full power of a general purpose theorem prover1,

but rather by using either the in-built expression simplifier ofFermaT Simplifyor the

Co-operating validity checkerCVC in it’s lightweight -SATmode. This is a lightweight

approach that may be capable of scaling to large programs.

We use both of these validity checkers because in some cases the performance achieved

usingCVCis better than that ofFermaTSimplify . This is because the reasoning power

of CVCdoes in some cases result in ‘early pruning’ which is missed by the less powerful

validity checkerSimplify. For example the program in Figure 1.4 is simplified when using

the ConSUSalgorithm in conjunction withCVC in place ofFermaTSimplify which

fails to remove any statements since it is unaware of the transitivity of>.

The main contributions of this thesis are:

1. To define a new more efficient algorithm and implementation for program condi-

tioning which uses on-the-fly pruning of symbolic execution paths.

2. To report on empirical studies which demonstrate that

(a) On small ‘real programs’ this algorithm produces a considerable reduction in

program size when used with and without a program slicer.

1with ConSIT The test of consistency of each set of states is computed using theIsabelle theorem
prover [97, 98, 96], as described in more detail in Section 2.5.2.

17



1.10 Conclusion 18

{x>y AND y>z}
IF x>z
THEN a:=1
ELSE a:=2
FI

Key

Original Program : Unboxed lines of code
Conditioned program: boxed lines of code
Condition: x>y AND y>z

Figure 1.4: Conditioning a simple program using CVC

(b) TheConSUSalgorithm when used in conjunction with two validity checkers:

WSL’s FermaTSimplify and CVC [112], has the potential for ‘scaling up’

for use on larger systems.

The rest of this thesis is organised as follows:

• Chapter 2 surveys statement-deletion based slicing methods for programs writ-

ten in procedural languages, and their applications. Additionally, this chapter de-

scribes previous work on symbolic execution. This includes a discussion of the

ideas and motivations behind different approaches, as well as a survey of existing

symbolic execution systems. Furthermore, the theoritical foundations ofFermaT,

FermaTSimplify transformation andCVC are reviewed. Finally this chapter

presents a detailed discussion of theConSITsystem issues, and several ways in

which it could be improved.

• Chapter 3 describes the use of conditioned slicing to assist partition testing, il-

lustrating this with a case study. The chapter shows howConSUScan be used to

provide confidence in the uniformity hypothesis for correct programs, to aid fault

detection in incorrect programs and to highlight special cases.

18



1.10 Conclusion 19

• chapter 4 is the main body of the thesis. It introduces an integrated approach to

symbolic execution that combines reasoning and symbolic execution to prune paths

as the symbolic execution proceeds.

• Chapter 5 describes our use of both theFermaTSimplify transformation and

CVCto achieve a form of light-weight theorem proving, which is required to deter-

mine the outcome of symbolic predicates in a symbolic conditioned-state pair.

• Chapter ?? presents the results of an empirical investigation into the performance

and scalability of the approach.

• Chapter ?? gives a summary of our contributions and a discussion of the future

direction of our work.

• Finally, the appendices contain the WSL code for ConSUS, as well as the real-world

programs used in chapter??.

19
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Chapter 2

Background

2.1 Program Slicing

In this section we describe different types of program slicing.

2.1.1 Static Slicing

From a formal point of view, the definition of a slice is based on the concept of slicing

criterion. According to Weiser [126], a slicing criterion is a pair(V, n) wheren is a pro-

gram point andV is a set of program variables. A program slice on the slicing criterion

(V, n) is a sequence of program statements that preserves the behaviour of the original

program at the program pointn with respect to the program variables inV , i.e. the values

of the variables inV at program pointn are the same in both the original program and the

slice. As the behaviour of the original program has to be preserved on any input, Weiser’s

slicing has been calledstatic slicing , to differentiate it from other forms of slic-

ing that require the behaviour to be preserved on a subset of input to the program. This

form of slice has also been defined as abackward slice , in contrast to aforward

slice , defined as the set of program statements and predicates affected by the computa-

tion of the value of the variablev at a program pointn [65].

20



2.1 Program Slicing 21

Weiser has demonstrated that computing the minimal subset of statement that satisfies

this requirement is undecidable [124, 126]. However, an approximation can be found by

computing the least solution to a set of dataflow equations relating a Control Flow Graph

(CFG) node to the variables which are relevant at that node with respect to the slicing

criterion [126].

The algorithm proposed by Weiser led to an alternative definition: a slice consists of the

sequence of program statements and predicates that directly or indirectly affect the com-

putation of the variables inV before the execution of n. Building on this definition, a

different algorithm has been proposed that computes slices as backwards traversals of the

Program Dependence Graph (PDG) [95], a program representation where nodes represent

statements and predicates, while edges carry information about control and data depen-

dence. A slice with respect to such slicing criterion(V, n) consists of the set of nodes

that directly or indirectly affects the computation of the variables inV at noden .

Howitz et al . [65] extended the PDG based algorithm to computeinterprocedural

slices on the System Dependence Graph (SDG). The authors demonstrated that their al-

gorithm is more accurate than the original interprocedral slicing algorithm by Weiser

[126], because it accounts for procedure calling context. Recent improvements of algo-

rithms to compute slices through graph reachability are presented in [100].

A parallel slicing algorithm has been presented by Danicicet al . [38] in which the con-

trol flow graph of a program is converted into a network of concurrent processes whose

parallel execution produces the slice. Algorithms have also been proposed that compute

backward static slices in the presence of arbitrary control flow [1, 6, 22, 58, 108] and

pointers [87, 86].
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Different applications of static slicing have been proposed in the literature, toguether with

some variants on the original definition. For example, Gallagher and Lyle [51] introduced

the concept ofdecomposition slicingand discussed its application to software mainte-

nance. A decomposition slice is defined with respect to a variablev, independently of

any program pointn. it is given by the union of the static slices computed with respect

to the variablev at all possible program pointsn. Other applications of program slic-

ing include software testing [12, 53, 56, 62], program debugging [125, 88], measurement

[94, 11, 92, 93], validation [82], program parallelisation [126], program integration [64],

reverse engineering, comprehension [9, 41], program restructuring [19, 23, 83], and iden-

tification of reusable functions [25].

2.1.2 Dynamic Slicing

As already noted, program slicing was first proposed as a tool for decomposing programs

during debugging, in order to allow a better understanding of the portion of code which

revealed an error [125, 126]. In this case, the slicing criterion contains the variables which

produced an unexpected results on some input of the program. However, a static slice may

very often contain statements which have no influence on the values of the variables of

interest for the particular execution in which the anomalous behavior of the program was

discovered.

Korel and Lasky [79, 85] proposed an alternative slicing definition namelydynamic slic-

ing, which uses dynamic analysis to identify all and only the statements that effect the

variables of interest on the particular anomalous execution trace. In this way the size

of the slice can be considerably reduced, thus allowing a better localisation of the bugs.

Another advantage of dynamic slicing is the run-time handling of arrays and pointer vari-

ables. Dynamic slicing treats each element of an array individually, whereas static slicing

considers each definition or use of any array element as a definition or use of the entire
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array [103]. Similary, dynamic slicing determines which objects are pointed to by pointer

variables during a program execution.

To compute dynamic slices, Korel and Lasky [85] proposed an iterative algorithm based

on data-flow equations. In the case of loops, the algorithm requires that if any occurrence

of a statement within a loop in the execution trace is included in the slice, then all the

other occurrences of that statement in the trace will be included in the slice. This en-

sures that the slice extracted is executable. Other algorithms proposed in the literature

produce slices that are not executable, because they are not necessarily executable sub-

sets of the original program [4]. In particular the algorithm by Agrawal and Horgan [4]

uses dynamic-dependence-graphs to produce more refined slices. It considers only the

occurrences of statements in the trajectory that effect the computation of the variables

in the slicing criterion. Interprocedural slicing algorithms based on dependence graphs

have also been proposed [107] as well as dynamic slicing algorithms in the presence of

unconstrained pointers [2] and arbitrary conrol flow [78].

Besides debugging [72, 85, 3], dynamic slicing has been used for several applications,

including software testing [106], software maintenance [77, 101], and program compre-

hension. A survey and comparison of dynamic slicing methods has been presented by

Korel and Rilling [102].

2.1.3 Quasi Static Slicing

Quasi static slicing was the first attempt to define a hybrid slicing method ranging between

static and dynamic slicing [116]. The need for quasi static slicing arises from applications

where the value of some input variables are fixed while others may vary. A quasi static

slice preserves the behaviour of the original program with respect to the variables of the
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slicing criterion on a subset of the possible program inputs. This subset is specified by

the possible combination of values that the unconstrained input variable might assume.

Of course, in the case all variables are unconstrained, the quasi static slice coincides with

a static slice, while when the value of all input variables are fixed, the slice is a dynamic

slice. The notion of quasi static slicing is closely related to partial evaluation or mixed

computation [70], a technique to specialise programs with respect to partial inputs, by

specifing the values of some of the input variables. Constant propagation and simpli-

fication can be used to reduce expressions to constants. In this way the value of some

program’s predicates can be evaluated, thus allowing the deletion of branches which are

not executed on the particular partial input.

Quasi static slicing has been applied for program comprehension in combination with

other program transformations [59]. Quasi static slicing can be considered as an extension

of work presented in [45], where partial evaluation is used to aid program comprehension.

Combining partial evaluation with program slicing allows us to restrict the focus of the

specialised program with respect to a subset of program variables and a program point.

2.1.4 Simultaneous Dynamic Slicing

An other form of slicing; which was introduced by Hall [54], computes slices with re-

spect to a set of program executions. This slicing method is calledsimultaneous dynamic

program slicingbecause it extends dynamic slicing and simultaneously applies it to a set

of test cases rather than just one test case. A simultaneous program slice on a set of test

cases is not simply given by the union of the dynamic slices on the component test cases.

Indeed simply unioning of dynamic slices is unsound, in that the union does not maintain

simultaneous correctness on all the inputs. Hall [54] proposed an iterative algorithm that

starting from an initial set of statements incrementally builds the simultaneous dynamic

slice, by computing at each iteration a larger dynamic slice.
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Simultaneous dynamic slicing has been used to locate functionality in code. The set of

test cases can be seen as a kind of specification of the functionality to be identified. This

approach can also be seen as an extension of the approach by Wildeet al . [111, 105],

where test cases are used to identify the set of source code statements implementing a

functionality. Combining slicing with this approach results in a more precise identification

of the functionality to be extracted.

2.1.5 Other Slicing Methods

This chapter has so far surveyed statement deletion based methods for programs written

in procedural languages. A number of slicing resources are available on the web (a good

entry point is Jens Krinke’s webpage1), including large scale slicing research tools (see

for example tools developed within the Wisconsin2 and the Unravel3 slicing projects.

Most of the proposed applications of slicing are related to software testing and debugging

and to software maintenance tasks, such as program comprehension and restructuring, for

example the introduction of new distributed technologies calls for applications of slicing

to program parallelisation or migration to distributed architectures. Mark Weiser men-

tioned this in his seminal paper [126] and in his foreword to [60] pointed out the need for

producing a major research effort in this direction. At the present, few contributions have

been proposed. An example is the method presented by Canforaet al. [19], where a

control-dependence based slicing algorithm is used to decompose legacy programs into

client-server components.

The wide spread use of objects-oriented and distributed technologies also calls for new

1http://www.infosun.fmi.uni-passau.de/st/staff/krinke/slicing/slicing.html
2http://www.cs.edu/wpis.html
3http://hissa.ncsl.nist.gov/ jimmy/unravel.html
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slicing algorithms. Several contributions to the definition of slicing methods for object-

oriented [84, 115], concurrent, and distributed [21, 81] software applications have already

been published, but there is little on slicing web-based applications developed with het-

erogeneous programming languages and technologies apart from [44].

A final point of concerns is the meaning of the termslicing. The framework of statement

deletion based slicing methods [17] can be extended with more powerful simplification

rules. Harman and Danicic [57] introducedamorphous program slicing. Like a traditional

slice preserves a projection of the semantics of the original program from which it is con-

structed. However it can be computed by applying a broader range of transformation

rules, including statement deletion. This is particulary useful in program comprehension,

as more powerful transformation may sensibily simplify complex programs [13]. Other

applications of this approach include the extraction of reusable functions, and program

parallelisation. Indeed, it is worth noting that the slices extracted by removing irrelevant

statements might cointain code fragments used for computing intermediate results and

common to the different slices extracted from the original program [94, 51]. Transfor-

mation rules applied to these slices can make the extracted program components more

self-contained and more understandable in future maintenance.

2.1.6 Applications

Debugging

Program debugging was the main motivation behind the introduction of program slicing

by Weiser [124]. His motivation was a result of an observation he made that when de-

bugging a program. He noted that programmers follows data and control dependencies to

identify and locate the program statements responsible for the error [127]. Duringdebug-

ging, a programmer usually has a test case in mind which causes the program to fail. A
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program slicer that is integrated into the debugger can be very useful in discovering the

reason for the error by visualising control and data dependences and by highlighting that

statements that are part of the slice. Variants of program slicing have been developed to

further assist the programmer: program dicing [88] identifies statements that are likely to

contain bugs by using information that some variables fail some tests while others pass

all tests. Several slices are combined with each other in different ways: the intersection

of two slices contains all statements that could lead to an error in both test cases; the

intersection of a sliceA with a complement sliceB excludes from sliceA all statements

that do not lead to an error in the second test case. Another type of program slicing is

program chopping [69]. It identifies statements that lie between two pointsn andm in

the program and will be affected by a change atn. This can useful when a change atn

causes an incorrect result atm. Debugging should be focused on the statements between

n andm that transmit the change ofn to m.

A bug in a program can be detected as the result of the execution of the program with

respect to some specific input. As result of this, program debugging was the main mo-

tivation of Korel and Laski [79] to think of another variant of program slicing, dynamic

program slicing [79], which produces slices that preserves the behaviour of the original

program with respect to a particular input. Dynamic slicing [79] produces more accurate

and smaller slices in size than than those produced by using traditional static slicing [126].

For this reason, dynamic program slicing is a more suited technique to assist programmers

in locating a bug, exhibited on particular execution path of the program [3,?].

Program Differencing

Program differencing[38], is a way of analysing an old and a new version of a program

in order to determine which part of the new version represent syntactic and semantic

changes. This information is useful as in incremental testing where only the components

that have a different behaviour need to be tested. The main issue of program differencing
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consists of the partition of the components of the old and new version in a such a way

that two components are in the same category only if they have equivalent behaviours.

Program slicing can be used to identifysemanticdifferences between two programs. This

can be done in two stages:

1. We first find all the components of the two programs that have different behaviour.

This can be done by comparing, using the dependence graphs, the backward slices

of the old and new programs.

2. The second stage is the find a program that captures the revised semantics behaviour

. This can be done by taking the backward slice with respect to a set of all of the

affected program points determined in the first stage.

Program Integration

Program integrationis a technique which consists of merging program variants [14, 10,

64]. The main motivation of the program integration technique is when different versions

of a program have been made and a bug-fix, for example, is needed for all of them. Given

a programBase and two different variants,A and B, obtained by modifying separate

copies of the Base. Program integration will determine whether the modifications inter-

fere or not. If an integrated program that incorporates both sets of changes as well as

the portions of theBase which are preserved in both variants is not created [64], then

Program differencing[38] is used to identify the changes in VariantsA andB. The pro-

gram integration algorithm discussed below compares slices in order to detect equivalent

behaviours.

Horwitz et al. [64] used the static slicing algorithm for single-procedure programs as the

basis for an algorithm that integrates changes in variants of a program. The algorithm

consists of the following steps:
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1. First, construct the program dependence graph (PDG), of theBase , A andB. Let

GBase, GA andGB represent the PDGs of the Base,A andB respectively.

2. The sets of affected points ofGA andGB with respect toGBase are determined.

These consist of vertices inGA(GB) which have a different slice inGBase.

3. A merged program dependence graph,GM is constructed fromGA, GB and the sets

of affected points determined in (2).

4. UsingGA, GB, GM and the sets of affected points computed in (2), the algorithm

determines whether or not the behaviours ofA andB are preserved inGM . This is

accomplished by comparing the slices with respect to the affected points ofGA(GB)

in GM andGA(GB). If different slices are found, the changes interfere and the

integration cannot be performed.

5. If the changes inA andB do not interfere, then algorithm tests ifGM is a feasi-

ble, i.e., if it corresponds to some program. If this is the case, a programM is

constructed fromGM . Otherwise, the changes inA andB cannot be integrated.

Software Maintenance

The main challenges in software maintenance are to understand existing software, and

make new changes without introducing new bugs.Decomposition slicing[51] is a useful

tool in making a change to a piece of software without introducing unwanted side-effects.

It captures all computations of a variable’s value and is independent of a program location.

The decomposition slice for a variablev is the union of slices taken at critical nodes with

respect tov . Critical nodes are the nodes that output the value ofv and the last node

of the program. The decomposition slices are computed for all variables of the program.

The decomposition slice for variablev partitions the program into three parts:

The independent part contains all the statements of the decomposition slice ,with re-

spect tov , that are not part of any decomposition slice taken with respect to another
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variable.

The dependent part contains all statements of the decomposition slice, with respect to

v, that are part of another decomposition slice taken with respect to another variable.

The complement parts contains all statements that are not in the decomposition slice

taken with respect to v. The statements of the complement may nevertheless be

part of some other decomposition slice taken with respect to another variable. The

complement must remain fixed after any change made to statements of the decom-

position slice.

In the same way the variablev can be partitioned:

Changeable if all assignments tov are within the independent part.

Unchangeable if at least one assignment tov is in the dependent part. If the assignment

has been modified, the new value will flow out of the decomposition.

Used if it is not used in the dependent or independent parts but in the complement. The

maintainer may not declare new variables with the same name.

The modification can be made as follows:

• Statements in the independent part do not have any effect on the computation of the

complement. Therefore, they can be deleted from a decomposition slice.

• Assignments to the changeable variables may be added anywhere in the decompo-

sition slice.

• New control statements that surround any statements of the dependency part will

cause the complement to change.

30



2.1 Program Slicing 31

The maintainer who tries to change the code only has to consider the dependent and in-

dependent parts of the program. The complement part is guaranteed then to be unaffected

by the modification and therefore there is no need to be retested [51]. The only parts to

be retested after the modification are the dependent and the independent parts. There has

been much work in using program slicing in software maintenance [18, 25, 50, 51].

Testing

After any modification, software has to be retested. A large number of test cases may

be necessary, even after a small modification. Decomposition slicing can be used to

reduce the program to a smaller one, which is easy to test, i.e. regression testing on

the complement is not needed. Only the dependent and independent parts need to be

to be retested. Extensive work has been done to simplify testing, using program slic-

ing [12, 53, 56, 62, 63]. In [63], we have illustrated the use of program slicing in partition

testing. Using program slicing to determine components affected transitively by a change

in a program pointp, Gupta et al. [53] introduced an algorithm for reducing the cost of

regression testing. They use two variants of slices to achieve their goal. They first work

out a backward slice starting from the program pointp and record all the definitions of

the variables used atp. They then work out a forward slice starting from the same point.

Any variable which is defined atP and used in this slice is recorded. Finally Def-Use

pairs from a definition of the first slice to a use in the second might be affected by the

change atp and hence, they must be retested.
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2.2 Symbolic Execution

2.2.1 Motivation Behind different Approaches and General Tech-

niques

King in his Ph.D. thesis in 1969 was probably the first to introduce the concept of sym-

bolic execution [75]. Since then, a number of others have developed similar methods, but

for several different purposes, Depending on the emphasis of their work, some authors

therefore talk about symbolic evaluation or symbolic testing instead of symbolic execu-

tion.

Symbolic execution can be used for verifying programs in a number of different ways,

these methods are described below. An alternative use of symbolic execution is the gen-

eration of test cases, also described below. Both of these applications are often based on

path analysis.

Path analysis

All of the early systems for symbolic execution, such asEFFIGYorDISSECT, see subsec-

tion 2.2.2, are based on the use of path analysis. When symbolically executing a program,

one considers the different paths through the program separately. At any time during

symbolic execution of the program, a path condition and a path value are associated with

each path. The path value consists of the current (symbolic) values of the program vari-

ables, while the path condition consists of the condition on the input values under which

this path is executed. Both path value and path condition are computed incrementally

by symbolic execution of the program along the path. Whenever a statement changing

the values of program variables is encountered, the path value is updated accordingly.
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Whenever a branching statement is encountered, one branch is chosen and the appropri-

ate branching condition is added to the path condition. The user may have to make an

explicit choice which branch of a branching statement to take; alternatively, the symbolic

execution system may automatically take all possible branches in turn. Obviously, the

latter is in general not possible for loops, since they may give rise to an infinite number

of paths. A particular path through a program and its associated choice of branches at

branching statements is sometimes called atest case, for example inEFFIGYand inDIS-

SECTif adding a branching condition to the path condition causes the path condition to

become unsatisfiable, then that particular path will never be executed, whatever the input

values, and the path can therefore be ignored in any further symbolic execution. This can

be valuable information to the programmer since it might point to a mistake in the pro-

gram. However, it does not necessarily mean that the appropriate branch is never taken, it

may be taken when execution arrives at the same program point along a different path.

Program verification and validation

There are a number of different verification and validation methods based on symbolic

execution. When using Hoare style inference rules for describing the semantics of a lan-

guage, one can additionally provide assertions about input, output and loop invariants, and

then generate verification conditions by symbolically executing the code between pairs of

(adjacent) assertions. [55] describes this approach in detail. This can actually be very

similar to what is done in path analysis. The main difference is that in order to handle

infinite parts of the execution tree, in particular loops, one uses induction. In this context,

induction comes in two different forms. The first, as introduced by [48], uses inductive

assertions annotating a program. Such an inductive assertion states that whenever execu-

tion reaches the annotated point in the program, the assertion holds. This approach uses

induction on the computation.
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The second way of using induction was described in [16]. Burstall uses induction on the

input data. In this approach. an assertion says that there exists a state during execution

which is at the annotated point and satisfies the assertion.

A shortcoming of many current formal methods approaches to software development is

the fact that failure to verify a given program often does not provide enough information

about the cause of the failure; is it due to an actually incorrect program, or is it perhaps

due to inappropriate assertions (in particular loop invariants), or has an existing correct-

ness proof just not been found yet? To some extent. this problem can be overcome by

symbolic execution, which can help to find the place in a program where it goes wrong,

if this is indeed the case, or help to find appropriate assertions. This is why the symbolic

execution systemSELECTsee subsection 2.2.2. for example, is described as a system for

the debugging of programs.

Another technique to validate a program using symbolic execution is to annotate the pro-

gram with error conditions in appropriate places and check for consistency with the path

condition at these places. If the error condition is consistent with the path condition, then

it is possible for this error to arise.

Test case generation

Other researchers consider symbolic execution as a method for test-case generation [68,

28]. The usual way of generating test cases using symbolic execution relies on a heavily

simplified version of symbolic execution, based on path conditions only. This approach

consists of generating the path conditions, but not the symbolic values associated with

them, and then selecting a particular value for each path considered, i.e. finding a solution

to the path condition. One usually tries to ensure at least branch coverage (every branch
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at a conditional statement is covered at least once) when choosing these paths.

2.2.2 Other Symbolic Execution Systems

EFFIGY

Starting in 1973, King developed the systemEFFIGY [75, 55,?] as a tool for program

verification and validation. It supports symbolic execution of a simple PL/l-like language,

and already includes most of the ideas used in later systems. In particular, it was based on

the idea of path conditions, i.e. when symbolically executing a program,EFFIGY gener-

ates a path condition for every path traversed, and associates it with the symbolic or path

value computed.

There are two ways of dealing with branching statements. In manual mode, the user

has to decide at branching statements (if-then-else or while loops) which of the possible

branches to take. In this case, the user may first save the state and come back to it later

in order to explore a different branch. In automatic mode, on the other hand, all possible

branches are explored. Loops are dealt with by allowing the user to specify a maximum

number of computation steps. Only those paths are considered that reach an exit point

within this number of steps. If, after the specified number of steps, no exit point has been

reached, then that path is discarded and the system backtracks to the last branching state-

ment with unexplored branches.

EFFIGYalso allows the user to provide assertions at various points in the program. These

are then used to generate verification conditions for the program.
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GIST

GIST is a specification ’automatic programming’ system being developed by Balzer and

his colleagues at USC/ISI. One of the features provided byGIST is its symbolic execution

facility [7, 33, 31] .

The overall idea of theGIST project is to build a programming environment based on

transformations. First, a system is specified in theGIST specification language in terms

of objects and relations between them. It is then implemented by gradually transforming

it into a LISP program. Some of the transformations used for this are done fully automat-

ically, others require the programmer to choose from a library, e.g. ”do you want this set

to be implemented as a list or a tree?”. If the specification is changed at a later stage, part

of it can be reimplemented fully automatically.

Since GIST specifications are expressed in terms of entities and relationships, they can

neither actually nor symbolically be executed in the usual sense. The notion of paths and

path conditions that can be used for programming languages cannot be applied in this

case.GISTsolves this problem by considering a specification as a set of axioms in a first

order temporal logic. Symbolic execution then generates simple new theorems from these

axioms, using a set of heuristics described in [32], these new theorems are then examined

to decide whether they are ’interesting’. Only the interesting ones are displayed to the

user.

GIST is supported by a paraphraser which translatesGIST specifications into English in

order to make them easier to understand [113]. This is then extended to explain the results

of symbolically executing aGISTspecification [114].
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Work by Kemmerer, Rudnicki and Eckmann

In [73] , Kemmerer described a system for symbolically executing specifications, and

compares this approach with the use of prototyping tools for specification validation. A

simple version of this symbolic execution tool has been built, which can be used for sym-

bolically executing specifications in INA J04. The INA Jo specification language is a

non-procedural language that models a system as a state machine, using the language of

first-order predicate calculus. State transitions are described by post-conditions which are

called transforms; these describe state transitions by specifying the values of state vari-

ables after the transition in terms of their values before the transition.

In [104], Rudnicki discusses the relationship between symbolic execution, as described

by Kemmerer, and theorem proving for validating specifications. He emphasises the need

to prove certain properties of a specification, in particular the preservation of criterions

(invariants). Since he only considers the form of symbolic execution based on path anal-

ysis and not those forms used for verification and proving theorems about a program, he

emphasises that symbolic execution (orsymbolic testing, as he calls it) is not sufficient.

In his opinion, proofs of properties of a specification should be done by hand rather than

automatically (but supported by a proof checker), since failure to prove a statement using

an automatic theorem prover does not in itself give many clues to why the proof failed -

He does not consider the possibility of an interactive theorem prover that helps the user

to find a proof. Next, Rudnicki suggests a symbolic execution strategy that seems to

correspond roughly to a branch coverage strategy in testing:

”The minimal symbolic testing of a transform consists of testing each

change of the state variables which can be caused by the transform at least

once. The important thing is that each possible change of the state variable

should be tested by a symbolic run starting in the initial state.” [104, page

4INA JO is a trademark of System Development Corporation, a Burroughs Company
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192]

The initial state mentioned here is defined as part of the specification. With this strategy,

one therefore has to build, for every change of state variables in a transform, a sequence of

transforms starting in the initial state such that it reaches the relevant part of the transform.

In [74] , Kemmerer and Eckmann describe a different approach to symbolic execution

which was implemented in theUNISEX-system. The original version ofUNISEXwas

implemented by Solis as part of his master’s thesis [109].UNISEXis a system for sym-

bolically executing PASCAL programs. It provides two modes, averify mode and a

test mode. Symbolic execution in the verify mode is based on the ideas described in

[55] for verifying programs. To verify a PASCAL program, the user has to annotate it

with a number of assertions. At a minimum, there has to be an entry, an exit assertion,

and an assertion for each loop (the loop invariant).UNISEXthen generates the relevant

proof obligations by symbolically executing the code between two assertions. This can be

driven either automatically, or manually. In the latter case, the user has to decide which

branch to take at a branching statement. In the former case,UNISEXcovers all branches

by pushing the false branch on a stack and continuing along the true branch. When the end

of the path is reached at an assert or exit statement or the end of the program or subroutine

being verified, then another branch is popped from the stack and executed symbolically.

In its test mode,UNISEXuses path analysis to generate path conditions and path expres-

sions. No assertions are needed, and even if they are provided, paths end at the end of

the program rather than at the next assertion. Output from UNISEX is mainly intended

to show the behaviour of the program and thus validate it, rather than formally verify the

program against some assertions.

The expression language of UNISEX used for assertions consists of the expression lan-

guage of PASCAL plus the additional keywordsforall, existsandimplies. Assertions are
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provided as comments in the program to be executed symbolically, so that no editing is

needed before the program can be compiled. The programming language supported is a

sub-language of PASCAL as defined in [129] , excluding for example subroutines with

side-effects.

DISSECT

DISSECTis another system of symbolic execution which uses path conditions5 [66]. It

tries to solve them by trying to find an actual value astest case. DISSECTwas imple-

mented in LISP and can be used to symbolically execute FORTRAN programs. The

DISSECT symbolic evaluator takes as input a FORTRAN source program and a file with

DISSECT commands that are to be applied to the program. There are three kinds of

commands:

(1) Input commands, used to assign actual or symbolic values to variables;

(2) Path selection commands, used to determine which branch to take at a branching

statement, or how many times to execute a loop;

(3) Output commands, used to print out the values of program variables.

Additionally, these commands can be combined in various ways, for example using con-

ditionals. Every command is associated with a particular line in the FORTRAN program.

Every symbolic evaluation then effectively explores one path (calledtest) through the

program. by determining its path condition and expressing the values of program vari-

ables at any point in the program in terms of the values assigned via input commands, it

is possible to combine different paths (e.g. both branches of a branching statement), but

5This is the reason why the system is called DISSECT, it allows the user to ’dissect’ a program and
analyse the different paths separately.
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these are effectively handled as different symbolic evaluations.

DISSECTruns in batch mode rather than interactively. According to [66] this is a deliber-

ate choice, since the selection of these paths or tests has to be done carefully and therefore

would be difficult to do interactively. In [67] , Howden analyses a number of methods for

the validation of programs, including symbolic execution. There he applies these methods

to six buggy short programs written in different languages (COBOL, PL/l and ALGOL).

His conclusion is that symbolic execution helps to find about 5% of errors in addition to

those found by combining various methods of testing, and is anaturalway of discovering

errors for about 10- -20% of all errors. The errors found by symbolic execution are mainly

those where a wrong variable is referenced.

Dannenberg and Ernst’s system

Dannenberg and Ernst describe another system for symbolic execution which is also based

on path conditions [39]. It grew out of a project to design and implement a mechanical

verification condition generator, although it is not clear from [39] whether this system has

actually been implemented.

Dannenberg and Ernst use inference rules to describe the semantics of a small impera-

tive programming language. In addition to the usual constructs, this language contains

a confirmconstruct for expressing assertions and amaintainingargument in while-loops

for expressing loop invariants. Theconfirmandmaintainingconstructs can be thought

of as part of the specification of the program. The basic unit of the inference rules is a

statement of the form′S, PC \ A which expresses the correctness of the statement listA

with respect to its specification, given a stateS and initial path conditionPc.
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Using these inference rules, Dannenberg and Ernst then propose to symbolically execute

the code in between pairs of assertions to generate verification conditions. They use sym-

bolic execution solely as a tool for verification condition generation, not for for directly

generating infornation about the state and the path condition for the user.

An important feature of their work is that it shows a possibility of handling functions with

side effects. For this purpose, they introduce attribute grammars where the state and path

condition are represented as attributes of rules that describe symbolic execution. They

also give rules for handling more complicated language constructs, such as multiple-exit

loops and procedures with multiple exits. Unfortunately, they do not explicitly address

the issue of the correctness and completeness of their rules.

ATTEST

TheATTESTsystem [26, 28] is a symbolic execution system mainly intended for generat-

ing test data for FORTRAN programs. It treats path conditions as a system of constraints.

If the path condition only contains linear constraints, thenATTESTsolves it, using a

linear-programming algorithm. The result is then used both for identifying (in)feasible

paths and for generating a set of test cases that satisfy branch coverage. [26] claims that

this actually covers most practical cases, that is, most constraints in practice actually are

linear.

ATTESTis not only meant for test data generation, but for program validation in a more

general sense. This is why ATTEST actually builds up a symbolic representation of the

program output associated with each path condition, which would not strictly be neces-

sary for test data generation. ATTEST also helps to generate error conditions (e.g. for

division by zero) and check them by adding them to the path condition and checking for

consistency. However, since this consistency check is also based on the linear program-
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ming algorithm, it can only handle linear path conditions and linear error conditions.

Loops are handled by trying to make their effect explicit by first expressing variable values

recursively in terms of values on previous iteration (using so-called recurrence relations),

and then eliminating this recursion, i.e. solving the recurrence relation. This is done by

introducing a new variable denoting the number of executions of the loop. The result is

then used to create a loop expression which replaces the loop itself. Unfortunately, in

general this will not work, since many functions can only be expressed using recursion

or loops that cannot be handled by ATTEST [28, page 147]. In these cases, the user has

to explicitly specify the number of iterations of the loop. Furthermore, like most systems

ATTEST can only handle a single path at a time, at branching statements the user has to

make an explicit choice about which branch is to be taken.

SELECT

SELECTis a symbolic execution system developed by SRI [15]. The main purpose of

SELECTis the debugging of programs. It is intended to complement mechanical program

verification and overcome some of the theoretical and practical problems associated with

this approach.SELECTis built from the expression-simplifier part of the SRI Program

Verifier by adding facilities for the symbolic execution of programs written in a subset of

LISP.

Like most similar systems,SELECTis based on the notion of path conditions. At branch-

ing points, the system considers all feasible branches and the appropriate predicates are

added to the path conditions. For loops. the user decides on the maximum number of iter-

ations she wants the system to take. For each path, SELECT tries to maintain an example

input. i.e, a solution to the path condition. This solution can then be used as actual test

data for the program.

42



2.2 Symbolic Execution 43

In addition to generating (simplified) symbolic values of program variables and actual

input test data, SELECT also allows the user to annotate a program with assertions; ac-

cording to [15], these can serve as

(1) Executable assertions. The assertion is a program in itself that is executed when the

appropriate position in the program is reached.

(2) Constraints, which are simply added to the path condition. This enables the user to

ensure that the test data generated satisfy some additional conditions.

(3) Checkpoints; when execution reaches such a checkpoint, the negation of the assertion

is added to the path condition, and the system checks the result for consistency by

trying to generate a solution to it, using the general solver for path conditions.

Harvard Symbolic Evaluator

The symbolic evaluator is a central part of theHARVARDProgram Development Sys-

tem PDS. PDS supports programming in the EL1 language, an imperative programming

language which supports constructs such as records, pointers, recursive procedures, and

several ways of sharing of variables, in addition to the usual assignments, and loops etc.6

The basic idea behind the system is to derive semantic information about a program in-

dependently from its use in any tools such as those for exception detection, program

verification and validation. The advantage of this approach is that semantic analysis is

only performed once, instead of each tool performing its own analysis. Additionally, this

guarantees that all tools assign the same semantics to the constructs of the programming

6See [99] for a description of the role that symbolic evaluation plays within PDS, and [71] for the
technical details of the symbolic evaluator
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language while, on the other hand, it is easier to adapt the tools to a different program-

ming language, since only one analyser has to be rewritten.

This semantic analysis is based on symbolic evaluation. and the results of the analysis are

then stored in aprogram database. Other tools can use this information to reason about

the program without having to re-analyse the program, and can add further information

which they deduce to the data base. Note that with this approach symbolic evaluation is

used as a static analyser, not a dynamic interpreter.

[71] describes in some detail the simplification of expressions in the context of symbolic

evaluation. The emphasis on symbolic evaluation providing input for further analysis by

other tools, not by humans. This means that asimplerexpression might be considerably

more difficult to read for the human user. The simplifier generates suitable normal forms

of expressions, based partly on CNF.

Loop analysis entails solving various recurrence relations. This involves identifying the

number of iterations of a loop, and expressing the values of variables after any one itera-

tion in terms of their values after the previous iteration. From this, one then tries tosolve

the recurrence relation, i.e. transform the recursive equation into an explicit one. If this

is not possible, oneforcesa solution by creating a particular form of lambda expression.

These recurrence relations also help to generate loop invariants automatically, at least in

some easier cases.

REDUCE

REDUCE, as described in [5] , is a system for program reduction based on symbolic ex-

ecution. This is a program transformation technique for removing superfluous parts of
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a given program while leaving the original structure intact. For example, if a program

contains a conditional with expressionx > 0, and it subsequently becomes known that

the program will only ever be used on input values such thatx > 0, then the conditional

may be replaced by itsthen-part, theelse-partmay be removed.REDUCEsupports the

reduction of such conditionals for a class of functional languages. Its main achievement,

according to [5] , is that it allows symbolic constants which are assumed to denote sub-

sets of data domains which allows one to express certain constraints on the input domain,

These symbolic constants are predicates which are used to express input and path con-

ditions. Note that there were other systems, such asEFFIGY that allow a user to add

assertions on the input domain, with a similar effect.

REDUCE does support a certain amount of genericity with respect to the language han-

dled, it can symbolically execute a whole class of functional languages. This is achieved

by defining thesymbolic semanticsof a language using predicate transformers [43] on the

symbolic constants.

2.3 WSL and FermaT

The ConSUSsystem is implemented using WSL, the Wide Spectrum Language intro-

duced by Ward [118] for reverse engineering [119, 121, 122]. There were two main

reasons why WSL was chosen as the basic language for this project:

1. Unlike conventional languages, WSL contains its own built in program transforma-

tion systemFermaT. TheFermaTSimplify transformation could be used as the

basis for a light-weight validity checker.

2. Within WSL is another languageMetaWSL, which facilitates parsing and manipu-

lation of syntax trees. This would allow us to express the transformations used in
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conditioning in a high-level and fairly natural way.

2.3.1 Theoretical Foundations ofFermaT

The theoretical work on whichFermaTis based originated in research on the development

of a language in which correctness proofs for program transformations could be achieved

as easily as possible for a wide range of constructs.

The WSL language was developed in parallel with a transformation theory and various

proof methods. During this time the language has been extended from a simple and

tractable kernel language [118] to a complete and powerful programming language. At

the ‘low-level’ end of the language there are automatic translators from IBM assembler,

TPF assembler, a proprietary 16 bit assembler, x86 assembler and PC code into WSL, and

from a subset of WSL into C, COBOL and Jovial. At the ‘high-level’ end it is possible to

write abstract specifications, similar to Z and VDM.

The use of first order logic in WSL means that statements can include existential and uni-

versal quantification over infinite sets, and similar (non-executable) operations.

The language includes constructs for loops with multiple exits, action systems, side-

effects etc. and the transformation theory includes a large catalogue of proven trans-

formations for manipulating these constructs. In [120] program transformations are used

to derive a variety of efficient algorithms from abstract specifications. In [119] the same

transformations are used in the reverse direction: using transformations to derive a con-

cise abstract representation of the specification for several challenging programs.
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WSL is defined in a series of stages or levels, with the lowest level being an extremely

simple and tractable “kernel” language whose syntax is based on infinitary logic, and

whose semantics is defined denotationally. In contrast to other work, WSL does not have

a purely applicative kernel; instead, the concept of state is included, using aspecification

statementwhich also allows specifications expressed in first-order logic as part of the lan-

guage, thus providing a genuine wide spectrum language.

Much work on WSL has been motivated by transformation-based reverse engineering,

where it is essential to be able to represent in WSL the original legacy code, no matter how

unpleasant. A state-based approach has meant that representation of low level constructs

typical of such code is fairly direct. More recent work [121] has demonstrated the benefits

for representing PLC (programmable logic controller) code and migrating x86 embedded

systems to generic C code.

2.3.2 TheFermaT Simplify Transformation

The source code for theFermaTSimplify transformation is very simple: it just calls the

@Simplify function on the current item, then it invokes theSimplify Item transfor-

mation on each component statement for which it is valid, then it invokesDelete Item

on every component statement for which it is invalid (other than assertions and com-

ments). Finally it deletesSKIP statements within the current item:

MW_PROC @Simplify_Code(Data) ==

@Paste_Over(@Simplify(@I, @Budget));

FOREACH Statement

DO

IF @Cs?(@I)

THEN IF @Trans?(TR_Simplify_Item)
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THEN @Trans(TR_Simplify_Item, "")

FI

FI;

IF @ST(@I) <> T_Comment AND @ST(@I) <> T_Assert AND

@Trans?(TR_Delete_Item)

THEN @Trans(TR_Delete_Item, "")

FI

OD;

IF @Trans?(TR_Delete_All_Skips)

THEN @Trans(TR_Delete_All_Skips, "")

FI .;

Deleting a comment is always a valid transformation, but should not be carried out unless

explicitly selected by the user.

All the real work ofFermaTSimplify is carried out by the@Simplify function. This

takes a syntactic item and a ‘budget’ (an integer value which indicates how much effort

should be expended in trying to simplify the item) and returns a new item.

The requirements for this expression and condition simplifier were as follows.

1. To be efficient execution: especially on small expressions. This implies a short start

up time.

2. To be easily extendible. It would be impossible to attempt to simplifyall possible

expressions which are capable of simplification. For example, it is known, now that

Fermat’s Last Theorem has been proved, that the integer formulan > 2∧xn +yn =

zn can be simplified tofalse, but it cannot be expected that an automated procedure
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should be able to prove it from first principles. Since we must be content with a less-

than-complete implementation, it is important to be able to add new simplification

rules as and when necessary.

3. To be easy to prove correct. Clearly a faulty simplifier will generate faulty trans-

formations and incorrect code. If the simplifier is to be easily extended, then it is

important that the extended simplifier can be proved correct equally easily.

In order to meet requirement (2) the heart of the simplifier is table-driven, consisting of

a set of pattern match and replacement operations. For example, the conditionx + y ≤

z + y can be simplified tox ≤ z whatever expressions are represented byx, y andz.

This pattern match and replacement can be coded as a simpleifmatch and fill in

MetaWSL. To reduce the number of patterns required, the simplifier first normalises the

expression as follows.

1. If the current item is neither an expression nor a condition, then@Simplify is

invoked recursively on all its components;

2. Otherwise, the first step is to push down negation operations by applying De Mor-

gan’s Laws. For example¬(A ∨ B) is transformed to¬A ∧ ¬B and¬(a = b)

becomesa 6= b;

3. Then the function flattens any associative operators by removing nested parenthe-

ses, for example((a + b) + c) becomes(a + b + c). Subtraction and division

operators are replaced by the equivalent negation and invert constructs, for example

a− b becomesa + (−b).

4. The next step is to evaluate any components which consist entirely of constants;

5. Then sort the components of commutative operations and merge repeated compo-

nents using the appropriate power operator. For example,a+b+a becomes2∗a+b

while a ∗ b ∗ a becomesa2 ∗ b;
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6. Multiplication is expanded over addition, for examplea∗(b+c) becomesa∗b+a∗c

and AND is expanded over OR;

7. The steps from step 3 are repeated until the result converges

The next step is to check each pattern in the list. If any of the patterns matched, then repeat

from step 2 with a reduced budget until the result converges or the budget is exhausted.

Finally expressions are factorised where possible and then some final cosmetic cleanup

rules are applied: for example, people usually write2 ∗ x (putting the number first in a

multiplication operation), butx + 2 (putting the numberlast in an addition).

2.4 The Co-operating Validity Checker (CVC)

CVC stands for the Cooperative Validity Checker. This tool has been in development at

Stanford for several years, and is used both in research, and as a formal hardware verifica-

tion tool, as seen in such papers as [112]. CVC allows users to check formulae based on

a subset of first order logic and boasts of its efficient and automatic decision procedures.

The logic for these decision procedures includes booleans, uninterpreted functions and

linear arithmetic. There are also uninterpreted functions such as array operations, bit vec-

tors and parts of linear arithmetic.

CVC provides a variety of commands to the user, from a traditional command-line user

interface. At its simplest level, proof is carried out through use of the cvc command, which

is given an expression in CVC logic, and will return an answer based on the validity of

that expression, and possibly a counter example, if the expression is found to be invalid.

CVC also provides numerous other commands which aid in proof. These can relate to
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various command flags, which affect the way CVC works, or manipulates CVC’s context

stores proven results.

CVC reads input in a presentation language. The input is a sequence of commands. Each

command ends in a semi-colon.

CVC’s presentation language is typed. In a typical example, constant symbols, function

symbols, and predicate symbols are declared, with their types. Then some formulas are

asserted. Finally, some queries are posed, to determine whether or not the asserted for-

mulas logically imply some other formulas.

2.4.1 Commands

This section describes the commands of CVC’s presentation language.

Type Declarations

New basic types can be declared in CVC using the following syntax:

t 1, ..., t n : TYPE;

For example, the following two CVC commands declare a, b, and c to be new basic types.

a : TYPE; b, c : TYPE;
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Type Definitions

New types may be defined in terms of old ones using the following syntax:

t : TYPE = t’;

Here, it must be the case that given the previous definitions and declarations, t’ is a well-

formed type. t must be a new identifier. t becomes a name (or an abbreviation) for the

type t’.

For example, the following defines rPair to be an abbreviation for the tuple type [ REAL,

REAL ]:

rPair : TYPE = [ REAL, REAL];

ASSERT

A formula can be added to the current logical context using the following syntax:

ASSERT F;

F must be a well-formed expression (given previous definitions and declarations) of type

BOOLEAN.

For example, the following is a valid assertion (given suitable declarations or definitions

of x, y, and z).

ASSERT x + 2 * y = z;
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QUERY

CVC can be queried to determine whether or not a formula is logically implied by the

formulas (if there are any) in the current logical context using the following syntax:

QUERY F;

F must be a well-formed expression (given previous definitions and declarations) of type

BOOLEAN. CVC will output ”Valid.” if F is valid in the current logical context and ”In-

valid.” otherwise (ASSERT adds formulas to the current logical context). If CVC reports

that the formula is invalid, it will remain in the logical context where the invalidity was

detected. In general, this context may contain formulas that were not in the logical context

when the query command was issued. This is because CVC’s propositionalSAT solver

dynamically adds formulas to the context.

It can be useful to assert some formulas, and then issue several QUERY commands. CVC

may be able to process something like

ASSERT F1;

QUERY F2;

QUERY F3;

faster than

QUERY F1 => F 2;

QUERY F1 => F 3;

because work performed to handle the assertion of F1 will not be duplicated in the former
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case, but may be duplicated in the latter.

TRANSFORM

Any expression can be simplified with respect to the current logical context using the

following syntax:

TRANSFORM E;

Given previous definitions and declarations, E should be a well-formed expression (a

type, term, or formula). The simplification does not necessarily reduce expressions to a

canonical form.

DUMP PROOF and DUMP SIG

If CVC reports that a queried (with QUERY) formula is valid, this command will dump

a proof of that formula. ForDUMP PROOFto be available, CVC must not be in SAT

mode, and CVC must have been invoked with the command-line option+proofs.

DUMP PROOF may be called like this:

DUMPPROOF;

or like this:

DUMPPROOF "F";

where F is the name of a file to which the proof should be written. In the former case, the

proof will be written tostdout.
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The proof produced will generally depend on the assertions (added with ASSERT) in the

current logical context, and on the declarations of types and constants. Those declarations

are dumped separately using theDUMP SIG command, which may also be called with

the name of a file to use or with no arguments.

DUMP ASSUMPTIONS

DUMP ASSUMPTIONSis available under the same conditions as DUMPPROOF, and

may be called in the same way. It dumps all the assumptions that were relevant to the

validity of a queried (with QUERY) formula which CVC reports to be valid.

2.4.2 Types

CVC’s presentation language is typed. The type system is fairly simple. There is no

polymorphism or subtyping. In addition to built-in basic types, there are tuple types,

record types, array types, scalar types (aka, enumerations) inductive datatypes, and func-

tion types.

Basic Types

The basic types in CVC are REAL and BOOLEAN. REAL is the type of numbers, and

BOOLEAN is the type of formulas.

Technically, since CVC’s language is first-order, types should not contain BOOLEAN,

except as the range of a function type (which is then the type of a predicate). In CVC,

however, BOOLEAN may appear arbitrarily in types. This is achieved by having two
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versions of the BOOLEAN type, one for formulas and one for boolean terms. This dis-

tinction is made only internally; the input language just has a single type BOOLEAN.

Tuple Types

The types for tuples are of the form

[ t 0, ..., t (n-1) ]

where n is at least 2, and t0, ..., t (n-1) are types. For example, the following declares a,

b, and c to be various tuples:

a : [ REAL, REAL ];

b : [ REAL, BOOLEAN, [ REAL, REAL, REAL] ];

c : [ BOOLEAN, BOOLEAN, [ REAL, BOOLEAN] ];

Function Types

The types of functions are of the form

[ Domain -> Range ];

where Domain and Range are types. For example, this declares a function F from tuples

to tuples:

F : [ [ REAL, REAL ] -> [ BOOLEAN, BOOLEAN ] ];
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Record Types

The types for records are of the form

[# f\_1 : t\_1, ..., f\_n : t\_n #]

where n is at least 1; f1, ..., f n are identifiers; and t1, ..., t n are types. f1, ..., f n are

called the fieldnames of the record type. The fieldnames f1, ..., f n may be the same as

the names of fields of other records or other declared or defined constants and types.

Here is an example

f : REAL;

r : [# f : BOOLEAN, f2 : REAL #];

Inductive Datatypes and Scalar Types

An example of an inductive datatype (also known as an abstract datatype, or ADT) is

DATATYPE cons (car : REAL, cdr : rList), null END

This is the type of finite lists of REALs.

The general form for inductive datatypes is

DATATYPE constructor def 1, ... , contructor def n END

where each constructordef i is of the form
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c (s 1 : t 1, ..., s m : t m)

Here, c is the name of the constructor. s1, ..., sm are the names of the selectors (aka,

destructors) for the constructor c. t1, ..., t m are the domain types for the constructor

c. They are also the range types for s1, ..., sm, respectively. If m is 0, then the list of

selectors is omitted from the constructordef.

When a datatype is declared, CVC automatically declares each constructor c as the ap-

propriate function; if c has no selectors, it is declared as a constant. The selectors for c

are also declared as the appropriate functions. Applying the i’th selector of c to c(a1, ...,

a n) returns ai. Selectors are treated as partial functions in CVC.

CVC automatically declares a tester ”c?”, which is a predicate on the datatype. It returns

true for a given element e of that datatype iff e was constructed using constructor c.

Scalar types are a special case of inductive datatypes. They are of the form

c 1, ..., c n

where n is at least 1, and c1, ..., cn are new identifiers. As noted already, the use of

inductive datatypes and scalar types is restricted in a way that the user of other types is

not.

Array Types

The types for arrays are of the form

ARRAY I OF R

where I and R are types, and I is not allowed to be an array type.
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This example declares a multi-dimensional array :

a : ARRAY REAL OF ARRAY REAL OF ARRAY REAL OF REAL;

2.4.3 Terms and Formulas

The terms of CVC’s presentation language are described below. Formulas are con-

sidered as terms of type BOOLEAN. Predicates are considered as functions returning

BOOLEAN.

Propositional combinations

The operators AND, OR, and NOT are the usual propositional connectives. XOR is ex-

clusive or,⇒ is implication, and⇔ is bi-implication. These connectives each take two

BOOLEANs as arguments and return a BOOLEAN. Their applications are written in infix

notation. For example, CVC will report that the queried formula below is valid:

p, q : BOOLEAN;

QUERY (p OR NOT p) AND (q => (q <=> NOT (q XOR q)));

Equalities and Disequalities

Equations and disequations between terms are written in infix notation using the ”=”

and ”/=” symbols, respectively. Equations and disequations are of type BOOLEAN. For

example:

x, y : REAL;

p, q : BOOLEAN;
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PRINT x = y AND p /= q;

Arithmetic Inequalities

Arithmetic inequalities between REALs are written in infix notation using<, ≤, >

, and ≥, with the usual meanings. Inequalities are of type BOOLEAN. For example:

x, y : REAL; TRANSFORM x < x OR x >= y;

Tuples

Tuples are of the form

( t 0, ..., t (n-1) )

where n is at least 2 and t0, ..., t (n-1) are terms, with types A0, ..., A (n-1), say. The

type of the tuple is then [ A0, ..., A (n-1) ]. The i’th component of a tuple T which has at

least (i+1) components is selected using this syntax:

T.i

If the type of T is [ A 0, ..., A (n-1) ], then the type of T.i is Ai. The numbering of the

components starts at 0, as shown in this example, for which CVC will report valid:

T : [ REAL, REAL ];

ASSERT T.0 = (34, 35).1;

QUERY T.0 = 35;
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Function Applications

The application of a function F to argument A is written

F(A)

In the common case where A is a tuple like (x,y), it is written simply as

F(x,y)

An application of a constructor c of an inductive datatypes to arguments x and y is also

written as c(x,y).

Here is an example:

x, y : REAL;

F : [ [ REAL, REAL ] -> REAL ];

G : [ REAL -> REAL ];

H : [ [ REAL, REAL ] -> BOOLEAN ];

PRINT F(x,y) = G(x) OR H(x,y);

Records

Record literals are of the form

(# f_1 := v_1, ..., f_n := v_n #)

where n is at least 1; f1, ..., f n are identifiers; and v1, ..., v n are values, with types A1,

..., A n. The type of the record literal is then
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[# f_1 : A_1, ..., f_n : A_n #] (see record types).

As for record types, the fieldnames f1, ..., f n may be the same as the names of fields of

other records or other declared or defined constants and types.

The component corresponding to a field f of a record R which has such a field is selected

using this syntax:

R.f

CVC reports valid for this example:

a, b : REAL;

R : [# x : REAL, y : REAL #];

ASSERT R.x = a + b;

QUERY (# a := R.x #).a = b + a;

Arrays

To read from an array A at index i, the syntax is

A[i]

Arithmetic Operations

The symbols ”+”, ”-”, ”*”, ”/” are used for addition, subtraction and unary minus, mul-

tiplication, and division, respectively. They each take REALs and return a REAL. Ex-

cept for unary minus, they are all binary operations and are written using infix notation.
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REALs 0, 1, 2, ... are also present. CVC is complete only when one child of every

multiplication and division is a constant arithmetic expression (like 3 or 3/4).

2.4.4 Semantic notes

Arithmetic Fragment

The decision procedure for arithmetic is complete only for a fragment of arithmetic over

the reals. The operations allowed in this fragment are addition, subtraction, arithmetic

comparison, multiplication by a numeral, and division by a numeral. So multiplication or

division of two variables immediately is outside the decided fragment.

Partiality

Some functions in CVC are partial. For example, division is undefined if its second

argument is 0. Selectors of inductive datatypes are also partial; car(null) is considered to

be undefined.

Partiality is handled in CVC using the two-valued approach advocated by Farmer [117].

In this approach, terms may be undefined, but formulas are always either true or false. A

predicate applied to an undefined term is considered to be simply false.

Here is an example demonstrating this approach:

x, y : REAL;

ASSERT x = 1/y;

QUERY y /= 0;

CVC will report valid for this query, for the following reason. Under the two-valued
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approach, the assertion of x = 1/y will be false if y is 0. This is so because if y is 0, 1/y

will be undefined, and the predicate ”=”, like all predicates, returns false if applied to an

undefined term. So for the assertion to be true, y must not equal 0. Hence, the queried

formula is valid.

2.4.5 Checking Proofs with Flea

CVC comes with the flea proof-checker. When CVC reports that a formula is valid, it

can optionally produce a proof of that formula, which can be checked by flea. Since flea

is a much simpler tool than CVC, double-checking CVC’s results with flea can greatly

decrease the probability that CVC reported the formula valid erroneously.

Once a proof and a signature have been written to a file from CVC, the proof can be

checked with respect to the declarations in the signature, using the script bin/runflea.sh.

For example, suppose CVC is run on the following input:

x, y, z : REAL;

ASSERT x = y;

ASSERT y = z;

QUERY x = z;

DUMPSIG "sig.flea";

DUMPPROOF "pf.flea";

The following command will then run flea to check the proof:

run flea.sh sig.flea pf.flea
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2.5 ConSIT

ConSIT is the the first fully automated implementation of conditioned slicing. It operates

on a subset of C, for which a tokeniser and symbolic executor were written in Prolog.

The top level algorithm is quite simple. It is depicted in Figure 2.1. Phase 1 propagates

state information from the condition in the slicing criterion, to all points in the program,

using symbolic execution. Phase 2 produces a conditioned program by eliminating state-

ments which are never executed when the initial state satisfies the condition mentioned in

the slicing criterion. These are precisely those for which the state information defines an

inconsistent set of state. The test of consistency of each set of states is computed using

the Isabelle theorem prover, as described in more detail in Section 2.5.2. Phase 3

removes statements from the conditioned program which do not affect the static part of

the conditioned slicing criterion. Phase 3 is implemented using theEspressostatic slicing

system [37].

Phase 1: Symbolically Execute
Phase 2: Produce Conditioned Program
Phase 3: Perform Static Slicing

Figure 2.1: The three phases in slice construction

The system is built from various components written in different languages. The symbolic

executor and conditioner were written in Prolog. These were developed to work on an

imperative programming language calledHaste that includes loops, input statements and

conditionals. The conditions of Haste are defined to be a good match for legalIsabelle

propositions, and it is easy to parse using a Definite Clause Grammar within Prolog.

The Isabelle theorem prover [97, 98, 96] is used to check the reachability of a state-

ment. This is written in Standard ML. A wrapper script written inExpect acts as an

Isabelle server process. It runs the theorem prover on a pseudo terminal and listens
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for connections on a socket. When the conditioner requires the services ofIsabelle , it

spawns anExpect client process which connects to theIsabelle server, via its socket,

and requests that the symbolic state be analysed (usingIsabelle ’s auto-tacticals). The

server then interacts withIsabelle over the pseudo terminal, returning the result of

the query back to the client process. The exit code of the client process is then used to

indicate the result of the query.

A similar client-server approach is adopted with the slicer. However, in this case the

slicer and its server process are written inJava , based upon theEspressoslicing system

[37]. Espressouses a parallel slicing algorithm [38] which takes advantage of inherent

CFG parallelism, where each node of the CFG of the subject program is compiled into a

separateJava thread.

A pre- and post- processor, written inJavaCup andJLex , are used to translate between

C and the internal language Haste.

2.5.1 The Symbolic Execution Phase

The symbolic states consist of disjunctions of conditional states, each of which in turn

is a pair consisting of (in)equalities that arise from conditional expressions and equality

statements that arise from assignment and input statements.

In practice, symbolic states are represented as sets ofpairs. The first element of each pair

is a set of bindings between variables and their symbolic values that arise from assign-

ments and input statements. Canfora et al [17] call this thesymbolic state. The second

element of each pair is a set of (linear) inequalities. Canfora et al [17] call this thepath

condition. The intended interpretation is that each pair corresponds to a conditional sym-

bolic state; the variables will have the symbolic values given in the first element of the

pair when the (in)equalities in the second element are true.
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The symbolic executor is derived directly from the semantics of the language. The seman-

tics σ(S) of a sequence of statementss is a set of states{s1, s2, . . . , sn}. Each symbolic

statesi (1 ≤ i ≤ n) can be considered as the pair7:

〈ai, ci〉

Eachai is an assignment function from variables to expressions, andci is a path condition.

σ(S) denotes the effect of symbolically executingS, replacing each variable reference

with its current symbolic value (or a unique skolem constant, indicating an unknown

symbolic value).

Each element ofai is an assignment of the form〈v, e〉, intended to mean that variablev

is assigned the value of the expressione. The conditionsci indicate the inequalities that

must hold between the values of variables and other expressions for the program to be in

a state of the formai. σ(S) is called thesymbolic (conditional) statesof S.

2.5.2 The Theorem Proving Phase

The symbolic execution phase takes a sequence of program statements and annotates it

with symbolic state descriptions. The implementation seeks to simplify these symbolic

states by eliminating those conditional states that are inconsistent from each symbolic

state description to determine the paths through the structure of the program code that

can never be taken. The theorem prover is thus used to determine whether the outcome

of a predicatemustbe true or whether it must befalse or whether it is not possible

to tell. This process is inherently conservative, because there will be predicates which

must betrue and those which must befalse but for which this information cannot

be deduced by the theorem prover. However, this conservatism is safe: if a statement

is removed because of the outcome of the theorem proving stage, then that statement is

7The notation,〈x, y〉 is used for pairs, to aid the eye in distinguishing pair constructions from parenthetic
sub-terms.
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guaranteed to be unnecessary in all states which satisfy the initial condition mentioned in

the conditioned slicing criterion.

Using this symbolic execution semantics, each statement in the program is associated with

the set of all conditional contexts,{〈a1, c1〉, . . . 〈an, cn〉}, in which that statement could

possibly be executed.

This set of contexts is transformed into a proposition using a functionP, where

P{〈a1, c1〉, . . . 〈an, cn〉}

=

(P ′(a1) ∧
∧

c1) ∨ . . . ∨ (P ′(an) ∧
∧

cn)

and

P ′{〈v1, e1〉, . . . , 〈vn, en〉} = (v1 = e1) ∧ . . . ∧ (vn = en)

If the proposition is inconsistent (false ), then it is inferred that the statement can never

be executed: there is no path to the statement as each of the possible pairs of assignments

and path conditions are inconsistent. The program is then equivalent to one in which the

statement is replaced by the empty statement. In this way the conditioned program is

constructed by considering which statements have inconsistent path conditions.

2.5.3 Complexity

Empirical tests indicate that the most time consuming aspect of conditioning is the validity

checking of the symbolic semantics. This in turn depends upon the number of terms in

the proposition to be checked.
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As can be seen from the symbolic semantics, the size of the expressions produced increase

for every statement. The number of paths is determined by the number of conditional

statements and the number of while loops. Forc conditional statements, andl loops, the

number of paths isO(2c+l).

The number of atomic propositions within each path is the sum of number of assignment

statementsa on that path and the number of atomic propositionsp within the boolean

component of each conditional statement and loopO(a + p(c + l)). So the size of the

symbolic expression at the final statement of a program isO(2c+l(a + p(c + l))), or

O(2n(a + pn)) = O(2n), wheren = c + l.

In conditioning, the symbolic semantics is evaluated at each statement, not just at the end

of the program. Considering just loops and conditionals, this givesO(20 +21 +22 + · · ·+

2n) = O(2n).

2.5.4 Discussion

There are many ways in which the system described here can be enhanced, both in regard

to performance and functionality.

Given theO complexity of the conditioning process, it is important to seek to reduce

the complexity of the analysis were possible. One way in which this can be achieved is

to “fold” the reasoning and symbolic execution processes together: as describedConSIT

generates all possible paths to each statement, and has to check the accessibility of each

one. ConSUSmakes use of the monotonicity of the propositions that it has to analyse:

if a path becomes infeasible, then it will remain infeasible for all subsequent statements.

ConSUS“prunes” these paths once there inaccessibility has been determined. In some

circumstances, this has a significant effect on the size of the propositions handed to the

theorem prover.
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{x > y };

m := 2;
n := 1;
IF (x > y)
THEN
y := m;
ELSE
y := n;
FI;
x := y;

Figure 2.2: A program fragment to be conditioned sliced

Another optimisation concerns the ordering of the conditioning and slicing processes in

the larger system. Both slicing and conditioning effectively remove statements from a

program. Slicing is not as complex as conditioning. In empirical tests, if we slice a

program before we condition there is a dramatic improvement in overall performance.

However if we slice a program first and then condition, we may have to slice it again. To

demonstrate this, Consider the program in Fig 2.2. Slicing this program with respect to

x produces the same program. We can simplify the program further by conditioning with

respect to the conditionx>y . This removes theelsepart as it is an infeasable path yielding

the conditioned slice in Figure 2.3. However, this is clearly not the smallest conditioned

slice of the program in Figure 2.2 as the statementn:=1; does not contribute to the final

computation ofx . To remove this statement, we need to slice the program in Figure 2.3

againwith respect tox .

As described in section 2.5.2,ConSIT’s conditioner effectively just deletes inaccessible

statements. Other simplifications are possible. For example, in the conditional expression
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{x > y };

m := 2;
n := 1;

y := m;

x := y;

Figure 2.3: A conditioned slice of the program in Fig 2.2

{x > y };

m := 2;

y := m;

x := y;

Figure 2.4: Asmallerconditioned slice of the program in Fig 2.2
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if c s1 else s2

if the s1 (s2, respectively) is inaccessible becausec is always false (true, respectively),

then the entire statement can be replaced bys2 (s1 respectively).

In a similar vein, with the loop

while c s

if we can show thatc is always true after the first execution ofs, then the entire loop can

be replaced bys.
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Chapter 3

Program Conditioned Slicing

3.1 Program Conditioning

Programconditioning is the act of simplifying a program assuming that the states of

the program at certain chosen points in its execution satisfy certain properties. These

properties of interest can be expressed by adding assert statements to the program being

conditioned. Consider, for example the program in Figure 3.1. Here, program simplifi-

cation is being attempted under the assumption that the program is executed in an initial

state wherex>y . In such states, thetrue path of theIF -THEN-ELSE statement will al-

ways be taken and thus the program can be simplified to{x>y };a:=1 . Notice that the

assert statement is also included in the resulting conditioned program. This is because an

assert statement is a valid WSL statement that aborts if its condition isfalse. Observe that

the conditioned program’s behaviour is identical to that of the original program with the

assert statement.

A software engineer may require a program to be conditioned with respect to inter-

mediate states as well as with respect to initial states. The example in Figure 3.2

expresses the fact that the program is to be simplified assuming that all its inputs are

positive. The conditioner should be able to replace the finalIF -THEN-ELSE statement

by PRINT("POSITIVE") .
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{x>y } ;
IF x>y
THEN a:=1
ELSE a:=2
FI

Key

Conditioned program: boxed lines of code
Condition: x>y

Figure 3.1: Conditioning a simple program

i:=1 ;

total:=0 ;

WHILE i<n

DO

INPUT(x) ;

{x>0 } ;

total:=total+x ;

i:=i+1

OD ;
IF total<0
THEN PRINT("NEGATIVE")
ELSE PRINT("POSITIVE")
FI;

Key

Conditioned program: boxed lines of code
Condition: x>0

Figure 3.2: Conditioning with intermediate asserts
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IF (x>y AND y>z)

THEN
IF x>z
THEN a:=1
ELSE a:=2
FI

FI

Key

Original Program : Unboxed lines of code
Conditioned program: boxed lines of code
Condition: True

Figure 3.3: Conditioning without assert

A program conditioneris a program which tries to remove code that is unreachable given

the assertions. Therefore, a conditioner will try to remove unreachable code even if the

program contains no assert statements (see Figure 3.3 for an example of this).

Conditioners are required to reason about the validity of paths under certain conditions.

In order to perform such reasoning, it may seem sensible to utilise existing automated the-

orem provers rather than to develop new ones. Consider the program in Figure 3.4, here,

conditioning of a simpleIF statement assuming that the initial state has the property that

x>y AND y>z is being attempted. This is achieved by adding the corresponding assert

statement at the beginning of the program. The simplification achieved depends upon the

conditioner’s ability to infer thatx > y AND y > z =⇒ x > z. If the conditioner

knows that the operator,>, is transitive, then it will be able to infer that the second of

these conditions is a contradiction and therefore that theELSEbranch of theIF is infea-

sible. Only the Assert statement,{x>y AND y>z}, and assignmenta:=1 are required;

the rest of the code can be removed.

The simplifying power of the conditioner depends on two things:
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1. The precision of the symbolic executor which handles propagation of state and path

information.

2. The power of the underlying theorem prover which determines the truth of propo-

sitions about states and paths.

By using an approximation to a program’s semantics using a form of symbolic execu-

tion, and by being willing to accept approximate results from the theorem proving itself,

conditioning allows us to adopt reasoning that does not require the full force of inductive

proofs. The theorem proving used in program conditioning is lightweight when compared

to the theorem proving required for a complete formal analysis of a program.

The problem can be further constrained to cases where the theorem proving can be imple-

mented by completed decision procedures. There are limitations to the kinds of expres-

sions for which complete decision procedures exist, one typical limitation is a restriction

to reasoning with sets of so-called ‘linear’ (in)equalities. In our implementation ofCon-

SUSwe have experimented by incorporating two different reasoning systems into the

same basic ‘conditioning engine’. These are:

• FermaTSimplify (WSL’s own lightweight simplifier)

• The Co-operating Validity Checker (CVC) [112]

Although CVC is a very powerful (it is complete for linear arithmetic), we are using it in

a light-weight manner. It turns out that the program in Figure 3.4 is an example of one

that is simplified usingCVCbut not usingFermaTSimplify .
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{x>y AND y>z}
IF x>z
THEN a:=1
ELSE a:=2
FI

Key

Original Program : Unboxed lines of code
Conditioned program: boxed lines of code
Condition: x>y AND y>z

Figure 3.4: Conditioning a simple program usingCVC

3.2 Conditioned Slicing

Conditioned slicingis a general framework for statement deletion based slicing [17]. A

conditioned slice consists of a subset of program statements which preserves the behavior

of the original program with respect to a slicing criterion for any set of program exe-

cutions. The set of initial states of the program that characterises these executions is

specified in terms of a first order logic formula on the input.

Conditioned slicing allows a better decomposition of the program giving human readers

the possibility to analyse code fragments with respect to different perspectives. Canforaet

al. [17] have demonstrated that conditioned slicing subsumes any other form of statement

deletion based slicing method, i.e., the conditioned slicing criterion can be specified to

obtain any form of slice.

A conditioned slice can be computed by first simplifying the program with respect to the

condition on the input (i.e., discarding infeasible paths with respect to the input condition)

and then computing a slice on the reduced program. A symbolic executor [75, 34] can be
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used to compute the reduced program, also called aconditioned programin [18].

As an example of the way in which conditioning identifies sub-programs, consider the

Taxation program in Figure 3.5. The figure contains a program fragment1 which encodes

the UK tax regulations in the tax year April 1998 to April 1999. Each person has a

’personal allowance’ which is the portion of their income that is untaxed. The size of

this personal allowance depends upon the status of the person, which is encoded in the

boolean variablesblind , married andwidowed , and the integer variableage . For

example, given the condition

age>=65 AND age<75 AND income=36000 AND blind =0

AND married =1

conditioning the program identifies the statements which appear boxed in the figure. This

is useful because it allows the software engineer to isolate a sub-computation concerned

with the initial condition of interest. The extracted sub-program can be compiled and

executed as a separate code unit. It will be guaranteed to mimic the behaviour of the orig-

inal if the initial condition is met. Although the indentification of the infeasible path of

condititioned programs is in general an undecidable problem, in many cases implications

between conditions can be automatically evaluated by a theorem prover e.g [89]. In [17]

conditioned slices are interactively computed: the software engineer is required to make

decisions the theorem prover cannot make.

Different variants of conditioned slicing have been presented in the literature [80, 46].

Ning et al. [80] proposed a tool, called COBOL/SRE, to extract different types of slices

from legacy systems, in particular conditioned-based slices. The user specifies a logical

expression and a slicing range and the tool automatically isolates the statements that can

1This is a WSL version of the C program previously used in [36].
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IF (age>=75) THEN personal := 5980
ELSE IF (age>=65)

THEN personal := 5720
ELSE personal := 4335
FI

FI;
IF (age>=65 AND income >16800)
THEN IF (4335 > personal-((income-16800) / 2))

THEN personal := 4335
ELSE personal := personal-((income-16800) / 2)
FI

FI;
IF (blind =1) THEN personal := personal + 1380 FI;
IF (married=1 AND age >=75)
THEN pc10 := 6692
ELSE IF (married=1 AND age >= 65)

THEN pc10 := 6625
ELSE IF (married=1 OR widow=1)

THEN pc10 := 3470
ELSE pc10 := 1500
FI

FI
FI;
IF (married=1 AND age >= 65 AND income > 16800)
THEN

IF (3470 > pc10-(income-16800) / 2)
THEN pc10 :=3470
ELSE pc10 := pc10-((income-16800) / 2)
FI

FI;
IF (income - personal <= 0)
THEN tax := 0
ELSE income := income - personal ;
FI;
IF (income <= pc10)
THEN tax := income * rate10
ELSE tax := pc10 * rate10 ;

income := income - pc10 ;
FI;
IF (income <= 28000)
THEN tax := tax + income * rate23
ELSE tax := tax + 28000 *rate23 ;

income := income - 28000 ;
tax := tax + income * rate40

FI;
IF (blind=0 AND married=0 AND age<65)

code := ’L’;
ELSE IF(blind=0 age<65 AND married=1)

code := ’H’;
ELSE IF (age>=65 AND age<75 AND married=0 AND blind=0)

code := ’P’;
ELSE IF(age>=65 AND age<75 AND married=1 AND blind=0)

code := ’V’;
ELSE code := ’T’;
FI

Conditioned program: boxed lines of code

Condition: age>=65AND age<75AND income=36000
AND blind =0 AND married =1

Figure 3.5: UK Income taxation calculation program in WSL
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be reached along control flow paths under the given condition. However, the authors did

not propose a formal definition of condition-based slicing. Fieldet al. [46] introduced the

concept of constrained slice to indicate slices that can be computed with respect to any

set of constraints. Their approach is based on an intermediate representation for imper-

ative programs, named PIM, and exploits graph rewriting techniques based on dynamic

dependence tracking [47] that model symbolic execution. The extracted slices are not ex-

ecutable. The authors were interested in the semantic aspects of more complex program

transformations rather than in simple statement deletion.

An extension to conditioned slicing, namely backward conditioning, has been proposed

by Danicic et al. [49]. While conditioned slicing uses forward conditioning, and deletes

statements that are not executed when the initial state satisfies the condition, backward

conditioning deletes statements which cannot cause execution to enter a state which sat-

isfies the condition. Backward conditioning adresses questions of the form:

” What parts of the program could potentially lead to the program arriving in

state satisfying a given condition ?”,

whereas forward conditioning adresses questions of the form:

”What happens if the program starts in a state satisfying a given condition ?”

Conditioned slicing has been applied to program comprehension [40, 49] and to the ex-

traction of reusable functions [18]. The use of symbolic execution to specialise gen-

eralised software components to more specific and efficient functions to be used under

more restricted conditions has been proposed by Coen-Porisiniet al. [30].
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3.3 Conditioned Slicing and Testing

When generating tests from a specification, it is common to apply partition analysis: a

partitionP = {D1, . . . , Dn} of the input domainD, is produced. This partition has the

property that the behaviour of the specification is uniform (and thus relatively simple) on

each subdomainDi. Faults may either affect the behaviour within a subdomain (compu-

tation faults) or affect the boundaries of the subdomains (domain faults).

Computation faults are detected by choosing one or more test cases from each subdomain.

Domain faults are detected by testing around subdomain boundaries [27, 128]. Suppose

an implementation under testI is tested on the basis of partitionP . If I is uniform on

each of the subdomains ofP , it is likely that faults will be detected by a test set based on

P . This form of assumption, that the behaviour is uniform on eachDi, is the ‘uniformity

hypothesis’ of partition testing.

Conditioned slicing [17] is a technique for identifying those statements and predicates

which contribute to the computation of a selected set of variables when some chosen con-

dition is satisfied. The technique has previously been used in program comprehension

[40, 49] and re-engineering [20]. Details about conditioned slicing are given in Sec-

tion 3.2.

This section shows how conditioned slicing using the ConSUS slicing tool can be used to

assist partition-based testing. Specifically it will be shown how conditioned slicing:

1. provides confidence in uniformity holding on a subdomainDi from P ;

2. suggests the existence of faults associated with subdomainDi ∈ P , providing in-

formation that can be used to either refineP (domain faults) or direct effort towards
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Di(computation faults);

3. detects the existence of erroneous special cases.

These three topics are addressed by subsections 3.3.1, 3.3.2 and 3.3.3 respectively. All

examples will be constructed with respect to the program in Figure 3.5, which calculates

tax codes and tax rates for a United Kingdom citizen in the tax year April 1998 to April

1999.

3.3.1 Fault Detection with Conditioned Slicing

One of the problems associated with partition analysis is that the behaviour of the imple-

mentation under test may not be uniform on each element of the partition. Where this

assumption fails, the test generated on the basis of a prtitionP is likely to be insufficient.

It would therefore be useful to be able to determine whether the uniformity hypothesis

holds. Where it does not hold for someDi ∈ P , ideally the tester should either further

divideDi or choose more tests fromDi.

Let CDi
denote the condition expressing the constraint that the input lies inDi. Then,

if I is uniform onDi, the conditioned sliceS(I, CDi
) is likely to be relatively simple:

slicing using conditionCDi
should lead to much simplification [61]. Where this is the

case, the tester might have greater confidence in the uniformity hypothesis holding for

Di. Consider the tax example of Figure 3.5. Suppose the tester chooses the subdomain

defined by the conditionC1 below:

age ≥ 75 AND blind = 1 AND 0 ≤ income ≤ 7360

For this condition, and slicing on the variabletax , ConSUS produces the following con-
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IF (age>75) personal:=5980;
THEN personal:=5980; IF (age>=75 && income==1500)
ELSE IF (age>=65) THEN personal := 0;

THEN personal:=5720; personal := personal+1380;
personal:=personal+1380; FI;

FI; IF (income<=personal)
FI; THEN tax:=0;
IF (income<=personal) ELSE income:=income-personal;
THEN tax:=0; tax:=income*rate10;
ELSE income:=income-personal; FI

tax:=income*rate10;
FI

Slice forC1 Applied to Slice forC1 Applied to
First Faulty Tax Program Second Faulty Tax Program

Figure 3.6: Fault-revealing conditioned slices

ditioned slice.

tax := 0;

The simplicity of this conditioned slice suggests that the behaviour is uniform on this

subdomain and thus that only a small number of tests are required here. Indeed, in this

case, the slice is so simple that the tester can easily determine correctness.

3.3.2 Confidence Building with Conditioned Slicing

Suppose a fault is introduced by changingIF(age >= 75) to IF(age > 75) . Con-

SUS produces the slice in the left-hand column of Figure 3.6 for the subdomain de-

fined byC1. Here there has been far less simplification, suggesting that the behaviour

may not be uniform. In particular, the conditioned slice containsif statements. In

such situations, ConSUS can be of further assistance, by computing the simplest path

conditions applicable. In this case it produces:age = 75 AND income <= 7100,

age = 75 AND income > 7100, andage > 75.
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tax := 0; personal := 5720; tax := 0;
personal := personal + 1380;
income := income - personal;
tax := income*rate10;

Slice forC1
1 Slice forC2

1 Slice forC3
1

and variabletax and variabletax and variabletax

Figure 3.7: Conditioned slices for refined subdomains

This suggests that the subdomain denoted byC1 should be refined to include each of the

three path conditions, yielding:

1. C1
1 ≡ (C1 AND age = 75 AND income <= 7100);

2. C2
1 ≡ (C1 AND age = 75 AND income > 7100);

3. C3
1 ≡ (C1 AND age > 75).

For these refined domains, ConSUS produces the three slices in Figure 3.7. Values from

the subdomain denoted byC2
1 will detect the fault.

3.3.3 Highlighting Special Cases with Conditioned Slicing

Consider now a second fault, produced by adding the following extra (malicious) code

just before the line that startsIF(blind=1) :

if (age >= 75 AND income = 1500) personal := 0;

Slicing usingC1 and variabletax yields the fragment in the right-hand column of Fig-

ure 3.6. This appears not to be uniform and thus the tester might either choose to test

thoroughly within the corresponding subdomain, or to analyse the slice further. Further

analysis of this slice leads to two new conditions:
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1. (income = 1500);

2. NOT (income = 1500).

The fault will be found by refining the subdomain, corresponding toC1, using these two

conditions and then testing with samples from the refined domains.

Interestingly, this second fault is of a type that is usually very difficult to find using

specification-based testing because the implementation contains behaviour that isnot in

the specification. Since the specification does not contain this behaviour, and the be-

haviour lies within the body of a subdomain, traditional specification-based testing is

unlikely to find it: there is no information in the specification that indicates that the value

1500 forincome is significant. Fortunately, conditioned slicing highlights this additional

behaviour.
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Chapter 4

The ConSUSConditioning Algorithm

4.1 An Overview of the Approach

When implementing an interpreter, a program is evaluated in a state which maps variables

to their values [110]. In symbolic execution [29, 34, 35, 52], the state, called asymbolic

store1, maps variables, not tovalues, but tosymbolic expressionswhich may involve var-

ious uninterpreted values, constants and operators.

When a program is symbolically evaluated in an initial symbolic store, it gives rise to a

collection of possible final symbolic stores. The reason that a symbolic evaluator returns

a collection of final stores is that our program may have more than one path, each of

which may define a different final symbolic store. Unlike the case of an interpreter, the

initial symbolic store does not give rise to a unique path through the program. Asymbolic

evaluatorcan, thus, be thought of as a mapping, which given a program and a symbolic

store, returns a collection of symbolic stores.

In order to implement a conditioner, a richer state space than that used in a symbolic

evaluator is required. For each final symbolic store it is necessary also to record what

1Usually called thesymbolic state.
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properties must have been true of the initial symbolic store in order for the program to

take the path that resulted in this final symbolic store. This is called apath conditionand

consists of a boolean expression involving constants and symbolic values.

A conditioned state, Σ, is represented by a set of path condition-symbolic store pairs.

∀(b, σ) ∈ Σ then the symbolic storeσ can be reached if path conditionb is true. If a

conditioned state contained the pair(false, σ), this would be equivalent to stating that the

symbolic storeσ is unreachable.

ConSUScan be thought of as a function which takes a program and an initial conditioned

state and returns a (simplified) program and a final conditioned state2. In practice, a con-

ditioner will normally be applied to programs starting in thenatural conditioned state. In

the natural conditioned state, the corresponding symbolic store, maps all variables to their

names, representing the fact that no assignments have yet taken place. The corresponding

path condition in the natural state istrue, representing the fact that no paths have yet been

taken.

4.1.1 Statement Removal

The program simplification produced byConSUSarises from the fact that a statement

from a program can be removed if all paths starting from the initial conditioned state of

interest leading to the statement are infeasible. The path condition corresponding to a

symbolic store is a condition which must be satisfied by the initial store in order for the

program to take the path that arrives at the corresponding symbolic store. If the final path

condition is equivalent to false then the store is not reachable.

2In [30], similar functionsexecandsimpl are defined. Fundamentally different, however, is thatexec
andsimplreturn a single path condition, symbolic state pair, not a set of such pairs as in our case.
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The power of a conditioner, in essence, depends on the ability to prove that the path con-

ditions encountered are tautologies or contradictions. This is why a conditioner needs to

work in conjunction with a theorem prover. Of course, this is not a computable problem,

infeasible paths may not be detected.

Consider again, the program in Figure 3.4. This program potentially has two possible

final symbolic stores:

[a → 1]

[a → 2]

The corresponding path conditions are:

x > y AND y > z AND x > z

x > y AND y > z AND NOT (x > z).

Combining these two gives the conditioned state with two elements:

{ (x > y AND y > z AND x > z, [a → 1]),

(x > y AND y > z AND NOT (x > z), [a → 2]) }.

A sufficiently powerful theorem prover will be able to infer that the second of these path

conditions is always false.

Often programs containing no assert statements will be conditioned. This corresponds to

removingdeadcode. Consider the program in Figure 3.3. The programs in Figures 3.4

and 3.3 do not quite have the same semantics. The first will abort in initial stores not

satisfying the initial path condition, while the second will do nothing but terminate suc-

cessfully starting from these stores. The ’dead code’a:=2 is removed by the conditioner
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in both cases.

As will be shown later,ConSUSis efficient in the sense that it attempts to prune paths

‘on the fly’ as it symbolically executes. This is an improvement over some other systems

like ConSIT[36] which generates all paths and then prunes once at the end. The way this

is achieved is that on encountering a guard,ConSUSinteracts with its theorem proving

mechanism to check whether the negation of the symbolic value of the guard is implied

by the corresponding path condition in all values of the current conditioned state. If this

is the case, then the corresponding body is unreachable and so can be removed without

being processed.

Programs containing loops may have infinitely many paths. These cannot all be consid-

ered and therefore a conservative and safe approach has to be adopted when conditioning

loops. For eachWHILE loop, it is essential that in any implementation only a finite num-

ber of distinct symbolic stores are generated. Ameta symbolic storeis required in order

to represent the infinite set of symbolic stores that are not distinguished between. This

meta symbolic storemust be safe in the sense that it must not add any untrue information

about these symbolic stores. The simplest possible approach is simply to ‘throw away’

any information about variables which are affected by the body of a loop. This idea is

very similar to state folding introduced in [30]. Their program specialiser, returns a

single symbolic store, path condition pair, and so it is necessary to throw away values cor-

responding to variables assigned different values on each branch of anIF THEN ELSE

statement.

Using this approach, aWHILE loop will map each symbolic store,σ, to a set consisting

of two symbolic stores. One of the stores will beσ itself, (representing the fact that that

the guard of the loop may be initiallyfalse) and the other store (representing the fact that
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x:=y+1;
WHILE x>y
DO

x:=y+2
OD;
IF x=y

THEN p:=7;

Key

Code removed using the näıve approach: None
Code removed using theConSITapproach: boxed lines of code

Figure 4.1: Conditioning aWHILE loop using two approaches

the loop was executed at least once) will be represented by a store,σ′, which agrees with

σ on all variables not affected by the body of the loop. Inσ′, all variables thatareaffected

by the body of the loop areskolemised, representing the fact that we no longer have any

information about their value. By skolemising a variable, all previous information that we

had about it is being thrown away. As a result of skolemising a symbolic store, incorrect

information will never be generated, it will just be less precise.

The approach taken byConSUS(based on the approach ofConSIT[36]) is less crude,

however. In this case, symbolically evaluating aWHILE loop, results in the set consisting

of σ as before, together with the set of stores which are the result of symbolically execut-

ing the body of the loop in the skolemised storeσ′. To see how the two approaches differ,

consider the example given in Figure 4.1. Using the naı̈ve approach, the two symbolic

stores resulting from theWHILEloop are[x → y+1] and[x → x0]. The first of these rep-

resents not executing the loop at all and the second represents the fact that the loop body

has been executed at least once. The variablex has been skolemised tox0, representing

the fact that its value is no longer known. Evaluating the guardx = y of the IF -THEN

statement in this skolemised store givesx0 = y. Sincex0 = y is not a contradiction,

the conditioner using the naı̈ve approach would be forced to keep in the wholeIF -THEN
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statement, however powerful the theorem prover.

Using the less crude approach gives the two symbolic stores[x → y +1] and[x → y +2].

The fact that in the loop,x is assigned an expression that is unaffected by the body of the

loop has been taken into account. Sincey + 1 = y andy + 2 = y are both contradictions,

theIF statement following theWHILE loop can be removed.

4.2 TheConSUSAlgorithm in Detail

In this section, the algorithm used byConSUSis explained in detail. For each WSL

syntactic category, the result of applyingConSUSto it will be defined. It will be assumed

that the starting conditioned state in each case is given by:

Σ =
n⋃

i=1

{(bi, σi)}

where thebi are boolean expressions representing path conditions and theσi are the cor-

responding symbolic stores.

For each statements, ConSUSreturns two objects:

• state(Σ,s): the resulting conditioned state when conditioning statements in Σ and

• statement(Σ,s): the resulting simplified statement when conditioning statements in

Σ.

If statements is to be removed byConSUS, it returnsSKIP . A final post-processing

phase will callFermaT’s DeleteAll Skipstransformation to remove all theSKIPs
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that have introduced by performing this operation.

Calls to the theorem prover,FermaTSimplify will be represented by the expression

prove(b), whereb is a boolean expression. The expression,prove(b), is defined to re-

turn true if the theorem prover determines thatb is valid andfalseotherwise. Ifprove(b)

returnsfalse, this represents the fact thateitherthe theorem prover cannot reduce the con-

dition to true or it reduces it to the condition tofalse.

Given a conditioned state,Σ, and a boolean expressionb, we defineAllImply(Σ, b) to be

true if and only if, for all pairs(c, σ) in conditioned stateΣ, prove(c =⇒ σ b) evaluates

to true. Where, given a symbolic storeσ, the expression,σ b, denotes the result of sym-

bolically evaluatingb in σ.

Supposeb is the guard of anIF statement. AllImply(Σ, b) implies that theTHEN

branch must be executed inΣ and theELSE branch can be removed. Similarly

AllImply(Σ, NOTb) implies thatTHENbranch can be removed. Supposeb is a guard

of aWHILEloop, thenAllImply(Σ, b) implies that the body of the loop is executed at least

once andAllImply(Σ, NOTb) implies that the loop body is not executed at all.

4.2.1 ConditioningABORT

In order to condition anABORTstatement, a special conditioned state called theABORT

state is introduced and written⊥. It consists of the single pair(false, id).

state(Σ, ABORT) , ⊥

statement(Σ, ABORT) , ABORT
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For all statementss, define

state(⊥, s) , ⊥

statement(⊥, s) , SKIP

This guarantees that all statements following anABORTwill be removed. In the rest of

the discussion it is assumed thatΣ 6= ⊥.

4.2.2 ConditioningSKIP

state(Σ, SKIP ) , Σ

statement(Σ, SKIP ) , SKIP

Conditioning aSKIP has no effect.

4.2.3 Conditioning Assert Statements

In WSL, an assert statement is written{b} whereb is a boolean expression. It is se-

mantically equivalent toIF b THEN SKIP ELSE ABORT FI. There are three cases to

consider:

Case Condition Meaning

1 AllImply(Σ, b) The assert condition will always betrue

2 AllImply(Σ, NOTb) The assert condition will always befalse

3 None of the above Nothing can be inferred

From the semantics of the Assert statement it is clear that in case 1, the Assert is equiv-

alent toSKIP so the rules forSKIP above apply. In case 2, the Assert is equivalent to

ABORTso the rules forABORTabove apply. If neither the guard of the Assert is not
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alwaystrue or not alwaysfalse in the current state, then the Assert cannot be removed.

The resulting state will have the same set of symbolic stores.

The path conditions of the resulting state will be different however. For each pair,(bi, σi)

the resulting state will have a corresponding pair(bi ANDσi b, σi) wherebi ANDσib is

the boolean expression created by conjoining the boolean expressionbi with the result of

symbolically evaluating the boolean expression3 b in symbolic storeσi. This represents

the fact that a program will continue executing after an Assert statement in stores whereb

evaluates totrue. Formally, in this case,

state(Σ, {b}) ,
n⋃

i=1

{(bi ANDσib, σi)}.

statement(Σ, {b}) , {b}.

4.2.4 Conditioning Assignment Statements

When conditioning assignment statements,ConSUSsymbolically evaluates the expres-

sion on the right hand side of the assignment and updates the symbolic stores accordingly.

The path conditions do not change. In order to symbolically evaluate an expressione in

a symbolic store,σ, ConSUSreplaces every variable in the expression by its value inσ.

Given a symbolic store,σ, we use standard notationσ[x → e] to represent a store that

‘agrees’ withσ except that variablex is now mapped toe. Using this, the conditioning of

assignment statements can be defined as follows:

state(Σ, x:= e) ,
n⋃

i=1

{ (b, σi[x → σie]) }

statement(Σ, x:= e) , x:= e.

3For example, ifσi mapsy to z+1 andx to 17 and ifb is the boolean expression:y > x+1 and ifbi is the
boolean expression:a+ z = 5 then(bi ANDσib) is the boolean expression:a+ z = 5 ANDz +1 > 17+1.

94



4.2 TheConSUSAlgorithm in Detail 95

4.2.5 Conditioning Statement Sequences

In the case of standard semantics [110], the meaning of a sequence of statements is the

composition of the meaning functions of the individual statements. The same is true when

conditioning:

state(Σ, s1; s2) , state(state(Σ, s1), s2)

statement(Σ, s1; s2) , statement(Σ, s1); statement(state(Σ, s1), s2)

This reflects the fact that conditioned states are ‘passed through’ the program in the same

order that the program would have been executed. Once again, if as a result of condition-

ing, both parts of the sequence reduce toSKIP then they will both be removed by the

post-processing phase.

4.2.6 Conditioning Guarded Commands

In WSL, a generalised form of conditional known as guarded command is used. A

guarded command has concrete syntax of the form

IF B1 THENS1 ELSIF · · · ELSIF Bn THENSn FI .

Unlike the semantics of Dijkstra’s guarded commands [42], these are deterministic in the

sense that the guards are evaluated from left to right and when a true one is found the

corresponding body is executed. If none of the guards evaluates totrue then the program

aborts. Although WSL has conventionalIF THEN ELSE FI statement, these are im-

plemented as a guarded command whose last guard is identicallyTRUE. An IF THEN

statement is also implemented as a guarded command whose last guard is identically

TRUEand whose corresponding body isSKIP . For the purposes of describing condition-
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ing guarded commands, it is convenient to represent a guarded command as

B1 → S1| . . . |Bn → Sn.

Using WSL terminology, eachBi → Si is known as aguarded. Conditioning a guarded

command is defined in terms of conditioning a guarded,B → S so that is defined first.

When conditioning a guarded, like in the case of the Assert statement, there are three

possibilities:

Case Condition Meaning

1 AllImply(Σ, B) The guardB will always betrue

2 AllImply(Σ, NOTB) The guardB will always befalse

3 None of the above Nothing can be inferred

In cases 1 and 3,

state(Σ, B → S) , state(Σ′, S)

statement(Σ, B → S) , B → statement(Σ′, S)

where

Σ′ =
n⋃

i=1

{(bi ANDσiB, σi)}.

In case 2, the guarded can be removed and the resulting state will simply beΣ:

state(Σ, B → S) , Σ
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statement(Σ, B → S) , SKIP

Having defined howConSUSconditions a single guarded, we now return to define how

ConSUSconditions a complete guarded command. As already explained, a guarded com-

mand is a sequence of guardeds:

B1 → S1| . . . |Bn → Sn.

When conditioning a guarded command inΣ, the guardeds are conditioned, as described

above, from left to right. Thejth guarded is conditioned in conditioned stateΣj where

Σ1 = Σ

and

Σj+1 =
⋃

(bi,σi)∈Σj

{(bi ANDσi NOTBj, σi)}.

For each guarded,Bj → Sj, ConSUSdecides:

(a) Whether to keep or remove it.

(b) Whether to continue processing the next guarded in this guarded command or to move

on to the next statement after the guarded command.

Conditioning proceeds as follows:

• If AllImply(Σj, Bj) this implies that thejth guard will be chosen in all paths

where the previous guards have not been chosen. The resulting statement will be

statement(Σj, Bj → Sj). Conditioning of the guarded command can stop at this

point since none of the guardeds to the right of this one will ever be executed inΣ.
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• If AllImply(Σj, NOTBj) this implies that thejth guard will never be chosen. This

guarded can, therefore, be removed without conditioning it, and processing can

continue with the conditioning of the next guarded,Bj+1 → Sj+1 in conditioned

stateΣj+1 = Σj.

• If neither AllImply(Σj, Bj) nor AllImply(Σj, NOTBj) then it cannot said for cer-

tain whetherBj will be chosen or not. This is represented by keeping the guarded,

statement(Σj, Bj → Sj), and again moving on to process the next guarded in con-

ditioned stateΣj+1.

Processing continues in this way from left to right until there are no more guardeds to

consider. The resulting final conditioned state of the guarded command is the union of all

the conditioned states of the guardeds that were processed. The resulting final statement

of the guarded command is either:

1. a guarded command consisting of the guardeds that were kept in by the above pro-

cess, in the same order (This rule only applies if more than one guarded was kept

in by the above process.) or

2. the body of the only guarded that was kept in. (This rule only applies if exactly one

guarded was kept in by the above process.) or

3. ABORT(this rule only applies if no guardeds were kept in by the above process.)

Since, as described above, not all guardeds need necessarily be processed, this algorithm

is, in effect, pruning infeasible paths ‘on the fly’. This is a much more efficient approach

than that ofConSIT[36], where all paths were fully expanded before any simplification

took place.
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4.2.7 Conditioning Loops

Before the result of conditioningWHILE B DO S OD, in conditioned stateΣ is defined,

some preliminary definitions are required.

Definition 1: Σtrue is the initial stateΣ with the added constraint that the guard,B, is

initially true in all pairs ofΣ.

Σtrue =
⋃

(b,σ)∈Σ

{(b AND(σB), σ)}.

Similarly,

Definition 2: Σfalse is the initial stateΣ with the added constraint that the guard,B, is

initially false in all pairs ofΣ.

Σfalse =
⋃

(b,σ)∈Σ

{(b AND(σ NOTB), σ)}.

Definition3 (The Skolemised Conditioned State,Σ′): The skolemised conditioned state

Σ′ =
⋃

(b,σ)∈Σtrue

{(b, σ′)}.

where the symbolic stores,σ′
i, are the skolemised versions of theσi with respect toS, as

described in Subsection 4.1.

Definition 4 (Σ≥1): Σ≥1 is the conditioned state after at least one execution of loop in

stateΣ.

Σ≥1 = state(Σ′, S).

where the symbolic stores,σ′
i, are the skolemised versions of theσi with respect toS.

Definition5 (Σfinal): Σfinal is the final conditioned state after at least one execution of the
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AllImply(Σ, NOTB) AllImply(Σ, B) AllImply(Σ≥1, NOTB) AllImply(Σ≥1, B)
Case 1 T
Case 2 F F F F
Case 3 F F F T
Case 4 F F T F
Case 5 F T F F
Case 6 F T F T
Case 7 F T T F

Figure 4.2:WHILE loop possibilities

loop in stateΣ assuming that the loop terminates.

Σfinal =
⋃

(b,σ)∈Σ≥1

{(b ANDσ(NOTB), σ)}.

When conditioning a loop of the formWHILE B DO S OD, in conditioned stateΣ,

ConSUSchecks all the seven conditions in the table in Figure 4.2.

Each case in Figure 4.2 has the following implications:

Case 1 Loop not executed

Case 2 Nothing known

Case 3 If loop executed once, then it does not terminate

Case 4 If loop executed once, then it executes exactly once

Case 5 Loop executes at least once

Case 6 Loop non-terminates

Case 7 Loop executes exactly once

Blank entries in the table mean we do not care about these values. The other combinations

not considered are all impossible. For each of these cases,
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Final State
Case 1 (Loop not executed) Σ
Case 2 (Nothing known) Σfalse∪ Σfinal

Case 3 (If once, non-termination) Σfalse

Case 4 (If once, exactly once) state(Σ, IF B THENS FI )
Case 5 (At least once) Σfinal

Case 6 (Non-termination) ⊥
Case 7 (Exactly once) state(Σ, S)

Figure 4.3:WHILE loop final states in each case

Final Statement
Case 1 (Loop not executed) SKIP
Case 2 (Nothing known) WHILEB DO statement(Σ′, S) OD
Case 3 (If once, non-termination) { NOTB }
Case 4 (If once, exactly once) statement(Σ, IF B THENS FI )
Case 5 (At least once) WHILEB DO statement(Σ′, S) OD
Case 6 (Non-termination) ABORT
Case 7 (Exactly once) statement(Σ, S)

Figure 4.4:WHILE loop resulting statements in each case

state(Σ, WHILEB DO S OD)

and

statement(Σ, WHILEB DO S OD)

will have different values ( Figures 4.3 and 4.4). Each is now considered in turn.

Case 1: the loop is not executed. There is no change to the final conditioned state and

loop can be removed.

Case 2: nothing is known about the loop. The final conditioned state is the union of the

final conditioned states corresponding to not executing the loop at all and to terminating

after at least one execution. It is not necessary to consider non-termination as no states

after non-termination are reachable. The resulting statement is the while loop with its

body conditioned inΣ′, whereΣ′ is the skolemised state.
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Case 3: if the loop is executed at least once then it fails to terminate. The final conditioned

state corresponds to not executing the loop, since this is the only way termination can

occur. The loop can be replaced with an assertion of the negation of the guard.

Case 4: if the loop is executed once then it executes at most once. This is equivalent to

conditioning the corresponding conditional statement in stateΣ.

Case 5: the loop is executed at least once. The final conditioned state is theΣfinal, cor-

responding to the loop terminating after at least one execution. It is not necessary to

consider non-termination as no states after non-termination are reachable. The resulting

statement is the while loop with its body conditioned in skolemised state,Σ′.

Case 6: the loop does not terminate. The final state is⊥ and the loop can be replaced with

ABORT.

Case 7: The loop executes exactly once. This is equivalent to conditioningS in Σ. Since

AllImply(Σ, B) andAllImply(Σ≥1, NOTB) we do not need to add the constraints that the

loop guard is initiallytrueand finallyfalse.

4.3 Examples

This section gives examples of the output ofConSUSfor a variety of small examples in

order to demonstrate its behaviour.

The program in Figure 4.5 is an example with two consecutive identical while loops.Con-

SUSremoves the second loop since its guard can never be true after completing execution

of the first loop. This is true even if the first loop is not executed or if it non-terminates.
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WHILE x<1 WHILE x<1
DO x:=x+1 DO x:=x+1
OD; OD
WHILE x<1
DO x:=x+1
OD

Original Program Output fromConSUS

Figure 4.5: Conditioning aWHILE loop (Case 1)

x:=p; x:=p;
WHILE x>0 {NOT x > 0};
DO x:=1
OD;
IF x=p
THEN y:=2 y :=2
ELSE y:=1
FI

Original Program Output fromConSUS

Figure 4.6: Conditioning aWHILE loop (Case 3)
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WHILE x=1 IF x=1
DO x:=2 THEN x:=2
OD FI

Original Program Output fromConSUS

Figure 4.7: Conditioning aWHILE loop (Case 4)

x:=1; x:=1;
WHILE x>0 WHILE x>0
DO x:=x+y; DO x:=x+y;

y:=2 y:=2
OD; OD;
IF (y=2)
THEN x:=1 x:=1
ELSE x:=2
FI

Original Program Output fromConSUS

Figure 4.8: Conditioning aWHILE loop (Case 5)

In Figure 4.6 there is a loop which if, executed once, never terminates.ConSUSreplaces

this loop with an Assert statement that asserts that the guard of the loop is false.ConSUS

also recognised that to ‘get past’ the loop, it must not be executed and therefore the initial

assignment tox is not overwritten, and so the following IF statement can be simplified.

The program in Figure 4.7 has a while loop which is executed exactly once or not at all.

ConSUSreplaces it with an IF statement. In the current implementation, if the2 was

replaced byx+1 , say, no simplification would take place. This is because theConSUS

infers that only a single loop iteration is possible, by analysing the loop guard in the

skolemised state and not in the state after a single execution.

In Figure 4.8, although the loop itself cannot be simplified,ConSUSrecognises that the
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{x>1 }; {x>1 };
WHILE x>0
DO y:=x+y;
OD;
IF (x>0)
THEN x:=1
ELSE x:=2
FI

Original Program Output fromConSUS

Figure 4.9: Conditioning aWHILE loop (Case 6)

x=1; x;=1
WHILE x=1
DO x:=x+1; {x>1 } x:=x+1; {x>1 }
OD;
IF (x=1)
THEN x:=1
ELSE x:=2 x:=2
FI

Original Program Output fromConSUS

Figure 4.10: Conditioning aWHILE loop (Case 7)

loop must be executed at least once and hence the later IF statement can be simplified.

In Figure 4.9,ConSUSrecognises that the program does not terminate and therefore ev-

erything apart from the initial Assert can be discarded since these statements are not

reachable.

In Figure 4.10 we have ‘helped’ the theorem prover with the knowledge that in this loop,

x will always be greater than zero. From this,ConSUShas inferred that the loop will

terminate after exactly one execution. As the implementation stands, without this human

intervention,ConSUSwould not produce any simplification. As in Case 4, this is because
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theConSUSinfers that only a single loop iteration is possible, by analysing the loop guard

in the skolemised state, and not in the state after a single execution. The algorithm could

very straightforwardly be changed to consider one iteration of the loop as a special case.

In this example, we see that slicing onx at the end of the program before conditioning

yields no simplification. But after conditioning, slicing onx at the end of the program

gives us the single statementx:= 2 .
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Chapter 5

Design and Implementation

5.1 Architecture of the System

The system was designed and implemented in a LINUX environment. It was considered

appropriate to design the system in a modular fashion, so that two programmers could

independently solve their parts of the problem. The final phase would consist of the

integration of these independent parts. The two parts are:

1. The Conditioner

2. The Slicer

The overall architecture is presented in 5.1.

Figure 5.1: Top-level Architecture

For illustartive purposes, an example of a program that the system accepts is given in 5.2.

This program codifies part of the UK tax system for the year 1999–2000.

The two annotations give the conditioning and slicing criteria. They state that we are

only interested in the part of the computation that is relevant for blind widows under 50
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{ blind = 1 AND widow = 1 AND age < 50 };

IF (age>=75)
THEN personal := 5980;
ELSE IF (age>=65)

THEN personal := 5720;

ELSE personal := 4335;

FI;
FI;
IF ((age>=65) AND income>16800)
THEN t := personal - ((income-16800)/2);

IF (t>4335)
THEN personal := t;
ELSE personal := 4335; }
FI; FI;

IF (blind=1)

THEN personal := personal + 1380;

IF (married=1 AND age>=75)
THEN pc10 := 6692;
ELSE IF (married=1 AND (age>=65))

THEN pc10 := 6625;
ELSE IF (married=1 OR widow=1)

THEN pc10 := 3470;

ELSE pc10 := 1500;
FI;

FI;
FI;
IF (married = 1 AND age>=65 AND income>16800)
THEN t := pc10-((income-16800)/2);

IF (t>3470)
THEN pc10 := t;
ELSE pc10 = 3470;
FI;

FI;

IF (income<=personal)
THEN tax := 0;
ELSE income := income-personal;

IF(income<=pc10)
THEN tax := income/10;
ELSE tax := pc10/10;

income := income-pc10;
IF (income<=28000)
THEN tax := ((tax+income)*23)/100;
ELSE tax := ((tax+28000)*23)/100;

income := income-28000;
tax := ((tax+income)*40)/100;

FI;
FI;

FI;

IF (blind=0 AND married=0 AND age<65)
THEN code = ’L’;
ELSE IF (blind=0 AND age<65 AND married=1)

THEN code = ’H’;
ELSE IF (age>=65 AND age<75 AND married=0 AND blind=0)

THEN code = ’P’;
ELSE IF (age>=65 AND age<75 AND married=1 AND blind=0)

THEN code = ’V’;
ELSE code = ’T’;
FI;

FI;
FI;

FI;

slice := tax;

}

Figure 5.2: Tax for Blind Widow Under 50

years old, and that we are only interested in the value of tax, as computed at the end of

the program. The annotations are part of the program that are accepted by the system.

On processing this program (with respect to the slicing criterion), the slicer will remove

the code ingray, as it is not relevant to the computation oftax , effectively leaving

just remaining code in shadowed boxes , which the conditioner has found to be relevant

under the given conditions, namely that we are only interested in the computation for

blind widows under 50 years old.

In effect, both slicing and conditioning are techniques for isolating interesting parts of a

program. Combining them into conditioned slicing produces a system which can be used

to help isolate the parts of a program that are involved in computing the values of specified

variables at specified points, under given execution conditions.
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The implementation of our slicing and conditioning algorithms were achieved using a

WSL[91]. WSLis both the language that the slicer and the conditioner were written in

as well as the object language to be conditioned sliced. The reason for our choice is that

WSLhas a built inWSLparser that can be called from within aWSLprogram as well

as a whole transformation system which is useful for the simplification of slices. Trans-

formations were not a major design criterion of most popular programming languages.

However,WSL(wide spectrum language) and transformation theory form the basis of the

’Maintainer’s Assistant’tool [123] used for analysing programs by transformations.WSL

is also the basis of the FermaT transformation system. The FermaT transformation sys-

tem applies correctness-preserving transformations to programs written inWSLlanguage.

It is an industrial-strength engine with many applications in program comprehension and

language migration, it has been used in migration IBM assembler to C and to COBOL

[90]. Low-level programming constructs and high-level abstract specifications are both

included inWSLlanguage; hence the transformation of a program from abstraction spec-

ification to a detailed implementation can be expressed in a single language. The syntax

and semantics ofWSLare described in [91].

5.1.1 The Slicer

In order to slice a programP with respect to a set of variablesV , we define a function

calledSlice(P, V ) which takes as arguments the program to be sliced and a set of vari-

ables to slice with respect to and returns the resulting slice. we also define a function

calledNeeded(P, V ) which take a programP and a set of VariablesV and returns a new

set of variables produced by SlicingP with respect toV .

Assignment Statement

(S) x := e
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Slicing the assignment statement(x := e) with respect to a set of variablesV is achieved

as follows:

Slice(x := e, V ) =

 Skip if x /∈ V

x := e if x ∈ V

Needed(x := e, V ) =

 V if x /∈ V

(V / x) ∪ V ariables(e) if x ∈ V

where Variables(e) is the reference variables in the assignmentx := e.

Sequence of Statements

S1; S2;

To slice the sequence of statements(S1; S2), with respect to a set of variablesV we start

by slicingS2 with respect to V. This produces a new sliceR2 and a new set of variables

V2, we then sliceS1 with respect toV2 producingR1 andV1.

Slice(S2, V ) = R2

Needed(S2, V ) = V2

Slice(S1, V2) = R1

Needed(S1, V2) = V1

Slice(S1; S2, V ) =

 Skip if R1 = R2 = Skip

R1; R2 if R1 ∨ R2 6= Skip
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Needed(S1; S2, V ) =

 V if R1 = R2 = Skip

V1 if R1 ∨ R2 6= Skip

IF Statement

(S) if B then S1 else S2 fi ;

In order to slice the aboveIF statement(S) with respect to a set of variablesV we slice

both the true partS1 and the else partS2 separately with respect toV .

Slice(S1, V ) = R1

Needed(S1, V ) = V1

Slice(S2, V ) = R2

Needed(S2, V ) = V2

Slice(S, V ) =

 Skip if R1 = R2 = Skip

if B then R1 else R2 fi if R1 ∨ R2 6= Skip

Needed(S, V ) =

 V if R1 = R2 = Skip

V1 ∪ V2 ∪ V ariables(B) if R1 ∨ R2 6= Skip

If both slicesR1 and R2 skip then theIF statement has no effect on any variable

of interest, therefore it is replaced with skip and theNeeded new set of variables
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is unchanged and is equal toV . Otherwise, the slice yields the following statement

( if B then R1 else R2 fi ). And theNeeded new set of variables becomes

Vs = V1 ∪ V2 ∪ V ariables(B).

While Statement

(S) while B do S1 od

In order to slice the above while statement with respect to a set of variablesV we take the

following steps: first we slice the body ofS of the while statement with respect toV :

Slice(S1, V ) = R1

If R1 = Skip

In this case the whole while statement is replaced withskip and the new set of variables

is unchanged and is equal toV .

Slice(S, V ) = Skip

Needed(S, V ) = V

If R1 6= Skip then let:

Needed0 = Needed (if B then S1 else Skip fi, V )

Neededi+1 =

Needed (S1, Neededi ∪ V ) ∪ Neededi
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Let n be the first integer such thatNeededn+1 ⊂ Neededn then:

Slice(S, V ) = while B do Slice (S1, Neededn ∪ V ) od

Needed(S, V ) = Neededn

Slice(S, V ) =

 Skip if R1 = Skip

while B do Slice (S1, Neededn ∪ V ) od if R1 6= Skip

Needed(S, V ) =

 V if R1 = Skip

Neededn if R1 6= Skip

5.2 Implementation Details

Details of the WSL implementation ofConSUSare now provided. In particular we con-

centrate on aspects of the code which demonstrate how WSL facilitates the implemen-

tation. The basic data structure for conditioned states is a list of symbolic store, path

condition pairs as described in Chapter 4. A store is represented as a list of variable

name, expression pairs. Expressions and all other syntactic components are stored using

MetaWSL’s internal representation thus enabling them to be accessed and constructed

naturally inMetaWSL. A good example is the function@Subst, given in Figure 5.3,

which evaluates an expression in a symbolic store. This function is now explained in

detail. The line

MWFUNCT @Subst(store,exp) ==

is a function heading. The name of the function is@Subst. @Subst has two formal

parametersstore andexp . (Note, variables are not typed in WSL).
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MWFUNCT @Subst(store,exp) ==
VAR <R := < > > :
@Edit;
@NewProgram(exp);
FOREACH Variable
DO

IF @NString(@V(@I)) IN @Domain(store)
THEN @PasteOver( @ValueOf(store,@N String(@V(@I))))
FI;

OD;
R := @I;
@UndoEdit;
( R ) . ;

Figure 5.3: Evaluating an expression in a symbolic store

VAR <R := < > > :

Is a declaration of a local variable R, whose initial value is the empty list. Unfortunately,

in WSL, local variables cannot be declared without giving them an initial value. The

structure,

@Edit;

@NewProgram(exp);

· · ·

@UndoEdit;

is typical inMetaWSL, the@Edit command has the effect of putting the current special

global variable,@I on the stack and temporarily assigning@I, to the syntax tree corre-

sponding to the expressionexp . The @Undo_Edit command pops of the previously

stacked value into@I. This useful technique can be used for all elements of abstract syn-

tax such as expressions, statements, sequences of statements etc.

The foreach construct is an example of a high-level construct inMetaWSL. A

foreach is used to iterate over all those components of the currently selected syntac-
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tic item which satisfy certain conditions, and apply various editing operations to them.

Within the body of theforeach it appears as if the current syntactic item is the whole

program. The construct takes care of all the details, when for example, components are

deleted, expanded or otherwise edited. The code fragment in Figure 5.3

@Edit;

@NewProgram(exp);

FOREACH Variable

DO

· · ·

OD;

R := @I;

@UndoEdit;

will, thus, have the effect of repeating the action between theDOandODfor each variable

in the expressionexp and storing the resulting transformed inR. This code does not

change the values ofexp or of @I. The return value of a function in WSL is the final

bracketed expression,(R) , in the function body.

All that is left to explain is the code that is repeated for each variable in the expression

exp .

IF @NString(@V(@I)) IN @Domain(store)

THEN @PasteOver( @ValueOf(store,@N String(@V(@I))))

FI

Each time this point is entered@I will be pointing at the abstract syntax tree correspond-

ing to a different variable instance inexp . The expression

@NString(@V(@I))
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selects the name of the current variable from the abstract syntax tree.

The functions@Domainand@ValueOf used in@Subst are not part ofMetaWSLbut

are user defined functions inConSUS. @Domain(s) returns the set of variables which

have been assigned values in the symbolic store,s .

The function calls

@Domain(s) , and

@ValueOf(s,name)

return the value of variablename in symbolic store,s . @Paste_Over(x) is a

MetaWSLfunction, which will actually overwrite@I with x . In this case, this will cause

the current variable to be overwritten by its current value in the current symbolic store as

required. The return value of a function in WSL is the final bracketed expression,(R) ,

in the function body.

The overall behaviour of the@Subst function is now summaried. It takes a store and an

arithmetic expression and symbolically evaluates the expression in the store. This is done

by replacing the value of each variable in the expression by its current value in the store.

In Figure 5.4, the implementation ofFermaTSimplify as a lightweight theorem prover

is shown.

TheFermaTSimplify transformation is applied to the expressioncondition . If the

resulting expression is the syntactic objecttrue then the boolean valuetrue is returned.

If FermaTSimplify fails to transform the condition totrue , thenfalse is returned.

TheMetaWSL function,@Make, is used extensively. It constructs abstract syntax trees

from components. In this case, the boolean expressiontrue has been constructed.
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MWBFUNCT @TrueFermat?(condition) ==
VAR < v:=< > > :
@Edit;
@NewProgram(condition);
@Trans(TR Simplify Item, "");
v := @I;
@UndoEdit ;
(@Equal?(v,@Make(T True, < > , < >))) . ;

Figure 5.4:FermaTSimplify as a light-weight theorem prover

MWBFUNCT @ImpliesFermat?(condition1,condition2) ==
VAR <v:=< > > :
v:=@Make(T Or,< >, <@Make(T Not,< >,<condition1>),condition2>);
(@TrueFermat?(v)) . ;

Figure 5.5: Implementation of implication usingMetaWSL

Implication is equally simple to implement (see Figure 5.5). Given two expres-

sions, condition1 and condition2 , to check whethercondition1 implies

condition2 , again theMetaWSL @Makeis used to construct the abstract syntax tree

to represent the condition:

NOT(condition1) OR condition2

and pass it to the@TrueFermat? function given in in Figure 5.4.

TheAllImply(Σ, b) function is used extensively byConSUS. It is implemented as shown

in Figure 5.6. It takes two parameters

• paths : the list of path conditions,bi, in conditioned stateΣ and

• conds : the list of boolean expressions whoseith element is the result,σi b, of
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MWFUNCT @AllImply(paths, conds) ==
VAR <stop := 1, i:=1 > :
WHILE i <= LENGTH(paths) AND (stop=1)
DO

IF NOT(@Implies?(paths[i],conds[i]))
THEN stop:=0
FI;
i:=i+1

OD;
(stop) . ;

Figure 5.6: Implementation ofAllImply

symbolically evaluatingb in symbolic storeσi.

5.3 ConSUSwith CVC

The Co-operating Validity Checker (CVC) [112] is a successor to the Stanford Validity

Checker (SVC) [8], the underlying theorem prover used inConSIT[36]. CVC is a high

performance system for checking the validity of formulæ in a relatively rich decidable

logic. Atomic formulae are applications of predicate symbols like< and = to first order

terms likex and2 ∗ y + z. CVC is applicable to boolean expressions made from these

atoms. CVC is implemented in about 150K lines of C++. CVC is much more efficient

and has more user-friendly input language than its predecessor, SVC.

Queries can be input to CVC in the following form:

a,b,c,x : REAL;

QUERY x=x;

QUERY x=(x+1);

QUERY a+x=(x+a);

CVC will reply with:
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Valid.

Invalid.

Valid.

An example of an CVC query automatically generated byConSUSwhen processing the

tax example given in Figure 5.2 is:

x:REAL;QUERY ((((TRUE) AND ((x) < (50))) AND (TRUE)))

=>

((NOT (((x) >= (75))))) ;

In order forConSUSto communicate with CVC, the abstract syntax trees representing

WSL conditions have to be converted into inputs like those above. This is very straight-

forward using the functions ofMetaWSL. Since every variable in a query has to be de-

clared in CVC, every variable in the WSL condition being processed must be appended

to the output string. Apart from this, converting a WSL condition to a CVC query is, in

effect, equivalent to writing a pretty printer for WSL conditions. A task which is trivial to

implement usingMetaWSL.
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Chapter 6

Conclusion

6.1 Introduction

6.2 Conclusions about research questions or hypotheses

6.3 Conclusions about the research problem

6.4 Implications for theory

6.5 Implications for practice

6.6 Limitations

6.7 Implications for further research
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