
1

Final Report Pareto Efficient Multi-Objective
Test Case Selection

School of Physical Sciences and Engineering
King’s College London

MSc Advanced Software Engineering

Module Title: CSMPRJ
Submission Date: 07/09/07

Pareto Efficient Multi-Objective
Test Case Selection

By
Syed Ali Shahid

Supervised by
Prof. Mark Harman

Report:
Final Report

2

Final Report Pareto Efficient Multi-Objective
Test Case Selection

ABSTRACT

This project will build on the previous work by Mark Harman and Shin Yoo on Pareto
Efficient Test Case Selection pertaining to two objective formulation. It will introduce
the concept of Pareto Efficient Test Case selection and the benefits of this approach.
This project will illustrate the benefits of Pareto efficient test case selection with
empirical studies of two objective formulations.

Shin Yoo and Mark Harman used multiple objectives such as code coverage, past
fault-detection history and execution cost, and constructed a group of non-dominating,
equivalently optimal test case subsets. This project will develop on the code coverage
and execution cost objectives.

This project will consider a wider range of software artifacts with different meta-
heuristic multi-objective optimization techniques. Also, a new evolutionary algorithm
will be developed.

The artifacts have been obtained from SIR – a software archive. The programs in the
project will be developed in C language.

3

Final Report Pareto Efficient Multi-Objective
Test Case Selection

AKNOWLEDGEMENTS

I would like to thank Shin Yoo and Mark Harman for their ongoing help in this
project. Also, I am grateful to Zheng Li, who provided the coverage analysis data,
which was obtained using a commercial tool called Canatata++. Shin Yoo provided
the execution cost data for the Siemens suite and Space program which was obtained
via Valgrind.

4

Final Report Pareto Efficient Multi-Objective
Test Case Selection

Table of Contents

1. Problem Definition 6

2. Technical Specification 7

3. Aims & Objectives 8

4. Background 9
4.1 Test Case Selection 9
4.2 Meta Heuristics Algorithm 10
4.3 Evolutionary Algorithm 10
4.4 Genetic Algorithm 10
4.4 Pareto Optimality 12
4.5 Multi objective Algorithms 13
4.6 Greedy Algorithm 14
4.7 Additional Greedy Algorithm 14
4.8 Hill-Climbing Algorithm 14
4.9 NSGA-2 Algorithm 15
4.10 vNSGA-2 Algorithm 16
4.10 SPEA-2 16
4.11 PESA-2 16
4.12 New Algorithm 16
4.13 Subject 16

5. Design And Implementation 17

5.1 Research Questions 17
5.2 Artifacts 17
5.3 Analysis Tool 18
5.4 Experimental Design 18
5.5 Algorithm Design and Implementation 18

6. Evaluations of Results 20

7. Evaluations of Results Obtained 23

8. Future Work 24

9. References 25

10. Appendix 26

5

Final Report Pareto Efficient Multi-Objective
Test Case Selection

Table of Figures
Figure 1 7
Figure 1.1 9
Figure 1.2 9
Figure 1.3 10
Figure 1.4 11
Figure 1.5 11
Figure 1.6 11
Figure 1.7 15
Figure 1.8 20
Figure 1.9 20
Figure 1.10 21
Figure 1.11 21

6

Final Report Pareto Efficient Multi-Objective
Test Case Selection

PROBLEM DEFINITION

Previous work has treated test case selection as a single objective optimization
problem. It was treated as two/three objective formulation only recently by Mark
Harman and Shin Yoo [2]. This project builds on their work on two objective
formulation of coverage and cost by providing more artifacts and multi-objective
meta heuristic optimization techniques.

Multi Objective optimization can be found in various fields: finance, aircraft design,
or whenever optimization designs have to be taken in the presence of tradeoffs
between two conflicting objectives. Maximizing profit and minimizing cost of a
product or maximizing performance and minimization fuel consumption of a car are
both examples of multi-objective optimization problem. This helps a decision maker
make a well-informed decision that balances the tradeoffs between the objectives.

The project describes the potential benefits of Pareto efficient multi-objective test
case selection, illustrating with empirical studies of two objective formulations.

7

Final Report Pareto Efficient Multi-Objective
Test Case Selection

TECHNICAL SPECIFICATION

This project will be based on multi objective formulation of regression test case
selection problem and will work with two objective formulation, which uses statement
coverage and computational cost of test cases as objectives.
Thus, code coverage that is one of the objectives will be maximized for a given cost.
The other objective time should be minimized for a given cost.

The project will present seven algorithms for solving the two objective instances of
the test case selection problem: a reformation of the single-objective greedy
algorithm, Hill climbing algorithm, the Non Dominating Sorting Genetic Algorithm
(NSGA-2) of Deb et al. [6], Island genetic algorithm variant of NSGA-2 (vNSGA-2),
which was introduced in [2], the Strength Pareto Evolutionary Algorithm 2 called
SPEA-2 by Zitler et al. [8], the Pareto Envelope-based Selection Algorithm PESA2
was introduced by Corne et al. and a new algorithm (evolutionary algorithm) will be
developed. Also, an exhaustive search will be carried out on the smaller artifacts to
ascertain the true Pareto frontier.
The project will present results from an empirical study of the application of several
greedy, meta-heuristic and evolutionary search algorithms to 8 programs ranging from
374 to 11,148 lines of code. The results of these algorithms, when applied to two
objective version of the problem using, as subjects four programs from the Siemens
suite [4], together with space developed for the European Space Agency. The
Siemens programs used are print tokens, printtokens2, schedule and schedule2. In
addition to these three larger programs will be tested. Two of these programs (Grep
and Flex) were used in [5] and another program SED. They were obtained from SIR -
Software-artefacts Infrastructure Repository [6].

Table 1
Experiment Objects

Program Lines Of Code Test Pool Size Avg. test suite size
print_tokens 726 4130 16
print_tokens2 570 4115 17

schedule 412 2650 8
schedule2 374 2710 8

space 6199 13585 153

Table 2
Additional Experiment Objects

Program Lines Of Code Test Pool Size
flex 10459 567
grep 10068 809
sed 11148 1293

Fig 1 – Obtained from
Pareto Efficient Test
Case Selection by Mark
Harman & Shin Yoo
Given test suite s with
coverage c1 and time t1

8

Final Report Pareto Efficient Multi-Objective
Test Case Selection

AIMS AND OBJECTIVES

The aim of this project is to build on the work of two objective test case selection by
[2]. To this end the project will use the artifacts used in [2] which are Siemens suite
and Space program and than provide additional larger programs.

The objectives of the project are as follows:
1) To obtain coverage and cost data from larger artifacts i.e. SED, Grep and Flex.
2) To introduce a new algorithm and by means of empirical results ascertain its
impact on the Pareto optimal front.
3) To introduce a wider range of multi-objective meta-heuristic algorithms.

9

Final Report Pareto Efficient Multi-Objective
Test Case Selection

BACKGROUND

Regression Testing ensures that new or modified features do not regress (make worse)
existing features. Aim is to test the parts that have changed and ensure there has not
been a detrimental effect on the rest of the system. It is an important and sometimes
very frequent activity.
Regression testing is essential to ensure quality of software but it is an expensive
maintenance activity [1].

IEEE software glossary defines regression testing as “selective retesting of a
system or component to verify that modifications have not caused unintended
effect and the system or component still complies with its specified
requirements.”

Due to time limitations on regression testing using retest-all method, other techniques
such as Test case selection and prioritization are considered [2].

Existing literature categorizes three major areas:
1) Test Case Selection (Screen)
2) Test Suite Minimization (Remove)
3) Test Suite Prioritization (Order)

This project is concerned with multi-objective test case selection. Regression test
selection techniques select some subset of an existing test suite to try to reduce the
time required to retest the modified program [1]. Test suite reduction techniques
permanently eliminate test cases from test suites. Prioritization techniques try to order
the test cases in such a way that faults are detected early.

REGRESSION TEST CASE SELECTION
Test case selection techniques try to improve the retest all approach by selecting a
subset of the entire test suite based on some test criteria.
One of the criteria to select test cases is the safe selection of test cases. Lets assume
we have program P, its new version P’, and a test suite, T. A test case is modification-
traversing if it if it executes code that was changed or inserted into P, or deleted from
P [2]. Subset T’ of T is safe if it includes all the modification traversing test cases of
T:

Fig1.1 Test Case Selection from Mark Harman & Shin Yoo (2007)

10

Final Report Pareto Efficient Multi-Objective
Test Case Selection

META HEURISTIC
Metaheuristic is a heuristic method for solving a general class of computational
problems by combining user given procedures – usually heuristic themselves – in an
efficient way.
Metaheuristic are generally applied to problems where there are no satisfactory
problem specific algorithms or heuristic; or when it is not practical to implement such
a method [14].
The most commonly used Meta-Heuristics are targeted to optimization problems, but
they can tackle any problem that can be recast in that form.

Many exciting and challenging problems in Software Engineering lie within the reach
of metaheuristic search [13].

EVOLUTIONARY ALGORITHM
Evolutionary Algorithm (EA) is a subset of evolutionary computation, a generic
population-based meta-heuristic optimisation algorithm. An Evolutionary Algorithm
uses some mechanisms inspired by biological evolution: reproduction, mutation,
recombination, natural selection and survival of the fittest. Candidate solutions to the
optimisation problem play the role of individuals in a population, and the fitness
function determines the environment within which the solutions "live". Evolution of
the population then takes place after the repeated application of the above operators.

Evolutionary Algorithms perform consistently well approximating solutions to all
types of problems because they do not make any assumption about the underlying
fitness landscape [15].

GENETIC ALGORITHM
“Genetic Algorithms are good at taking large, potentially huge search spaces and
navigating them, looking for optimal combinations of things, solutions you might not
otherwise find in a lifetime.”

- Fig 1.2 from Salvatore Mangano Computer Design, May 1995

Genetic Algorithms (GA) are the most popular type of Evolutionary algorithm.
Genetic Algorithms, is a search technique, based on biological evolution, which are
used to approximate solutions to optimization.
To solve a specific problem, the genetic algorithm takes set of potential solutions to
that problem as input and a metric called a fitness function that allows each candidate
solution to be quantitatively evaluated. One application of genetic algorithms is
regression test suite selection. The candidate solutions are test suites, with the aim of
the genetic algorithm being to select it based on some criterion.

11

Final Report Pareto Efficient Multi-Objective
Test Case Selection

A fitness function is a particular type of objective function that quantifies the
optimality of an individual in a Genetic Algorithm so that that particular individual
may be ranked against all the other individuals [16].

- Fig 1.3 Genetic Algorithm from Mark Harman and Zheng Li (2006)

Population could be:
 Bit strings (0101 ... 1100)
 Real numbers (43.2 -33.1 ... 0.0 89.2)
 Lists of rules (R1 R2 R3 ... R22 R23)
 Program elements (genetic programming)
 ... any data structure …

Selection: Parents are chosen at random according to some criteria (fitness function)

Cross over Mutation:
- Alters one or more values in a genome

Before: (1 0 1 1 0 1 1 0)
After: (0 1 1 0 0 1 1 0)

Cross over Recombination:
- It leads to effective recombination of subsolutions

P1 (0 1 1 0 1 0 0 0) (0 1 0 0 1 0 0 0) C1
P2 (1 1 0 1 1 0 1 0) (1 1 1 1 1 0 1 0) C2

12

Final Report Pareto Efficient Multi-Objective
Test Case Selection

PARETO OPTIMALITY
According to Carlos [3], multiobjective optimization problem (MOP) can be defined
as the problem of finding (Osyczka, 1985):
“a vector of decision variables which satisfies constraints and optimizes a vector
function whose elements represent the objective functions. These functions form a
mathematical description of performance criteria which are usually in conflict with
each other. Hence, the term “Optimize” means finding such a solution which would
give the values of all the objective functions acceptable to the decision maker.”

Pareto optimality is a notion found in economics with a wide range of applications.
The basic definition of Pareto optimality explained in [2] is that given a set of
allocations and a set of population, allocation A is an improvement over allocation B,
if A can make a person better off B without making any person worse off.

Based on this Mark Harman and Shin Yoo defined multiobjective optimization
problem as to find a vector of decision variable x, which optimizes a vector of M
objective functions fi(x) where i = 1,2,3,4,……,M. Objective functions are
mathematical descriptions of optimization criteria (which are often in conflict with
one another). So, if we want to maximize fi, where i =1,2,…,M. A decision vector x is
said to dominate decision vector y if and if their objective vectors satisfies:

- Fig 1.4 Pareto Optimality from Mark Harman and Shin Yoo (2007)

Pareto optimality concept always gives a set of non-dominated solutions called the
Pareto optimal set, while the corresponding vectors form the Pareto frontier. The
vectors corresponding to solutions in a Pareto optimal set are called non-denominated.

So, the multiobjective problem can be described as:

- Fig 1.5 Pareto Optimality from Mark Harman and Shin Yoo (2007)

Identifying the Pareto frontier is useful because it can be used to make well-informed
decisions that balance trade-offs between the objectives.
The multi-objective test case selection problem with respect to Pareto efficient subset
can be defined as:

- Fig 1.6 Pareto Optimality from Mark Harman and Shin Yoo (2007)

13

Final Report Pareto Efficient Multi-Objective
Test Case Selection

MULTIOBJECTIVE ALGORITHMS
We usually consider two generation of MOEAs [3]:

1) First Generation
This is characterized by the use of Pareto ranking and niching (or fitness sharing).
These algorithms are quite simple. Some were population based i.e. VEGA
(Vector Evaluated Genetic Algorithm) while other used Pareto approach.
2) Second Generation
The introduction of elitism as a concept with two main forms: selection and using
an external population.

Evolutionary algorithms offer many advantages pertaining to multi objective
optimization. These algorithms can deal with a set of possible solutions
simultaneously. This means that we can find several members of the Pareto optimal
set in a single run. Also, evolutionary algorithms are less susceptible to the shape or
continuity of the Pareto frontier.
Pareto-based techniques were introduced by Goldberg (1989). This technique uses
non-dominated ranking and selection to move towards the Pareto Frontier. Also, to
maintain diversity in the population it requires a technique and ranking procedure [3].
The advantage of Pareto approach is that it is relatively easy to implement and the
disadvantage is the problem to scale the approach (i.e. checking non dominance is O
(kM2), where k=amount of objectives and M = population size).
There are normally three issues that are considered for design in a good metric [3]:

1. Minimize the distance of the Pareto front produced by our algorithm with
respect to the true Pareto front

2. Maximize the speed of solutions found.
3. Maximize the elements of Pareto optimal set found.

So, the question arises what kind of metrics can we use?
Well, there are many metrics that can be used and some examples of metrics follow:

1) Spread: It is used as a statistical metric such as the chi-square distribution to
measure “spread” along the Pareto front.

2) General Distance: Estimates how far is our current Pareto front from the true
Pareto front of a problem using Euclidean distance (measured in objective
space)

3) Coverage: Measures the size of objective value space area covered by a set of
non dominated solutions.

14

Final Report Pareto Efficient Multi-Objective
Test Case Selection

GREEDY ALGORITHM
A greedy algorithm is implemented on the ‘next best’ search approach. The principle
is that the element with the maximum weight is taken first, followed by the element
with the second highest weight and so on, until a complete solution is constructed [9].

ADDITIONAL GREEDY ALGORITHM
The additional greedy algorithm is a kind of greedy algorithm but adopts a different
strategy. The feedback from previous selections is combined. According to [9] it
iteratively selects the maximum weight element of the problem from the part not
already consumed by previously selected elements. The cost cognizant version of the
two objective formulation was implemented for this algorithm.

HILL CLIMBING ALGORITHM
Hill climbing is local search algorithm. It has two variations in strategy: steepest
ascent and next best ascent. In this project steepest ascent approach for Hill Climbing
is adopted which comprises of the following steps, taken from Li and Harman [9].
1. Pick a random solution state and make this the current state.
2. Evaluate all the neighbours of the current state and choose the neighbour with
maximum fitness value.
3. Move to the state with the largest increase in fitness from the current state. If no
neighbour has a larger fitness than the current state then no move is made.
4. Repeat the previous two steps until there is no change in the current state.
5. Return the current state as the solution state. Hill-Climbing is simple and
computationally cheap to implement and execute. However, it is common for the
search to yield sub-optimal results that are locally optimal, but not globally optimal.

15

Final Report Pareto Efficient Multi-Objective
Test Case Selection

NSGA-2 ALGORITHM

Fig 1.7 Nondominated Sorting Genetic Algorithm (NSGA) flowchart
NSGA was proposed by Srinivas and Deb in 1994. NSGA is based on several layers
of classifications of individuals. Nondominated individuals get a dummy value and
then are removed from the population. The process is repeated until the entire
population has been classified [3]. Classified individuals are shared with their fitness
value to maintain diversity.
NSGA-2 was introduced by Srinivas and Deb [11] as a new version to NSGA [12].
The main changes were as follows:
1) NSGA-2 is more efficient (computationally).
2) It uses elitism.
3) A crowded comparison operator is used which keeps diversity.

START

Initialize
population gen
= 0

Front = 1

population
classified?

Identify Non-
dominated
individuals

Assign Dummy
Fitness

Sharing in
current front

Front = Front +1

Reproduction
according to dummy
fitness

Yes

No

Crossover

Mutation

Is gen <
maxgen ?

START

gen = gen+1

16

Final Report Pareto Efficient Multi-Objective
Test Case Selection

vNSGA-2 ALGORITHM
vNSGA-2 algorithm is an island generic algorithm variant of NSGA-2 and was
developed by [2]. vNSGA-2 makes two major modifications to NSGA-2. First, the
algorithm uses a group of sub-populations which are separate from one another, to
achieve a wider Pareto Frontier. It performs a pairwise tournament selection on
individuals that from a non dominated pair and each of the subpopulations prefers
different objectives inorder to advance the Pareto frontier in all the directions. Also, it
improves the elitism of NSGA-2.

SPEA-2 ALGORITHM
SPEA was introduced in 1999 by Zitzler & Thiele. It main characteristic are that it
stores non dominated solutions externally in a second; continuously updated
population, it evaluates an individual’s fitness dependent on the number of external
nondominated points that dominate it, it preserves population density using the Pareto
dominance relationship and it incorporates a clustering procedure in order reduce the
nondominated set without destroying its characteristics [10]. The clustering technique
is called “average linkage method”.
A revised version of SPEA was proposed by Zitzler et al. [8] called SPEA2. It has
three main differences with regards to SPEA [3]:
1) SPEA2 incorporates a fine grained fitness assignment strategy which takes into
account for each individual the number of individuals that dominate it and the number
of individuals which it dominates.
2) It uses a nearest neighbour density estimation which results in a more efficient
search.
3) Its enhanced archive truncation method, guarantees the preservation of boundary
solutions.

NEW ALGORITHM
A new evolutionary algorithm will be introduced to multiobjective optimization. This
algorithm will be a combination of NSGA-2 and Hill climbing approaches.

SUBJECTS
In the project a total of eight C programs were studied. Four small programs
Print_tokens, Print_tokens2, Schedule, Schedule2 assembled by researchers at
Siemens Corporate Research were studied together with four large programs, Space
Sed, Grep and Flex. Space was developed by European Space Agency and Sed is the
UNIX stream editor string processing utility. Grep (global regular expression print)
and Flex (Fast Lexical Analyzer) are both UNIX utility programs [7]. Grep utility
searches a file to see if it contains a specified string of characters and Flex is a lexical
analyzer generator. These programs together with coverage information and test suites
are available from SIR online repository.

17

Final Report Pareto Efficient Multi-Objective
Test Case Selection

DESIGN AND IMPLEMENTATION

RESEARCH QUESTIONS
The research questions are as follows:
1. Do there exist situations where the Pareto efficient approaches produce more points
on the Pareto front than the greedy or hill climbing algorithm?
2. How well do the algorithms perform compared to one another and to the global
optimum for the 2-objective formulation?
3. What can be said about the shape of the Pareto Optimal frontiers, both
approximated and optimal? What insights do they reveal concerning the tester’s
dilemma as to how to balance the trade-offs between objectives?

ARTIFACTS
The project will present results from an empirical study of 8 programs ranging from
374 to 11,148 lines of code. The results of these algorithms, when applied to two
objective version of the problem using, as subjects four programs from the Siemens
suite [4], together with space developed for the European Space Agency. The
Siemens programs used are print tokens, printtokens2, schedule and schedule2. In
addition to these three larger programs will be tested Flex, Grep and SED. They were
obtained from SIR - Software-artefacts Infrastructure Repository [6].

Table 1
Experiment Objects

Program Lines Of Code Test Pool Size Avg. test suite size
print_tokens 726 4130 16
print_tokens2 570 4115 17

schedule 412 2650 8
schedule2 374 2710 8

space 6199 13585 153

Table 2
Additional Experiment Objects

Program Lines Of Code Test Pool Size
flex 10459 567
grep 10068 809
sed 11148 1293

OBJECTIVES
The project instantiates the two objective formulation, with code coverage as a
measure of test adequacy and execution time as a measure of cost. Code coverage or
the statement coverage is the amount of statements in the program covered by the test
suite. A statement is any line in the program.

18

Final Report Pareto Efficient Multi-Objective
Test Case Selection

EFFECTIVENSS MEASURE
To address the research questions there has to be a measure which determines the
effectiveness of each Pareto frontier. In order to optimize both cost and coverage the
additional greedy algorithm will not only be able to measure cost but coverage per
unit time.

ANALYSIS TOOLS
Zheng Li, provided the coverage analysis data, which was obtained using a
commercial tool called Canatata++. Shin Yoo provided the execution cost data for
Siemens suite and Space program which was obtained via Valgrind.
The coverage data and execution data for SED, Grep and Flex will be obtained using
Cantata++ and Valgrind.

EXPERIMENTAL DESIGN
Each program has a large number of available test suites. Four test suites were
randomly selected for each program. So, a total of 32 test suites were used as input to
the multi-objective Pareto optimization. Statement coverage and execution time were
used as objectives.

ALGORITHM DESIGN AND IMPLEMENTATION
A total of eight algorithms will be used for multi-objective test case selection
techniques:

 Random
 Greedy
 Additional Greedy
 Hill Climbing
 NSGA-2
 vNSGA-2
 SPEA-2
 New Algorithm – hNSGA-2

Exhaustive search was used to locate the true Pareto frontier for the Siemens suite.
For the Space Program the reference Pareto frontier was formed was formed
differently.
Random algorithm was used as a benchmark to measure the effectiveness of other
algorithms. If an algorithm had a pareto frontier close to the reference frontier, it was
atleast somewhat successful.
The Greedy algorithm will be implemented using the next best approach. The cost
cognizant version of the Additional greedy algorithm will be implemented. Greedy
and Additional Greedy algorithms would first use the quick sort algorithm to sort the
test cases.
Hill Climbing algorithm will be used with steepest ascent. For each execution the hill
climbing algorithm used the random algorithm to generate an initial solution
containing n test cases.
Population size is set at 100 for all programs.
NSGA-2 [11] and vNSGA-2 algorithms will be executed 20 times for each test suite
to account for their inherent randomness. Two major modifications were made to
NSGA-2 for vNSGA-2. First, the algorithm uses a group of sub-populations to
achieve a wider Pareto frontier and it extends the elitism of NSGA-2. NSGA-2 will be

19

Final Report Pareto Efficient Multi-Objective
Test Case Selection

configured with the recommended setting of {population=100, and maximum fitness
evaluation = 25,000}. Also, it will use a single point crossover and bit-flip mutation.
SPEA-2 algorithms will be implemented as mentioned in [8].
hNSGA-2 is an algorithm that combines the best features of NSGA-2 and hill
climbing. The solutions obtained from the last Pareto front produced by NSGA-2 are
inserted into a hill climber which tries to find a better front.

20

Final Report Pareto Efficient Multi-Objective
Test Case Selection

EVALUATIONS OF RESULTS

printtokens

94
95
96
97
98
99

100
101

0 100 200 300 400

Time

C
o

ve
ra

g
e

%

Exhausted

Greedy

Random

Agreedy

Hill Climb

Fig 1.2 printtokens

printtokens2

88

90

92

94

96

98

100

0 100 200 300 400 500

Time

C
o

ve
ra

g
e

%

Exhausted

Random

Greedy

Agreedy

Hill Climb

Fig 1.3 printtokens2

21

Final Report Pareto Efficient Multi-Objective
Test Case Selection

schedule

0

20

40

60

80

100

120

170 172 174 176 178 180 182

Time

C
o

ve
ra

g
e

%

Exhausted

Random

Greedy

Agreedy

Hill Climb

Fig 1.4 schedule

schedule2

84
86
88
90
92
94
96
98

100
102

0 50 100 150 200 250 300

Time

C
o

ve
ra

g
e

%

Exhausted

Random

Greedy

Agreedy

Hill Climb

Fig 1.5 schedule2

23

Final Report Pareto Efficient Multi-Objective
Test Case Selection

EVALUATIONS OF RESULTS OBTAINED

Across the different results obtained Additional Greedy Algorithm performs better than
all the other algorithms. This is because Additional Greedy algorithm only selects test
cases that cover new aspects of the program.
Greedy algorithm performs worst than Additional Greedy Algorithm. Random algorithm
performs the worst in nearly all the artifacts. The reason for this is that it selects new test
cases that merely cover what has already been covered.
Hill Climbing algorithm has performed well in some of the artifacts. The main problem
with its performance is that the solutions obtained are local optima and other better
solutions are available. It does perform better than Greedy and Random algorithms.
In the Fig 1.2 printtokens, Additional Greedy algorithm outperforms all the other
algorithms studied. While in Fig 1.3 printtokens2, both Greedy and Additional Greedy
algorithms perform well. In Fig 1.4 schedule and Fig 1.5 schedule2, all algorithms have
performed well. Space artifact could not be checked because of a file opening error.

24

Final Report Pareto Efficient Multi-Objective
Test Case Selection

FUTURE WORK

Pareto Optimality has been treated as single objective optimization problem in previous
works. This project showed the results achieved by some of the algorithms Random,
Greedy, Additional Greedy and Hill Climbing. Some of the objectives of this project
could not be met which could have been helpful in further our understanding of multi-
objective test case selection. Future work will consider the artifacts proposed in this
project tighter with other meta-heruistic techniques. This project focused on Multi
Objective test case selection, other studies could use test case prioritization to further the
work done in this project.

This project has described some of the benefits of Pareto Optimality and presented
empirical study that investigates the effectiveness of some algorithms. This paper
described four algorithms for multiobjective test case selection. It presented results of an
empirical study to investigate there effectiveness. The objectives of the projects were to
introduce 8 algorithms and 3 artifacts. This project has introduced four algorithms.

Across the different programs considered, the Additional Greedy algorithm performed the
better than the rest.

25

Final Report Pareto Efficient Multi-Objective
Test Case Selection

REFERENCES

[1] Gregg Rothermel and Mary Jean Harrold. Analyzing Regression Test Selection
Techniques. IEEE transactions on Software Engineering, V.22, no. 8, August 1996, pages
529-551
[2] Shin Yoo and Mark Harman. Pareto Efficient Multi-Objective Test Case Selection.
ISSTA ’07, July 9-12, London, U.K.
[3] Carlos A. Coello Coello. Metaheuristics for Multiobjective Optimization.
[4] M. Hutchins, H. Foster, T. Goradia, and T. Ostrand. Experiments on the effectiveness
of dataflow and control-flow-based test adequacy criteria. In Proceedings of the 16th

International Conference on Software Engineering, pages 191-200. IEEE Computer
Society Press, May 1994.
[5] Sebastian Elbaum, Alexey G. Malishevsky and Gregg Rothermel. Test Case
Prioritization: A Family of Empirical Studies. IEEE transactions on software engineering,
Vol. 28, No. 2, February 2002
[6] H. Do, S.G.Elbaum and Gregg Rothermal. Supporting controlled experimentation
with testing techniques: An infrastructure and its potential impact. Empirical Software
Engineering: An International Journal, 10(4):405-435,2005.
[7] Mark S. Sobell. A Practical Guide To The Unix System, 3rd Edition.
[8] Eckart Zitzler, Marco Laumanns and Lothar Thiele. SPEA2: Improving the Strength
Pareto Evolutionary Algorithm for Multiobjective Optimization. CIMNE Barcelona,
Spain, 2002.
[9] Zheng Li, Mark Harman and Robert M. Hierons. Search Algorithms for Regression
Test Case Prioritization.
[10] Eckart Zitzler and Lothar Thiele. Multiobjective Evolutionary Algorithms: A
comparative Case study and the strength Pareto Approach. IEEE Transactions on
evolutionary computation, Vol. 3, No. 4, November 1999.
[11] Kalyanmoy Deb, Amrit Pratap, Sameer Agarwal, and T. Meyarivan. A Fast and
Elitist Multi-Objective Genetic Algorithm: NSGA-2. KanGAL Report No. 200001
[12] N.Srinivas and K. Deb. Multi-Objective function optimization using non-dominated
sorting genetic algorithms. Evolutionary Computation, Vol. 2, pp. 221-248, 1995
[13] Mark Harman and Bryan F. Jones .Search-Based Software Engineering
[14] http://en.wikipedia.org/wiki/Metaheuristic
[15] http://en.wikipedia.org/wiki/Evolutionary_algorithm
[16] http://en.wikipedia.org/wiki/Genetic_algorithm
[17] http://en.wikipedia.org/wiki/Fitness_function
[18] David W. Corne, Joshua D. Knowles, Martin J. Oates The Pareto Envelope-based
Selection Algorithm for Multiobjective Optimization

26

Final Report Pareto Efficient Multi-Objective
Test Case Selection

APPENDIX

#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <ctime>
#include<iostream.h>

#define SMALL 50
#define LARGE 100

#define EXT "executiontime"
#define SCH1 "schedule1"
#define SCH2 "schedule2"
#define PRI1 "printtokens1"
#define PRI2 "printtokens2"
#define SPAC "space"

#define FLEX "flex"
#define GREP "Grep"
#define SED "Sed"

#define STA "statement_cov"

#define NAMESIZE 30

int exhaustive(char **testSuiteCoverage, char **testSuite, int *solution, int noLines, int
testSuitePop, int totalNoCovered,double time[]);
int random(char **testSuiteCoverage, char **testSuite, int *solution, int noLines, int
testSuitePop, int totalNoCovered,double time[]);
void greedy(char **testSuiteCoverage, char **testSuite, int *solution, int noLines, int
testSuitePop, int totalNoCovered,double *time);
void additionalGreedy(char **testSuiteCoverage, char **testSuite, int *solution, int
noLines, int testSuitePop, int totalNoCovered, double time[]);
void hillClimbing(char **testSuiteCoverage, char **testSuite, int *solution, int noLines,
int testSuitePop, int totalNoCovered, double time[]);
void printResults(char name[], char **testSuiteCoverage, char **testSuite, int solution[], int solutionPop,
int totalNoCovered, int noLinesCovered, int testSuitePop, double time[]);

void quickSort(int numbers[], int positions[], int array_size);
void qsort(int numbers[], int positions[], int left, int right);

int main()
{
srand((unsigned)time(0)); //seeds the random number generator
bool found=false; //flag as to when a test case has been found in the universe array

int pos = 0; //position in the test case name/input
int progNo; //input program number

27

Final Report Pareto Efficient Multi-Objective
Test Case Selection

int covNo; //type of coverage number
int suiteType; //type of test suite (large or small)
int testSuiteNo; //test suite number
char *progName; //input program name
char *covName; //coverage type name
char *extTimeName; //input Execution Time name
char *suiteName; //suite type name
char *testName; // for test name
char universeFile[35] = "./";
char matrixFile[35] = "./";
char suiteFile[35] = "./";
char timeFile[35] = "./";
int populationNo = 0; //starting population number for the NSGA-2,hNSGA-2,SPEA-2 algorithm
int inChar;

FILE *inFile;

printf("1. Schedule\n");
printf("2. Schedule 2\n");
printf("3. Print Tokens\n");
printf("4. Print Tokens 2\n");
printf("5. Space\n");
printf("6. Flex\n");
printf("7. Grep\n");
printf("8. Sed\n");
printf("Select input program (1-8): ");
scanf("%d", &progNo);

switch(progNo)
{
case 1:
progName = SCH1;
extTimeName = SCH1;
populationNo = SMALL;
break;
case 2:
progName = SCH2;
extTimeName = SCH2;
populationNo = SMALL;
break;
case 3:
progName = PRI1;
extTimeName = PRI1;
populationNo = SMALL;
break;
case 4:
progName = PRI2;
extTimeName = PRI2;
populationNo = SMALL;
break;
case 5:
progName = SPAC;
extTimeName = SPAC;
populationNo = LARGE;
break;
case 6:

28

Final Report Pareto Efficient Multi-Objective
Test Case Selection

progName = SPAC;
extTimeName = SPAC;
populationNo = LARGE;
break;
case 7:
progName = SPAC;
extTimeName = SPAC;
populationNo = LARGE;
break;
case 8:
progName = SPAC;
extTimeName = SPAC;
populationNo = LARGE;
break;
default:
progName = SCH1;
extTimeName = SCH1;
populationNo = SMALL;
printf("Using default program - %s\n", SCH1);
}

// --------------------------------Copy Universal Data-------------------------
strcat(universeFile, progName);
strcat(universeFile, "/universe");
//Open the universe file and store the test case names in an array
printf("Opening universe file: %s\n", universeFile);
inFile = fopen(universeFile, "r");
if(!inFile)
{
printf("Error: Could not open universe file\n");
exit(EXIT_FAILURE);
}
printf("%s selected\n", universeFile);

int universePop = 1;
while(inChar != EOF) //calculate number of test cases in the universe file
{
inChar = fgetc(inFile);
if(inChar == '\n')
universePop++;
}
printf("universePop: %d\n", universePop);
//char is a 2D array to hold the name of each test case
char** universe = NULL; //declare the 2D array as a pointer to a pointer
universe = new char*[universePop]; //allocate the main array
for (int i=0; i<universePop; i++)
universe[i] = new char[NAMESIZE]; //allocate each member of the main array

for(int a=0; a<universePop; a++)
{
for(int b=0; b<NAMESIZE; b++)
universe[a][b] = ' ';
}
int y=0;
int x=0;
inFile = fopen(universeFile, "r");

29

Final Report Pareto Efficient Multi-Objective
Test Case Selection

inChar = 0;
while(inChar != EOF)
{
inChar = fgetc(inFile);
if(inChar != '\n')
{
universe[y][x] = inChar;
x++;
}
else
{
y++;
x=0;
}
}
printf("Universe data copied\n");

// --------------------------------Statement Coverage Data-----------------------
printf("\n ------------------------Statement Coverage -------------------------------------\n");
covName = STA;

strcat(matrixFile, progName);
strcat(matrixFile, "/");
strcat(matrixFile, covName);
strcat(matrixFile, "/matrix.out");
printf("\nUsing coverage (matrix) file: %s\n", matrixFile);
//Open the matrix file, retrieve coverage data and store in a 2 dimensional array
inFile = fopen(matrixFile, "r");
printf("Opening %s file...\n", matrixFile);
if(!inFile)
{
printf("Error: Could not open matrix file\n");
exit(EXIT_FAILURE);
}
printf("%s selected\n", matrixFile);
int noLines=0;
int noTests=0;
inChar = 0;
while(inChar != EOF)
{
noLines=0;
while(inChar != '\n')
{
inChar = fgetc(inFile);
noLines++; //increment line counter
}
noTests++; //increment test case counter
inChar = fgetc(inFile);
}
printf("Number Of Lines= %d\n", noLines);
printf("Number Of Tests= %d\n", noTests);
//char is a 2D array to hold coverage information for each test case
char** coverage = NULL; //declare the 2D array as a pointer to a pointer
coverage = new char*[noTests]; //allocate the main array
for (i=0; i<noTests; i++)
coverage[i] = new char[noLines]; //allocate each member of the main array

30

Final Report Pareto Efficient Multi-Objective
Test Case Selection

inFile = fopen(matrixFile, "r");
int counter = 0;
for(y=0; y<noTests*2; y++) //fill the 2D array with data from the input text file
{
for(x=0; x<noLines; x++)
{
inChar = fgetc(inFile);
if(inChar == '\n') //during a line break, to avoid leaving a blank mini array, the
{ //counter is incremented. this number is then subtracted from
counter++; //the main array number when entering data.
break;
}
else
coverage[y-counter][x] = inChar;
}
}
printf("\nMatrix data retrieved.\n");
// --------------------------------Coverage Data Copied--------------------------- //

// --------------------------------Time Execution Data--------------------------- //
printf("\n ------------------------Time Execution Data------------------------------------\n");

testName = EXT;
strcat(timeFile, testName);
strcat(timeFile, "/");
strcat(timeFile, extTimeName);
printf("\nUsing the time file: %s\n", timeFile);
//Open the universe file and store the test case names in an array
printf("Opening time file: %s\n", timeFile);
inFile = fopen(timeFile, "r");
if(!inFile)
{
printf("Error: Could not open time file\n");
exit(EXIT_FAILURE);
}
printf("%s selected\n", timeFile);

//int tnoLines=0;
int tnoTests=0;

tnoTests = noTests;

printf("Number of Execution Data = %d\n", tnoTests);
inFile = fopen(timeFile, "r");

char line[8];
double* time=NULL;
time = new double[tnoTests];

int counter1=0;

double timeData;

31

Final Report Pareto Efficient Multi-Objective
Test Case Selection

while(fgets(line, 8, inFile) != NULL) //get the whole line of text
{

 //convert the string to a float
 timeData=atof(line);

 if(timeData != 0.0)
 {

 time[counter1]=timeData;
 counter1++;
 }

 }

// --------------------------------Time Execution Data Copied------------------------ //
printf("\n ------------------------Select Test Suite Size-------------------------------\n");

printf("1. Large test suites\n");
printf("2. Small test suites\n");
printf("Select test suite size (1 or 2): ");
scanf("%d", &suiteType);
switch(suiteType)
{
case 1:
suiteName = "testplans-bigcov";
break;
case 2:
suiteName = "testplans-cov";
break;
default:
suiteName = "testplans-bigcov";
printf("Using default test suite size - %s\n", LARGE);
}
strcat(suiteFile, progName);
strcat(suiteFile, "/");
strcat(suiteFile, suiteName);
strcat(suiteFile, "/suite");
printf("\nUsing suite: %s\n", suiteFile);
printf("Enter test suite number to use (1-999): ");
scanf("%d", &testSuiteNo);
char ext[33];
itoa (testSuiteNo,ext,10);
strcat(suiteFile, ext);
printf("suiteFile: %s\n", suiteFile);
inFile = fopen(suiteFile, "r");
if(!inFile)
{
printf("Error: Could not open test suite file %d\n", i);
exit(EXIT_FAILURE);
}
int testSuitePop = 1;
while(inChar != EOF) //calculate number of test cases in the test suite
{
inChar = fgetc(inFile);
if(inChar == '\n')
testSuitePop++;

32

Final Report Pareto Efficient Multi-Objective
Test Case Selection

}
printf("testSuitePop is: %d\n", testSuitePop);
char** testSuite = NULL; //2d array to hold a test suite
testSuite = new char*[testSuitePop]; //allocate the main array
for (i=0; i<testSuitePop; i++)
testSuite[i] = new char[NAMESIZE]; //allocate each member of the main array
for(a=0; a<testSuitePop; a++)
{
for(int b=0; b<NAMESIZE; b++)
testSuite[a][b] = ' ';
}
char** testSuiteCoverage = NULL; //2d array to hold coverage information for a test suite

testSuiteCoverage = new char*[testSuitePop]; //allocate the main array
for (i=0; i<testSuitePop; i++)
testSuiteCoverage[i] = new char[noLines]; //allocate each member of the main array
for(a=0; a<testSuitePop; a++)
{
for(int b=0; b<noLines; b++)
testSuiteCoverage[a][b] = '0';
}
x=0;
y=0;
inFile = fopen(suiteFile, "r");
inChar = 0;
//copy the info in the file to a 2d array
while(inChar != EOF)
{
inChar = fgetc(inFile);
if(inChar != '\n')
{
testSuite[y][x] = inChar;
x++;
}
else
{
y++;
x=0;
}
}
printf("\nTest case values/names:\n");
testSuitePop--; //there is an extra line break at the end of the test suite files - so reduce by 1

for(a=0; a<testSuitePop; a++)
{
for(int b=0; b<NAMESIZE; b++)
printf("%c", testSuite[a][b]);
printf("\n");
}
printf("\nTest case coverage:\n");
for(a=0; a<testSuitePop; a++) //match the entries in this array to the entries in the universe array
{
found = false;
pos=0;
while(found==false)
{

33

Final Report Pareto Efficient Multi-Objective
Test Case Selection

if(strcmp(testSuite[a],universe[pos]) == 0) //if the two test cases are identical
{
for(int c=0; c<noLines; c++)
testSuiteCoverage[a][c] = coverage[pos][c];
for(c=0; c<noLines; c++)
printf("%c", testSuiteCoverage[a][c]);
printf("\n");
found=true;
}
pos++;
}
}
// --------------------------------Test Suite Data Copied------------------------ //
//Count how many lines are covered by the test suite
int totalNoCovered = 0; //total number of lines covered by the full test suite
bool *covered = NULL; //the lines covered by the test suite
covered = new bool[noLines];
for(i=0; i<noLines; i++)
covered[i] = false;
for(y=0; y<testSuitePop; y++)
{
for(x=0; x<noLines; x++)
{
if(testSuiteCoverage[y][x] == '1')
covered[x] = true;
}
}
for(i=0; i<noLines; i++)
{
if(covered[i] == true)
totalNoCovered++;
}
printf("\nNumber of test cases in the entire pool: %d\n", noTests);
printf("Number of test cases in the selected test suite: %d\n", testSuitePop);
printf("Number of lines in the program: %d\n", noLines);
printf("Number of lines covered by the selected test suite: %d\n",totalNoCovered);

int* solution = NULL;
solution = new int[testSuitePop];
for(i=0; i<testSuitePop; i++)
solution[i] = -1;
int algNo;
printf("\n1. Random algorithm\n");
printf("2. Greedy algorithm\n");
printf("3. Additional Greedy algorithm\n");
printf("4. Hill Climbing algorithm\n");
printf("5. NSGA-2 algorithm\n");
printf("6. vNSGA-2 algorithm\n");
printf("7. hNSGA-2 algorithm\n");
printf("8. Exhaustive algorithm\n");
printf("Select algorithm number: ");
scanf("%d", &algNo);
switch(algNo)
{
case 1:
printf("\nRandom algorithm selected\n");

34

Final Report Pareto Efficient Multi-Objective
Test Case Selection

random(testSuiteCoverage, testSuite, solution, noLines,testSuitePop, totalNoCovered,time);
break;
case 2:
printf("\nGreedy algorithm selected\n");
greedy(testSuiteCoverage, testSuite, solution, noLines,testSuitePop, totalNoCovered,time);
break;
case 3:
printf("\nAdditional Greedy algorithm selected\n");
additionalGreedy(testSuiteCoverage, testSuite, solution, noLines,testSuitePop,totalNoCovered, time);
break;
case 4:
printf("\nHill Climbing algorithm selected\n");
hillClimbing(testSuiteCoverage, testSuite, solution, noLines,testSuitePop, totalNoCovered,time);
break;
case 5:
printf("\nNSGA-2 algorithm selected\n");

break;
case 6:
printf("\nvNSGA-2 algorithm selected\n");

break;
case 7:
printf("\nhNSGA-2 algorithm selected\n");

break;
case 8:
printf("\nExhausted Search algorithm selected\n");
exhaustive(testSuiteCoverage, testSuite, solution, noLines,testSuitePop, totalNoCovered,time);
break;
default:
printf("\nDefault algorithm (Random) selected\n");
random(testSuiteCoverage, testSuite, solution, noLines,testSuitePop, totalNoCovered,time);
}

return 0;
}

/******************************** Exhaustive Algo ********************************/
int exhaustive(char **testSuiteCoverage, char **testSuite, int *solution, int noLines, int
testSuitePop, int totalNoCovered,double time[])
{
printf("\nEXHAUSTIVE ALGORITHM\n");

for(int i=0;i <testSuitePop;i++)
{

solution[i] = i+1;
}

int index = testSuitePop;

int noLinesCovered = 0;

35

Final Report Pareto Efficient Multi-Objective
Test Case Selection

printResults("Exhaustive", testSuiteCoverage, testSuite, solution, index,totalNoCovered, noLinesCovered,
testSuitePop, time);
return index;
}

/******************************** Quicksort Algo ********************************/
void quickSort(int numbers[], int positions[], int array_size)
{
qsort(numbers, positions, 0, array_size - 1);
}
void qsort(int numbers[], int positions[], int left, int right)
{
int pivot, pivotPos, l_hold, r_hold;
l_hold = left;
r_hold = right;
pivot = numbers[left];
pivotPos = positions[left];
while (left < right)
{
while ((numbers[right] >= pivot) && (left < right))
right--;
if (left != right)
{
numbers[left] = numbers[right];
positions[left] = positions[right];
left++;
}
while ((numbers[left] <= pivot) && (left < right))
left++;
if (left != right)
{
numbers[right] = numbers[left];
positions[right] = positions[left];
right--;
}
}
numbers[left] = pivot;
positions[left] = pivotPos;
pivot = left;
left = l_hold;
right = r_hold;
if (left < pivot)
qsort(numbers, positions, left, pivot-1);
if (right > pivot)
qsort(numbers, positions, pivot+1, right);
}

/******************************** Random Algo ********************************/

int random(char **testSuiteCoverage, char **testSuite, int *solution, int noLines, int
testSuitePop, int totalNoCovered, double *time)
{

36

Final Report Pareto Efficient Multi-Objective
Test Case Selection

printf("\nRANDOM ALGORITHM\n");
int randomInteger = 0; //random integer
int noLinesCovered = 0; //number of lines covered
int index = 0; //index of the solution array
bool* lineCovered = NULL; //array to keep track of which lines have been covered by test cases
lineCovered = new bool[noLines];
for(int i=0; i<noLines; i++)
lineCovered[i] = false;
for(i=0; i<testSuitePop; i++)
solution[i] = -1;
while(noLinesCovered<totalNoCovered)
{
noLinesCovered = 0;
randomInteger = rand() % testSuitePop;
printf("Test case: %d ", randomInteger);
for(int x=0; x<noLines; x++) //sets elements of the linesCovered array to be true if covered by the current
test case
{
if(testSuiteCoverage[randomInteger][x] == '1')
lineCovered[x] = true;
}
for(x=0; x<noLines; x++) //increments noLinesCovered for each element in the linesCovered array that is
true
{
if(lineCovered[x] == true)
noLinesCovered++;
}
printf("Number of lines covered: %d", noLinesCovered);
solution[index] = randomInteger; //remember each test case selected
for(i=index-1; i>=0; i--)
{
if(solution[i]==randomInteger) //if the test case has already been selected then remove it
{
printf(" (Test Case Duplication - Exclude TC)");
solution[index] = -1;
index--;
}
}
printf("\n");
index++;
}
printf("Solution is: ");
i=0;
while(solution[i] != -1 && i<testSuitePop)
{
printf("%d ", solution[i]);
i++;
}
printResults("Random", testSuiteCoverage, testSuite, solution, index,totalNoCovered, noLinesCovered,
testSuitePop, time);
return index;
}

/******************************** End of Random Algo ********************************/

37

Final Report Pareto Efficient Multi-Objective
Test Case Selection

/******************************** Greedy Algo ********************************/
void greedy(char **testSuiteCoverage, char **testSuite, int *solution, int noLines, int
testSuitePop, int totalNoCovered, double *time)
{
printf("\nGREEDY ALGORITHM\n");
int solutionPop = 0; //population of solution array
int noLinesCovered = 0; //number of lines not covered
int pos = testSuitePop-1; //keeps track of the current test case in the testCase array
int* testCase = NULL; //array to hold the position of each test case number during sorting
testCase = new int[testSuitePop];
for(int y=0; y<testSuitePop; y++)
testCase[y]=y;
int* score = NULL; //array to hold a score (number of lines covered) for each test case
score = new int[testSuitePop];
for(y=0; y<testSuitePop; y++) //initialise the score array
score[y] = 0;
for(y=0; y<testSuitePop; y++) //assigns a score to each test case
{
for(int x=0; x<noLines; x++)
{
if(testSuiteCoverage[y][x]=='1')
score[y]++;
}
}
quickSort(score, testCase, testSuitePop);
bool* lineCovered = NULL; //array to keep track of which lines have been covered by test cases
lineCovered = new bool[noLines];
for(int i=0; i<testSuitePop; i++)
lineCovered[i] = false;
while(noLinesCovered<totalNoCovered)
{
noLinesCovered = 0;
for(int x=0; x<noLines; x++) //sets elements of the linesCovered array to be true if covered by the current
test case
{
if(testSuiteCoverage[testCase[pos]][x] == '1')
lineCovered[x] = true;
}
for(x=0; x<noLines; x++) //increments noLinesCovered for each element in the linesCovered array that is
true
{
if(lineCovered[x] == true)
noLinesCovered++;
}
solution[solutionPop] = testCase[pos];//add the current test case to the solution array
printf("Test case %d selected ", testCase[pos]);
printf("(%d lines covered)", score[pos]);
printf(" Total nos lines covered: %d\n", noLinesCovered);
pos--;
solutionPop++;
}
printResults("Greedy", testSuiteCoverage, testSuite, solution, solutionPop,totalNoCovered,
noLinesCovered, testSuitePop,time);
}

38

Final Report Pareto Efficient Multi-Objective
Test Case Selection

/******************************** End of Greedy Algo ********************************/

/******************************** Additional Greedy Algo*****************************/
void additionalGreedy(char **testSuiteCoverage, char **testSuite, int *solution, int
noLines, int testSuitePop, int totalNoCovered, double *time)
{
printf("\nADDITIONAL GREEDY ALGORITHM\n");
int solutionPop = 0; //number of test cases in the solution
int noLinesCovered = 0; //number of lines covered in the solution
int* testCase = NULL; //array to hold the position of each test case numberduring sorting
testCase = new int[testSuitePop];
int* score = NULL; //array to hold a score (number of lines covered) for each test case
score = new int[testSuitePop];
char** originalCoverage = NULL; //original coverage information
originalCoverage = new char*[testSuitePop]; //allocate the main array
for(int i=0; i<testSuitePop; i++)
originalCoverage[i] = new char[noLines]; //allocate each member of the main array
for(i=0; i<testSuitePop; i++)
{
for(int x=0; x<noLines; x++)
originalCoverage[i][x] = testSuiteCoverage[i][x];
}
while(noLinesCovered<totalNoCovered)
{
for(int y=0; y<testSuitePop; y++) //number the test case number array
testCase[y]=y;
for(y=0; y<testSuitePop; y++) //initialise the score array
score[y] = 0;
for(y=0; y<testSuitePop; y++) //assigns a score to each test case
{
for(int x=0; x<noLines; x++)
{
if(testSuiteCoverage[y][x]=='1')
score[y]++;
}
}
quickSort(score, testCase, testSuitePop);
printf("Test case %d selected ", testCase[testSuitePop-1]);
printf("(%d lines covered)", score[testSuitePop-1]);
solution[solutionPop] = testCase[testSuitePop-1]; //adds the solution number at the top of the sorted testCse
array
for(int x=0; x<noLines; x++) //recalculate testSuiteCoverage info
{
if(testSuiteCoverage[testCase[testSuitePop-1]][x]=='1')
{
noLinesCovered++;
for(int y=0; y<testSuitePop; y++)
testSuiteCoverage[y][x] = '0';
}
}
solutionPop++;
printf(" Total nos lines covered: %d\n", noLinesCovered);
}
printResults("Additional Greedy", originalCoverage, testSuite, solution,

39

Final Report Pareto Efficient Multi-Objective
Test Case Selection

solutionPop, totalNoCovered, noLinesCovered, testSuitePop, time);
}
/******************************** End of Additional Greedy Algo *********************/

/******************************** Hill Climbing Algo******************************/
void hillClimbing(char **testSuiteCoverage, char **testSuite, int *solution, int noLines,
int testSuitePop, int totalNoCovered,double *time)
{
printf("\nHILL-CLIMBING ALGORITHM\n");
//initial random solution, neighbours are the same solution with one test case
//removed, fittest one is the solution with
//best coverage (if none of them have complete coverage then keep current solution)
int noSolutions = random(testSuiteCoverage, testSuite, solution, noLines,
testSuitePop, totalNoCovered,time); //find the number of test cases in the solution
printf("\nNumber of test cases in the randomly generated solution: %d\n",noSolutions);
printf("Random solution:\n");
for(int i=0; i<noSolutions; i++)
printf("%d ", solution[i]);
int* savedSolution = NULL;
savedSolution = new int[noSolutions];
int** neighbours = NULL; //2d array to hold the test case numbers in each neighbour solution
neighbours = new int*[noSolutions]; //allocate the main array
for (i=0; i<noSolutions; i++)
neighbours[i] = new int[noSolutions-1]; //allocate each member of the main array
for(int y=0; y<noSolutions; y++) //initialise the 2d array
{
for(int x=0; x<noSolutions-1; x++)
neighbours[y][x] = -1;
}
bool* covered = NULL; //array to hold whether or not each line is covered by a test case
covered = new bool[noLines];
int currentScore = 0; //score of the current neighbour
int bestScore = 0; //coverage of the best neighbour
int bestNeighbour = -1; //the best neighbour (highest coverage)
int miss = 0; //position in the solution array to not copy over (miss out)
int pos = 0; //position in the solution array
bool terminate = false; //flag to determine when to terminate the algorithm
int solutionPop = 0; //number of test cases in the solution array
int noLinesCovered = 0; //number of lines covered by the solution individual
for(i=0; i<noSolutions; i++)
savedSolution[i] = solution[i]; //save the initial solution
while(terminate==false)
{
for(i=0; i<noSolutions; i++)
savedSolution[y] = solution[y]; //save the current solution
noLinesCovered = bestScore;
printf("\nCurrent Best Solution:\n");
for(i=0; i<noSolutions; i++)
printf("%d ", solution[i]);
printf("\n");
miss = 0;
for(y=0; y<noSolutions; y++) //generate neighbours
{
pos = 0;
for(int x=0; x<noSolutions-1; x++)
{

40

Final Report Pareto Efficient Multi-Objective
Test Case Selection

if(pos==miss) //if the position in the solution array is the one supposed to be missed
{
pos++; //skip to the next position in the solution array
neighbours[y][x] = solution[pos];
}
else
neighbours[y][x] = solution[pos];
pos++;
}
miss++;
}
printf("Its neighbours are:\n");
for(y=0; y<noSolutions; y++)
{
printf("%d. ", y);
for(int x=0; x<noSolutions-1; x++)
printf("%d ", neighbours[y][x]);
printf("\n");
}
bestNeighbour = -1;
bestScore = 0;
for(int sol=0; sol<noSolutions; sol++) //find the neighbour with the best coverage
{
for(int i=0; i<noLines; i++)
covered[i] = false; //reset covered array
for(int y=0; y<noSolutions-1; y++) //check to see which lines are covered by the test cases in the neighbour
{
for(int x=0; x<noLines; x++)
{
if(testSuiteCoverage[neighbours[sol][y]][x]=='1')
covered[x] = true;
}
}
currentScore = 0; //reset the current score
for(i=0; i<noLines; i++) //count the number of lines covered by this neighbour
{
if(covered[i] == true)
currentScore++;
}
printf("Neighbour %d covers %d lines\n", sol, currentScore);
if(currentScore > bestScore) //if the current score is better than the best score
{
bestScore = currentScore; //make current score the top score
bestNeighbour = sol; //remember the best two test cases
}
}
printf("Best score= %d\n", bestScore);
printf("Best neighbour= %d\n", bestNeighbour);
for(i=0; i<noSolutions; i++)
solution[i] = neighbours[bestNeighbour][i]; //make the current best neighbour the solution
if(bestScore < totalNoCovered) //if the best neighbour covers fewer lines than the original test suite
{
printf("Terminating algorithm - none of the above neighbours are better than the current solution\n");
terminate = true; //terminate the algorithm
for(i=0; i<noSolutions; i++)
solution[i] = savedSolution[i]; //make the solution the previously saved test suite

41

Final Report Pareto Efficient Multi-Objective
Test Case Selection

solutionPop = noSolutions;
printf("The minimised test suite is:\n");
for(i=0; i<solutionPop; i++)
printf("%d ", solution[i]);
}
noSolutions--;
}
printResults("Hill-Climbing", testSuiteCoverage, testSuite, solution, solutionPop,
totalNoCovered, noLinesCovered, testSuitePop, time);
}
/******************************** End of Hill Climbing Algo*************************/

/******************************** PRINT RESULTS ***************************/

void printResults(char name[], char **testSuiteCoverage, char **testSuite, int
solution[], int solutionPop, int totalNoCovered, int noLinesCovered, int testSuitePop,double time[])
{

bool* lineCovered = NULL;

lineCovered = new bool[totalNoCovered];

for (int l=0;l>totalNoCovered;l++)
{

lineCovered[l]=false;
}

int finalPop=testSuitePop;
float* perCovered=NULL;
perCovered = new float[solutionPop];
float* timeCovered=NULL;
timeCovered = new float[solutionPop];

for (int y =0;y<solutionPop;y++)
{

noLinesCovered = 0;
for (int j=0; j<(totalNoCovered+2); j++)
{

if(testSuiteCoverage[solution[y]][j] =='1')
{

lineCovered[j] = true;
}

}
for(int x=0; x<(totalNoCovered+2);x++)
{

if(lineCovered[x] == true)
noLinesCovered++;

}

float floatNoCovered = (float)noLinesCovered;
float floatNoLines = (float)totalNoCovered;

42

Final Report Pareto Efficient Multi-Objective
Test Case Selection

perCovered[y]= (floatNoCovered/floatNoLines)*100;
timeCovered[y]=(float)time[solution[y]];

}

printf("\n\n********* %s Algorithm Results *********\n", name);
printf("\n\n--------- %s Non-Dominated Solutions---------\n", name);

/******************************** Non Dominating Sorting*********************/

float* ndArrayCov=NULL;
ndArrayCov = new float[solutionPop];
float* ndArrayTime=NULL;
ndArrayTime = new float[solutionPop];

int k =0;
int counter=0;

for (int i=0;i<solutionPop;i++)
{

for (int j=0;j<solutionPop;j++)
{

if(i!=j)
{

//printf("\t %d %d \t",j,i);
if ((perCovered[j]>perCovered[i]) && (timeCovered[j]<timeCovered[i]))
{
//This is only to test if the coverage is there or not
}else{counter++;}

} // end of if statement for i is not equal to j

}

if(counter==(solutionPop-1))
{
ndArrayCov[k] = (float)perCovered[i];
ndArrayTime[k] = (float)timeCovered[i];
k++;
} //end if for counter

counter=0;
}

//Display the result on the screen
printf("Coverage \t");
printf("Time \n");

43

Final Report Pareto Efficient Multi-Objective
Test Case Selection

for(int nt=0; nt< solutionPop;nt++)
{

if(ndArrayTime[nt]>0 && ndArrayCov[nt]>0)
{

printf("%.3f%8s",ndArrayCov[nt],"");
printf("\t %.3f\n",ndArrayTime[nt]);

}
}

/********************************End of Non Dominating Sorting*********************/
FILE *inFile;
inFile = fopen("result.dat", "w"); // Writing Data to a File

fprintf(inFile,"Coverage \t");
fprintf(inFile,"Time \n");
for(int t=0; t< solutionPop;t++)
{

if(ndArrayTime[t]>0 && ndArrayCov[t]>0)
{

fprintf(inFile,"%.3f",ndArrayCov[t]);
fprintf(inFile,"\t %.3f\n",ndArrayTime[t]);

}
}

 fclose(inFile);

}

/******************************** PRINT RESULTS********************************/

