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1. Technical Background

1.1 Program Slicing in the field of Software Engineering

Program slicing has multiple roles in the field of software engineering.  As a technique, it has 
many useful applications at different stages of the software development life cycle as well as 
some that extend beyond this life cycle.  In fact, almost every stage of the software 
engineering process can benefit from program slicing once code is available to slice. Its 
ability to assist in performing tedious and error prone tasks automatically, such as program 
debugging, testing, parallelization, program comprehension, program analysis, software 
maintenance, software metrics, software quality assurance, and program integration, gives it 
great importance and significance when engineering software [BG96, DHS95].  

The field of program slicing is continually expanding, and new applications for it are constantly 
being found, however, program slicing like software engineering in general has by no means 
matured.  Improved solutions to previous slicing problems continue to pop up ever so often 
containing new or updated algorithms and/or data structures, and pointing out the limitations 
and faults of the previous solutions.  In this section, some of the applications of slicing 
previously mentioned will be discussed in overview.

1.1.1 Program Slicing: A debugger’s point of view

The initial idea of program slicing came about when its inventor, Mark Weiser, noticed 
programmers debugging programs, and came to the conclusion that programmers naturally 
slice programs mentally when they attempt to debug them [Wei79a, Wei82, LW86]. Aiding 
this mental debugging became the motivation behind the development of an automated
technique that would assist debugging activities by isolating the fault to a number of lines or 
statements in the program, with one or more of them actually containing the fault.  This would 
mean that code that wasn’t relevant to a set of variables the fault originated from, and 
therefore could not have caused the fault, would be omitted from the program, which would 
allow the debugger to concentrate on the lines or statements that are significant to the fault,
and thus help in pinpointing it.  Dynamic slicing in particular is appropriate when applying 
program slicing to debugging, as it produces smaller slices and makes available the inputs 
that caused the fault [HH01].

1.1.2 Testing

Slicing helps decompose programs, and for the purpose of testing, it makes test work faster 
and more efficient.  By slicing particular slice criteria, inter-related modules can be identified, 
which then can be tested separately from the rest of the program.  Because program slicing 
helps in understanding programs by dividing it into slices, the task of testing can be allocated 
to a number of testers, each with their own program domain to test [HD95].

1.1.3 Program Comprehension

Most, if not all, of the many useful applications of program slicing will require a program or at 
least a section of it that has some semantic significance, to be comprehendible.  This is 
especially true in the comprehension phase of both software maintenance and re-
engineering, particularly where legacy systems are concerned, since they do not necessarily 
need or have available documentation explaining the system or the original developers of it.  

Conditioned slicing was used by De Lucia, Fasolino and Munro [DFM96] as a tool to aid 
program comprehension.  Another similar technique called constrained slicing was introduced 
by Field, Ramalingham and Tip [FRT96]. Both utilized conditions to highlight cases of interest
within a given program. Harman and Danicic [HD97] suggested that programmers can apply
conditioned slicing combined with amorphous slicing to facilitate program comprehension and 
analysis. The conditions would be used to highlight some case of interest while the 
amorphous slicing would simplify the statements by removing the irrelevant parts, which 
would leave attention focused on the cases of interest [HH01].
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1.1.4 Program Analysis

The process of program slicing is based on control flow and data flow analysis, and involves 
analysing a program’s control and data flow to determine the correct decomposition of it with 
respect to the slice criteria [Wei84].  

1.1.5 Software Maintenance

It is said that the maintenance and evolution phases of the software development lifecycle 
require some where around 70% of the total costs, so speeding up the process should lead to 
greater efficiency, which is exactly what slicing does when applied accordingly. Gallagher 
[Gal90] demonstrates that a slice can be constructed for each variable of the program
irrespective of line position, covering all instances of the variable in the program, which was 
called a decomposition slice. These slices would in turn be used to partition the software with 
the intention to minimize the impact of software changes while performing maintenance on it.  
Because a decomposition slice would essentially tell us what code does and does not affect a 
variable, the programmer can alter software without causing unintentional changes due to the 
ripple effects of the software changes [HH01].

1.1.6 Software Metrics

With the discovery of different types of slicing, new applications were also being discovered.  
Among them was the ability to use slicing to help measure the cohesiveness of software.  
Cohesion, in brief, measures how strong elements of a module are related to each other.  
Functional cohesion refers to functions that should perform related tasks.  Ott and Bieman 
[OB98] showed that static syntax-preserving slicing can help in measuring how cohesive a 
program is. A classification by Ott and Thuss [OT89] gives a class of cohesion by comparing 
slices with respect to different output variables.  

When taking several slices from a function using a different variable for each, and analysing 
them by comparing the slices to each other on the bases of how much code they had in 
common, it is fair to say that these variables are connected in some manner.  If we also 
decide that the function’s tasks are captured by the computation performed on these 
variables, it is logical to deduce that the tasks were strongly related and thus concluding that 
the function was highly cohesive [HH01].  

1.1.7 Software Quality Assurance

Software quality assurance auditors are faced with a myriad of difficulties, ranging from 
inadequate time to inadequate computer aided software engineering (CASE) tools. One 
particular problem is the location of safety critical code that may be interleaved throughout the
entire system. Moreover, once this code is located, its effects throughout the system are 
difficult to ascertain. Program slicing is applied to mitigate these difficulties in two ways. First, 
program slicing can be used to locate all code that contributes to the value of variables that
might be part of a safety critical component. Second, slicing based techniques can be used to 
validate functional diversity (i.e., that there are no interactions of one safety critical component 
with another safety critical component and that there are no interactions of non safety critical
components with the safety critical components).

A design error in hardware or software, or an implementation error in software may result in a 
Common Mode Failure of redundant equipment. A common mode failure is a failure as a
result of a common cause, such as the failure of a system caused by the incorrect
computation of an algorithm. For example, suppose that X and Y are distinct critical outputs 
and that X measures a rate of increase while Y measures a rate of decrease. If the 
computation of both of the rates depends on a call to a common numerical differentiator, then 
a failure in the differentiator can cause a common mode failure of X and Y. 
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One technique to defending against common mode failures uses functional diversity. 
Functional diversity in design is a method of addressing the common mode failure problem in 
software that uses multiple algorithms on independent inputs. Functional diversity allows the 
same function to be executed along two or more independent paths. 

1.1.8 Program Integration

The problem of integrating multiple versions of programs, known as program integration, is 
another interesting application of program slicing.  Formalized by Horwitz, Prins, and Reps 
[HPR88], program integration is the problem of finding a program, let’s say D, whereby given 
the programs A and B that are variants to a third program C, D is a program such that a) it 
“preserves the changed behaviour” of A and B with respect to C and b) it “preserves the 
preserved behaviour” of C in both A and B.  In the case that such a program (program D) 
doesn’t exist, A and B are said to interfere with C, which should be detected by the algorithm.

1.1.9 Re-engineering

Isolating desired functionality to be ‘salvaged’ and reused is commonly done as a re-
engineering activity.  Conditional slicing has been applied to reuse and was taken further by 
Cimitile, De Lucia and Munro [CDM96], as part of the RE-squared reverse engineering 
project.  The comprehension phase of re-engineering can be aided by dissecting the code 
into slices for the sole purpose of understanding what the code’s functions are, how it carries 
out these functions, and what elements are employed to perform them.

1.2 Program Slicing [HH01]

Program Slicing is a decomposition technique [Wei84], which identifies the parts of a program 
that (potentially) have semantic significance to a chosen point of interest, know as the slice 
criterion, extracting these parts to form the program slice, which is usually a reduced version 
of the original program.  Slicing reduces programs to statements relevant for partial 
computation, deleting irrelevant statements.

The slice criterion is defined in terms of a set of variables, referred to as the slice set, and a 
position (a line number or statement) in the program.  A program slice consists of all the 
program statements affecting the variable(s) at a particular position in the program, which are 
both specified by the slice criteria. For example, the slicing criteria S(a, 10) is a slice including 
all statements affecting the value of a at line 10.

The following section is a summary of some of the various slicing paradigms that exist today.  
As previously mentioned, the subject has not matured and is still very much in its evolutionary 
stage, nevertheless, there is a considerable amount of material on hand, some of which will 
be cited throughout the report.  

1.2.1 Types of slicing

There are many different variants of slicing; among them are static slicing, dynamic slicing, 
forward slicing, backward slicing, condition or quasi-static slicing, syntax-preserving slicing, 
and amorphous slicing.  

It is possible to split the slicing paradigms up into two main categories: semantic and 
syntactic.  The semantic paradigms include the static, dynamic, and conditioned while the 
syntactic paradigms include syntax-preserving and amorphous slicing.  The semantic and 
syntactic elements are two important aspects of slicing.  The semantic element describes 
what part of the program is to be preserved. With the syntactic element, there are two 
possible types of slicing: 1) the program’s original syntax can be preserved, removing 
sections of the program that have no affect on the semantics of interest, and 2) syntax
transformations take place, which preserve the semantic detail of the program.
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1.2.2 Static Slicing

The original slicing paradigm, static slicing is a simple and commonly used tool for 
constructing program slices. All other forms of slicing can be considered as an extension to 
static slicing.  

A program slice [Wei84, HRB88] is produced by deleting the statements that have no 
semantic significance to the set of variables, know as the slice set, at the chosen point in the 
program.  Thus, given a set a variables V at a specific point of interest n, a slice can be 
constructed for the variables in V at point n.  After selecting a slicing criterion, we have a 
choice of two forms of slice: a backward slice or a forward slice.  The difference between the 
two slices is that a backward slice contains the program statements that have an effect on the 
slicing criterion, whereas a forward slice contains the program statements that are affected by 
the slicing criterion.

Static slices tend to be rather large, especially when highly cohesive programs are sliced.  
This is because high cohesion occurs in programs where the computation performed on each 
variable is dependant on many other variables.  However, slices constructed by static slicing 
do simplify the program, which helps in debugging activities.

1.2.3 Dynamic Slicing

Static slicing constructs slices for variables at a specified point in the program of interest.  
Some of those variables have a possible range of inputs that determine, in many cases, the 
behaviour or the output of a program.  During the execution of a program, it may be that a 
value inputted causes some unexpected result, either in the form of incorrect values being 
outputted or program termination or both.  

A dynamic slice [KR98] takes advantage of the available information about the input
sequence supplied to a program at a specific execution.  This dynamic information is 
extremely valuable when considering the presence of faults or bugs in a program.  In the 
event of a failure occurring, the input to a program is available and can be used to locate the 
source of that failure.  The slice will then only contain those statements that could have 
caused the failure within a specific execution of interest. 

The static slice criterion together with the dynamic information (the sequence of input values 
for a variable), make up the ‘dynamic slicing criterion’, so given a variable v at a specific point 
of interest n on an input i, we can construct a dynamic slice.  It is clear that dynamic slices are 
superior to static slices when the application is debugging, but this does not mean that we no 
longer need static slicing.  Other applications, such as code re-use, require slices to be 
consistent for every possible execution.  Since both slicing techniques have their advantages 
and disadvantages according to their applications, there is a trade-off between the static and 
dynamic paradigms, with static slices being larger but catering for all possible executions and 
dynamic slices being smaller but only catering for a single input.

1.2.4 Conditioned Slicing

So far, we have talked about two ways of constructing a slice, with one (static) providing no 
information about the input to the program, and the other (dynamic) providing specific 
information about the input.  Conditioned slicing [CCD98, DF+00] bridges the gap between 
the two previous paradigms by using a boolean condition to specify a range of inputs rather 
than precise values.

The conditioned approach has been applied successfully to problems related to program 
understanding.  Slicing with respect to conditions tells us a lot about how a program behaves 
under those conditions.  Each conditioned slice contains the statements that capture various 
aspects of a program’s behaviour when the conditions stated are satisfied.
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1.2.5 Amorphous Slicing

The static, dynamic, and conditioned approaches to slicing are all ‘syntax-preserving’.  By this 
we mean that the syntax of the slices is the same as that of the original program from which 
the slices were constructed.  Therefore, these slices could be thought of as syntactic subsets 
of the original program.  The only transformation that may have taken place when 
constructing the slices would have been the deletion of the statements that were irrelevant to 
the slice criterion.

Amorphous slicing [HD97, BH+00] transforms the program syntactically to simplify it, 
preserving the semantic behaviour with respect to the slicing criterion.  An amorphous slice is 
never larger than its syntax-preserving equivalent and is often significantly smaller.  Because 
amorphous slicing has the ability to extract the semantics of interest from a program by 
transforming the syntax, it can aid program comprehension, analysis, and re-use.

1.2.6 Scope of slicing

Program slicing can be intra-procedural or inter-procedural [HPR88, HRB88], and in recent 
years has also been applied to object-oriented programs for object, class, and even interface
slicing [Tip96, LH96, Ste98, BE93].  Other applications include concurrent programs [Jin93, 
Jia99, ZCU96], logic programs [SD96, KNN99, ZCU97], functional programs [JH99], and 
specifications [WA98].

1.2.7 Variations on slicing

Chopping and dicing are two program isolating techniques that are variations on the slicing 
theme.  

Chopping [JR94, CC93] identifies dependencies between a source variable instance and a 
sink variable instance on the bases of a define-use relation.  All variables are treated as part 
of this relation and are represented as nodes on a graph.  The output of a chop is the 
statements that cause the definition of the source to affect the uses of the sink.

Dicing [LW86] is a fault localization technique introduced to further reduce the number of 
statements that need to be examined to find faults. Whereas a slice makes use only of 
information on incorrect variables at failure points, a dice also makes use of information on 
correct variables, by subtracting the slices on correct variables away from the slice on the 
incorrect variable. The result is smaller than the slice on the incorrect variable; however, a
dice may not always contain the fault that led to a failure.

1.3 Slicing Algorithms

The development of programs that slice another program, or “slicers”, is that of the 
development, and indeed, the evolution of slicing algorithms.  Undesirably, these algorithms, 
in spite of the continual advancements and improvements made in the field, remain 
complicated due to the complex nature of programming languages, which require complex 
structures to represent them in a way applicable to slicing before some sort of slicing
computation on these structures can be performed.      

1.3.1 Brief History of Slicing Algorithms

In 1979, Mark Weiser published a thesis [Wei79b] that would change software engineering for
the better by introducing the concept of slicing, presenting the first ever slicing algorithm, the 
data-flow equations algorithm, that deals with static intra-procedural program slicing and 
forms the basis for many slicing algorithms today. In later years, other slicing algorithms were 
developed using alternative approaches and instruments. In the 1984 Ottenstein paper 
[OO84], the authors acquainted us with the notion of slicing using a Program Dependency 
Graph (PDG) that transformed the way we looked at program procedures and their intra-
procedural dependencies forever.
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1988 saw the publication of the first paper on the System Dependency Graph (SDG) [HRB88] 
by Horwitz, Reps and Binkley, which took slicing to the next level by crossing the boundaries 
of procedure calls, expanding the slicing domain to the inter-procedural, and extending the 
range of sliceable program elements to include procedure specific information such as 
procedure arguments. After nine years, it was finally possible to slice an entire procedural 
program using Horwitz, Reps and Binkley’s algorithm because it solved the inter-procedure 
slicing problem, handling procedures as well as intra-procedural data. The SDG was a huge 
break-through for the slicing community, and in 1996, was applied to Object-Oriented slicing 
in a paper written by Larsen and Harrold [LH96].

1.3.2 Slicing Algorithm Approaches

There exist several algorithms that solve the various slicing problems in reasonable time, but 
for the purpose of this report only static slicing algorithms will be considered, although, the 
algorithms for the other slicing paradigms use the same principles and are merely 
augmentations.  In general, slicing is achieved through one of three algorithmic approaches: 
1) data-flow equations 2) system dependency graph 3) parallel algorithm; all based on the 
concept of control and data dependencies and are defined in terms of a graph representation 
of a program.

1.3.2.1 Graph Representations

For procedures without procedure and function calls, there are two choices of graph 
representation: 1) the control flow graph, or 2) the program dependency graph.  An inter-
procedural representation that takes into account procedure and function calls also exist with 
its own slicing algorithm and will be review in section 1.3.2.3.

Control Flow Graph

Control and data dependencies are represented in the form of the control flow graph (CFG) of 
a program [Hec77]. The CFG is made up of nodes that correspond to statements and control 
predicates, and edges between the nodes that define possible control flow.  Two additional 
nodes (entry and exit) of the CFG refer to the start and the end of a program. Nodes in the 
CFG define and/or reference a set of variables.  Various types of data dependencies can be 
established using such graphs, among them are flow dependence, output dependence, and 
anti-dependence [FOW87].  We will only talk about flow dependence as the others are 
irrelevant to slicing.

Flow dependence

If a value computed at statement i is used at statement j then it is said that j is flow dependant
on i for a particular program execution.  In other words, there exists a variable x that is 
defined by i and used by j, and there is a path from i to j. Another way of stating this is that the 
definition of variable x at node i is a reaching definition for node j.

Control Dependence

Control dependence describes the relation between a control predicate and the statements 
within branches of that control predicate, and is usually defined in terms of post-dominance.  
If all paths from a node i to the exit or stop node pass though a node j then it is said that i is 
post-dominated by j.  So, if there is a path from i to j such that i is not post-dominated by j and 
j post-dominates all nodes in path i to j not including i and j then j is control dependent on i.

Control predicates ‘control’ [FOW87] the execution of the nodes within its body, determining 
whether or not control is to pass to these nodes.  Given a predicate p, the set of nodes that 
depend on the outcome of p in this way are called the controlled nodes of p.  For block 
structured languages, controlled nodes can easily be computed – the controller nodes form 
the body of the consequent and alternative branches of conditional statement predicate nodes 
or the body of loop predicate nodes.  Ferrante, Ottenstein and Warren produced an algorithm 
for computing the controlled nodes for unstructured languages [FOW87].
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Program Dependency Graph

A program dependency graph (PDG) is another graph representation of a program [OO84, 
FOW87, KK+81]. Like the CFG, the vertices correspond to statements and control predicates; 
however, in a PDG, the edges correspond to data and control dependences between the 
nodes.  As the dependence edges have a partial ordering to them, the statements have to be 
executed in this order to maintain the program’s semantics [HPR88a, HPR88b, HRB88].

1.3.2.2 Data-flow equations [DHS95, Tip95]

The original approach to program slicing defined by Weiser [Wei84], computes slices by 
solving iteratively a set of data-flow equations derived directly from the CFG of a program.  An 
iterative algorithm is presented by Weiser using two levels of iteration that trace the following:

1. Transitive data dependences in the presence of loops in the program.
2. Control dependences, initiating the inclusion of control predicates for which each, step 1 

is repeated to include the statements it is dependent upon.

Successive sets of relevant variables are computed for each node in the CFG, and from 
these, sets of relevant statements can be derived with the fixpoint of the latter set defining the 
slice. The first stage is determining the directly relevant variables, which is an instance of step 
one of the iteration process summarised above.  

Defined and Referenced Variables

Node i of a CFG represents a program statement; a statement that may define and\or 
reference variables.  The set of defined and referenced variables for each node i is denoted 
DEF(i) and REF(i) respectively. For example, take the assignment statement a = b + c; that 
node i represents, then DEF(i) = {a} and REF(i) = {b, c}.

Directly Relevant Variables

For a slice criterion (V, n), in the first iteration, the set of directly relevant variables, denoted 

 0R nc , for the slice node n is the slice set V, and for all the other nodes is an empty set 

( 0 0( ) , ( ) ,n V m m nR Rc c    ).  The set of directly relevant variables for each node i is 

defined in relation to the set of directly relevant variables of all nodes j that have a direct edge 
to i, CFGi j , in the CFG. )(0 iR c  is made up of all the variables v such that either

)(0 iRcv and DEF( )v i  or )REF(iv  and 0DEF( ) ( )i iR c  .

The full equation for each edge CFGi j in the CFG is as follows:

)(0 iR c  =     R ciivviviR cvviR c
000 )(DEF),(REF|)DEF(),(|)(

Directly Relevant Statements

From 0 ( )iR c , deriving the set of relevant statements, denoted 0S c , is possible.  0S c is the set 

of all nodes i that define a variable v that is relevant at the successor node of i.

0S c  =  0| , DEF( ) ( )CFGi j i j i jRc    

Indirectly Relevant Variables

The subsequent iterations of Weiser’s algorithm involve considering control dependences.
The referenced variables in the control predicate are indirectly relevant when at least one of 
the statements in its body is relevant. A branch statement b has what is known as a range of 
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influence INFL(b), which is the set of statements control dependant on it, or in other words, 
the controlled nodes.

Below is the equation that defines the branch statements kBc that are indirectly relevant 

because of the influence they have over nodes i in kSc . Afterwards, we have the equation 

that determines the indirectly relevant variables 1kRc
 .

 | , ( )K
C

kB b i S INFL bc   

0
( ,REF( ))

1( ) ( ) ( )
K

C

K
C b b

b B

kR i R i R ic


   

1.3.2.3 System Dependency Graph [HRB88, Tip95]

An alternative approach to slicing, presented by Horwitz, Reps, and Binkley [HRB88], defines
an algorithm to compute accurate inter-procedural slices and comprises of the following three 
components:

1. System Dependency Graph (SDG), a graph representation of multi-procedural programs.
2. The computation of inter-procedural summary information, which consists of precise

dependence relations between the input and output parameters of each procedure call, 
and is explicitly present in the SDG in the form of summary edges.

3. A two-pass algorithm that extracts inter-procedural slices from an SDG.

Parameter Passing

Using the Horwitz-Reps-Binkley algorithm [HRB88], parameter passing by value-result is 
performed as follows: 

(i) the calling procedure copies its actual parameters to temporary variables before the 
call, 

(ii) the formal parameters of the called procedure are initialized using the corresponding 
temporary variables,

(iii) before returning, the called procedure copies the final values of the formal 
parameters to the temporary variables, and 

(iv) after returning, the calling procedure updates the actual parameters by copying the 
values of the corresponding temporary variables.

The algorithm also deals with parameter passing by reference as long as the problem of 
aliases is solved.  There are two methods for dealing with aliases:

1. Transforming the original program into an equivalent alias-free program, or
2. Using generalized flow dependence that takes aliasing patterns into account [Bin93a].

Both methods resolve aliasing, however, the first produces more precise slices, whereas the 
second is more efficient. More information on parameter passing mechanisms is available in 
Aho, Sethi, and Ullman’s paper [ASU86].

1. System Dependency Graph

SDGs consist of a PDG for the main procedure and a PDG for every other procedure.  They 
also contain different types of vertices that PDGs do not.  Call statements have a call-site 
vertex in the SDG in addition to actual-in and actual-out vertices that are control dependent 
on the call-site vertex and represent the copying of actual parameters to and from temporary 
variables. For each PDG, there is an entry vertex, and formal-in and formal-out vertices that 
are control dependent on the entry vertex and represent the copying of formal parameters to 
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and from temporary variables. Inter-procedural data flow analysis can be used [Ban79] to 
determine the set of variables that can be referenced or modified by a procedure.  With this 
information, actual-out and formal-out vertices can be removed for parameters that will never 
be modified, which yields more precise slices.   

Apart from the intra-procedural dependence edges already mentioned, the following inter-
procedural dependence edges are also part of an SDG:

1. a control dependence edge between a call-site vertex and the entry vertex of the 
corresponding procedure dependence graph,

2. a parameter-in edge between corresponding actual-in and formal-in vertices, 
3. a parameter-out edge between corresponding formal-out and actual-out vertices, and 
4. summary edges that represent transitive inter-procedural data dependences.

2. Computation of Summary Information

The second part of the Horwitz-Reps-Binkley algorithm entails the computation of the 
summary edges between vertices for input\output parameters of a procedure. If the SDG 
contains summary edges then incoming values for the input parameter may be used to obtain 
the outgoing values for output parameters.  The algorithm identifies summary edges by 
constructing an attribute grammar that works like a call graph, modelling the calling 
relationships between the procedures in the program. After the construction of the attribute 
grammar, the subordinate characteristic graph for this grammar is computed.  This graph 
contains edges corresponding to precise transitive flow dependences between input/output 
parameters of each procedure in the program.  The subordinate characteristic graph’s 
summary edges are copied to the correct places at each call site in the SDG. Other 
algorithms for computing summary edges have been defined [Mic94, RHS94, RSH94] that 
are more efficient than Horwitz-Reps-Binkley algorithm.

3. Two-Pass Algorithm for Extracting Inter-procedural Slices

For the third part of the Horwitz-Reps-Binkley algorithm, a two-pass traversal of the SDG is 
carried out. The SDG’s summary edges determined from the previous phase, act as a means 
of finding a way around the calling context problem.  Suppose that slicing begins at a vertex v, 
the first stage determines every vertex from which v can be reached without dropping into 
procedure calls.  Calls can be circumvented without dropping into them due to the transitive 
inter-procedural dependence edges of the SDG.  In the second stage, the remaining vertices 
in the slice are determined by dropping into all previously circumvented calls.

The Horwitz-Reps-Binkley algorithm [HRB88] does not always compute slices that are 
executable programs. Situations where only a subset of the vertices for actual and formal 
parameters are in the slice, correspond to procedures whereby only some of the arguments 
are removed from the slice; depending on the call of the procedure, arguments may or may 
not be included. Horwitz, Reps, and Binkley propose two solutions to this problem that both
transform a non-executable slice into an executable program.  With the first approach 
[HRB88], a number of variations of a procedure may be integrated into the slice, which results 
in a slice that is no longer a restriction of the original program. As for the second [Bin93b], the 
slice is extended from all parameters present at some call to all calls that occur in the slice.  
The vertices that the added vertices are dependent on must also be added to the slice.  The 
first approach yields smaller slices than the second.

1.3.2.4 Parallel Algorithm [DHS95]

The last approach to static slicing is intra-procedural and is the simplest of the three. Danicic, 
Harman, and Sivagurunathan [DHS95] present a parallel algorithm that defines a slice in 
terms of a set of recursion equations derived from the CFG of a program. Essentially, the 
algorithm is a parallel version of Weiser’s (section 1.3.2.2), exploiting the natural parallelism in 
the CFG.  The algorithm consists of converting the CFG into a process network analogous to 
that defined by Abramsky [Abr84]. The processes that form the network concurrently 
communicate to each other through message sending across the arcs\edges of the CFG.  
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Each message contains a set of variables, which are strongly related to the ‘relevant 
variables’ of Weiser’s algorithm (section 1.3.2.2).

In addition to computing a slice, the algorithm also has several interesting properties that can 
be used for simultaneous slicing as well as generating equivalent slicing criteria.  The 
algorithm consists of two stages once the CFG of the program being sliced is available: 

1. The CFG is converted into a network of concurrent processes.
2. The network of concurrent processes is executed, the result of which is the set that 

contains the nodes corresponding to the relevant statements with respect to the slice 
criterion.

Process Networks

A network of concurrent processes can be modelled, as shown in [Abr84], as a graph with its 
nodes\vertices representing processes and its arcs\edges representing communication 
channels.  The processes are defined as recursive functions on streams of data.  These 
functions form sets of recursion equations, which define the behaviour of the network, and 
whose outputs represent the possibly infinite streams of data communicated between the 
processes.

The first phase of the algorithm consists of converting the program to be sliced into a CFG
and then compiling it into a network of concurrent processes.  The process network’s topology
is derived from the inverse of the program’s CFG, known as the Reverse Control Flow Graph 
(RCFG) [ASU86], with the nodes of the CFG corresponding to the processes and the arcs of 
the RCFG corresponding to the communication channels.  The incoming arcs of a node i
correspond to inputs to a process i, and the outgoing arcs of node i correspond to outputs of
process i.  An outputted message is output on all output channels.

Process Behaviour

As indicated previously, messages are sets of variable names and node identifiers that are 
sent and received by processes.  Each process’s behaviour is dependent on the following 
information, which is obtained directly from the CFG of the program:

(i) i: The identifier of the node of the CFG.
(ii) REF(i): The set of variables referenced by i.
(iii) DEF(i): The set of variables defined by i.
(iv) C(i ): The set of nodes controlled by i.

In the RCFG, predicate nodes (section 1.3.2.2) have more than one input and because the 
algorithm is defined for side-effect free languages, these nodes will not define any variables, 
i.e. DEF(i) =  .  All other nodes, by definition, will not be predicates and will consequently 
not control any other nodes, i.e. C(i) =  .  The specification for the behaviour of process i
can be defined formally in CSP style notation [Hoa85] as follows:

( ) ? ( (DEF( ) ( ))

!(( \ DEF( ) REF( ) { })

! );

( )

P i S if S i C i

then S i i i

else S

P i

     
  
 

  
This definition states that if the input, denoted S, to process i has any elements that are also 
in either the set of defined variables of i or the set of controlled variables of i then process i
outputs the set containing the following:

1. every input variable (elements of S) that it does not define,
2. every variable that it references,
3. its node identifier, i.
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However, in the case where S has no elements that are also in either of the two sets 
mentioned (defined and controlled variables of i) then process i simply outputs S. The 
behaviour of process i is repeated for every input message it receives, with process i waiting 
for its next input.  

From the definition above, we can conclude that each process i individually outputs a 
message according to its specific input.  Therefore, process i can be thought of as a function 
from all its inputs to all its outputs. This idea of a process being a function is very important in 
the light of recursive functions that output a solution to the static slicing program. 

Constructing the slice

The second phase of the algorithm deals with the construction of the slice.  To construct the 
slice for a slice criterion (V, n), the network of concurrent processes is executed with network 
communication being initiated by outputting the message V from process n. It should be 
noted that if a process i outputs its node identifier, i, then the node i is to be included in the 
final slice. Network communication is terminated if any process of the network outputs the 
same message more than once. Consequently, the algorithm comes to an end, and nodes 
that correspond to statements that are to be kept in the final slice are obtained from the 
resulting output.  The slice of the program is made up of the nodes whose identifiers are input 
to the entry node of the CFG, because the entry node is reachable via every node in the 
RCFG, which means messages outputted by all nodes eventually reach the entry process.

Functional Networks

The network of processes described above can be defined in terms of recursion equations
over a finite set of variables and node identifiers.  The behaviour of each process i is defined 
as a function i on sets as described for the processes:

( ) (DEF( ) ( ))

( \ DEF( ) REF( ) { })

iF S if S i C i

then S i i i

else S

     
   
 

Functions, denoted Fi, take arguments, execute the computation defined above, and then 
return a result.  Input to process i is represented by the argument to function i, and output to 
process i by the result of function i.  Configuring the functions in different ways allow different 
network topologies to be put together.  If a process has more than one input then the 
corresponding function’s argument is the union of the individual inputs.  For each cycle (loop) 
in the RCFG, there is a functional equation.
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2 Project Objectives

The main objective of the project is the development of a simple program slicer that can 
construct backward static intra-procedural slices of a specific subset of the C language.  
Static backward slicing is a very common and easy way to slice, which walks backwards 
through the code, singling out the statements that are relevant to a given slice criterion 
(section 1.2).    This slicing method will transform the inputted program from its original state 
to its static backward sliced state, which may or may not be different, depending on the 
program and the slicing criterion. Our main objective, outlined above, can be split up into 
following sub-objectives:

1. Constructing the slice.
2. Developing a user interface, as a framework to construct and display slices in.

But before we can construct a slice, we must first define the subset of the language (The C 
language in this project) that is going to be sliced.

2.1 C Language Subset

Obviously, it is not practical to slice the entire C language given the time and knowledge 
available, therefore we must restrict the range of what can be sliced to a subset of C.  The 
selected subset of C contains the basic variables and their declarations, expression 
statements, selection statements (except switch statements), and iteration statements 
(except do statements). What will not be part of the subset are derived variables (arrays, 
functions, pointers, structures, and unions) and enumerations, the comma operator, the 
sizeof operator, the unary operators, labelled statements, jump statements, external 
definitions, macro definitions, the pre-processor features (file inclusions, conditional 
compilation, line control, error generation, pragmas, and null directives), procedures, and 
function and procedure calls.

The subset of C to be sliced is fairly general in that it includes the fundamental 
constructs/features found in Turing complete programming languages, and leaves out many 
of the language specific features. Syntactically, the code to be sliced should more or less look 
exactly the same in any C syntax languages (C++, Java, C#), and with the availability of a 
parser for one of those languages, slicing it merely becomes a matter of writing code to 
process the outputted AST to accommodate the desired subset.  

2.2 Slice Construction

Due to its simplicity, and appropriateness with respect to the preferred slicing paradigm, the 
parallel algorithm approach to backward static slicing, described in section 1.3.2.4, will be the 
basis for solving the static slicing problem. In view of the chosen approach, constructing a 
slice can be thought of as a four stage process:

1. Converting code into an abstract syntax tree (AST).
2. Converting the AST into a RCFG.
3. Implementing a slicing algorithm using the RCFG.
4. Converting the slicing algorithm output back into the original program’s syntax.

Both the first and last stages are fundamental to the slicing process and are constant no 
matter what slicing approach is taken. 

2.2.1 Program to AST Conversion

The first stage is achieved with the aid of a C language parser that converts the inputted C 
program into its AST.  A parser is a computer program that carries out the task of parsing, 
which is the process of analyzing a continuous stream of input (read from a file or a keyboard, 
for example) in order to determine its grammatical structure with respect to a given formal 
grammar.  An AST is a tree data structure that is, for the purpose of slicing, used as a 
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compiler’s or interpreter’s internal representation of a computer program and is described by 
the abstract syntax of that program.

As a fully functioning C parser has already been provided, the stage is thus complete and will 
not be discussed further.

2.2.2 AST to RCFG Conversion

The second stage involves converting each program statement into a CFG node that can be 
applied to the slicing algorithm, and the relationships between the statements into CFG arcs.  
Compiling the AST into the RCFG of a program consists of two phases:

(i) Extracting the relevant code elements from the AST and converting them into an 
array of CFG nodes.

(ii) Representing the arcs of the RCFG.

Phase one requires that the AST of the program be traversed, extracting the code elements
relevant to slicing that constitute a valid statement, and capturing control dependence 
information (section 1.3.2.1). For simple static slicing on C, these elements include variable 
and constant identifiers, statements, and some operators. In general, code elements relevant 
to slicing do not include storage classes, type specifiers, type qualifiers, comments,
constants, or string literals.  

Since the C parser converts the C code into an AST in Extendible Mark-up Language (XML) 
form, an XML parser will be employed to traverse the AST.  The Document Object Model 
(DOM) is an XML parser that looks at an XML document as a series of parent and child nodes 
of different types that contain their attributes.  These nodes are captured as the XML 
document is parsed, allowing XML code to be traversed as a tree structure.  DOM provides 
an API that can access each individual node and its attributes, in addition to performing other
operations on XML documents. To parse an XML document, the name of the file that 
corresponds to the document is passed as an argument to the parser object.

Phase two depends on the successful completion of stage one so as to be able to compute
an accurate graph representation of the program.  Modelling the arcs of the CFG is relatively 
easier for a simple configuration of statements but gets complicated when a program contains 
multiple compound statements because of the branching of the control paths. Finally, the 
matter of reversing the CFG is to be addressed, the solution of which is well known in graph 
theory. 

2.2.3 The Algorithm

One of the sub-objectives of the project is to implementation the parallel algorithm (section 
1.3.2.4) for static intra-procedural program slicing, which has been chosen for the purpose of 
computing slices for two reasons: 1) it is the simplest approach out of the three choices and, 
2) it computes basic backward static intra-procedural slices. 

2.2.4 Original Syntax Conversion

The last stage of the slicing process is converting the output of the algorithm back into the 
syntax of the original program. Fortunately, the problem has been resolved and is reviewed in 
[HRB88, HR92, Wei79b, Wei84].

2.3 User Interface

A C file is to be entered at the command line and evaluated for its validity; if the code has no 
errors, it will be passed to the slicer mechanism.   The slicer mechanism is responsible for 
transforming the original code into the sliced version by constructing a slice in the way 
described in section 2.2. Before slicing can commence, a slice criterion needs to be specified.  
The user specifies a slice criterion by variable(s) and statement through inputting those 
values, which will in turn be inputted to the slicing mechanism.  The code will then be 
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redisplayed after the slicing process is complete, which should result in the sliced version of 
the code being outputted on the screen. 

2.4 Desired Outcome

On providing the proposed slicer program the program below and on entering the slice 
criterion ({count}, 11),

Lines Program

(1)
(2)
(3)

(5)

(7)
(8)
(9)
(10)
(11)

void main()
{    
   pass = 0;
   fail = 0; 
   count = 0;

   while (count <= 90) 
   { 

if (Marks >= 40)
    pass++; 
 if (Marks < 40) 
   fail++; 

 count++;
   } 
  
   return 1;
}

Figure 1: Original Program

the slice of the program above should be produced and outputted, looking something like the 
following:

Lines Program

(1)
(2)
(3)

(5)

(7)
(8)
(9)
(10)
(11)

void main()
{    

   count = 0;

   while (count <= 90) 
   { 

 count++;
   } 
  
   return 1;
}

Figure 2: Sliced Program
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3. Technical Contribution

3.1 Analysis

When examining the resources available, especially the Danicic-Harman-Sivagurunathan
paper [DHS95], which is the main source of information on intra-procedural backward slicing 
and is the basis for slicing in this project, a number of prominent components were identified 
with some being essential to the process of slicing. As a result, functional and data 
requirements have also been identified, allowing for a requirements specification to be 
defined.

3.1.1 Data Requirements

The data requirements can be defined in terms of the different inputs and outputs involved in 
the slicing process.  On analysing the relevant slicing material, the following inputs and 
outputs have been identified:

3.1.1.1 Inputs

Slicer (entered by the slicer user)

 C program file
 Slice criterion - set of variables (usually one) and a number

Software (entered by the software components)

 AST
 RCFG
 Node identifiers – number identifying a node.
 Referenced variables – set of variables referenced by a program statement
 Defined variables – set of variables defined by a program statement
 Controlled node identifiers – set of node identifiers controlled by a statement.

3.1.1.2 Outputs

Slicer

 Sliced version of C program file
 Variables of the program
 Slice criterion

Software

 RCFG

Some of the data identified are composites and require decomposing to be better understood, 
and others are atomic and may form part of a composite.  Composite modules can be 
described as data structures that may also perform functions on the data they contain.  

3.1.2 Functional Requirements

In terms of visible functionality, the slicer will take as input a C program file and slice criterion,
and from these construct a slice, producing a new program as output.  The slicer should also 
output the slice criterion and a list of the inputted program’s variables. Section 2.2 briefly 
explains how a program is sliced; our next step is to break down the stages into more 
comprehendible and manageable tasks.
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3.1.2.1 AST to RCFG Conversion

Given that a CFG is composed from CFG nodes which are then compiled into network 
processes, and that these nodes are configured in a particular arrangement to represent a 
program, we can break up the AST to RCFG conversion stage into two tasks: 

1) Converting the AST into CFG nodes and, 
2) Configuring the nodes into a CFG program representation.  

Conversion of AST into CFG Nodes 

The first task is essentially finding the right data and placing them in the right place holder 
(data structure) to be made use of at a later stage, namely the second task, and thus the first 
task must be complete before we can begin with the second. To simplifying this process 
further, let us divide the task up into the following sub-tasks:

 Traverse the AST.
 Extract the values from the AST (accessing values stored in XML tags using DOM).
 Pass extracted values to statement components.
 Pass the statement component to a CFG node.
 Pass controlled CFG nodes to their controller CFG nodes.

CFG Nodes Configuration into CFG

By analysing the structure of a CFG, it becomes clear that its node configuration is dependant
on two factors; i) the position of the CFG node and, ii) the last controlled CFG node of each 
branch of a predicate CFG node.  Both factors, identified from the preceding task, are vital to 
the CFG nodes’ transformation from ordinary nodes that have no direct relationship with each 
other to nodes that are linked together by the correct arcs. A correct arc is, as will be seen
subsequently, determined by how a CFG represents a program.  

Going by the slice subset specified in section 2.1, the CFG that we intend to construct has 
three control structures:

1. Sequence - a series of successive nodes from 1 to n

Figure 3: CFG representation of a sequence of statements

…

1

n

1…n
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2. Selection\Conditional Statements – a node with a consecutive and alternative branch.

Figure 4: CFG representation of selection statements

3. Iteration statement – a node with one branch, controlling all nodes within it.

Figure 5: CFG representation of iteration statements

Reversing the CFG has the affect of changing the direction of the arrows in the diagrams so 
that they point the opposite way.  Modelling these three structures and the possible 
combinations of them will be the second task ahead of us.    This task may also be broken 
down into the following:    

 Represent the individual and combined program properties (the three structure 
above) as links between nodes 

 Reverse the CFG

1. Slicing Algorithm Implementation

The sequential implementation of the slicing algorithm is, in fact, a variation on the original 
algorithm that instead of defining the slice computation in terms of recursion equations, 
defines it as a graph data structure iteration using process networks derived from the RCFG 
rather than functional networks.  

The algorithm traverses the RCFG, inputting the outputs (behaviour computation) of 
processes into every other process it has an outgoing arc to, computing the union of the 
individual inputs to processes with more than one input, and iterating in the presence of 
cycles (loops).  Each process i of the network is represented by CFG node i that contains the 
set of variables defined, DEF(i), along with the set of variables referenced, REF(i), by the 
corresponding statement i in the program to be sliced. These values are extracted from the 
AST as part of the CFG node compilation stage that precedes the execution of the slicing 

… 1…n

1

n

n + 1

1

mn

“If” Statement “If Else” Statement

n + 1

m+1…n

1

n

1…n

1

n

1…n… …

n + 1

… 1…m…



21 of 33

algorithm. The behaviour of the each process is that defined in section 1.3.2.4.  The algorithm 
runs through the RCFG, processing each node until there are no new labelling on the edges 
(i.e. no new outputs).  The algorithm’s result is the output of the first node in the CFG.

2. Converting slice result into original program’s syntax

Converting the code captured by a program statement entity back into the syntax of the 
original program is achieved by viewing the program as a source map [HRB88, HR92, 
Wei79b, Wei84]. For each program statement, the syntax is divided into its individual parts, or 
tokens - a word or an atomic element within a string, and is then searched for in the original 
file. The exact position of each token must be known to retrieve the program statement as it 
appears in the original program.  Once the positions of the statement tokens are found within 
the original program’s file, they are stored, linked in some way to the CFG node of the 
statement, and later used to obtain the syntax of the original program.  To summarise, below 
are the sub-tasks of this stage:

 Read original program file locating token positions
 Store positions for all statement tokens
 Write to a new program file

It should be noted that seeing as an AST doesn’t cater for braces and parentheses (as well as 
other such syntax rules), it means that these syntactic elements are a special case and have 
to be accommodated if they exist in the original program to preserve its syntactic appearance.

3.1.3 Derived Data Structures

From the list of inputs and outputs (section 3.1.1), it is clear that the CFG is an adjacency
graph data structure that holds data representing nodes (vertices) and arcs (edges), and may 
execute operations on that data such as computing in\out-degrees of the edges, or iterating 
through them.  To a lesser extent, the slice criterion is also a data structure composed of a set 
of variables and a number that represents a position in the program.  

In a CFG, each node corresponds to a program statement and is identified by a number, the 
node identifier, which coincides with the statement’s sequential order with respect to the other 
statements in the program.  Node identifiers are atomic values that have no meaning as 
independent entities.  In fact, they can be considered data members of a CFG node data 
structure.

The referenced and defined variables as well as the controlled node identifiers are not 
composite structures but collections of atomic values, which have in common the fact that 
they are all input values for the slicing algorithm.  In the Danicic-Harman-Sivagurunathan
algorithm (section 1.3.2.4), a network process has been defined as an element made up of 
these three collections, using them to compute a value (the process output).  For that reason, 
a network process can also be considered a data structure with its behaviour being one of its 
functions.  

According to the algorithm, CFG nodes are to be compiled into network processes, telling us 
that there is some relationship between the two entities.  Seeing as the CFG nodes and
network processes are similar - a network process basically replaces a CFG when applying 
the slicing algorithm on the RCFG, the CFG node can be thought as a network process.

So far we have identified four data structures, two of which have been obtained from some of 
the input data. However, in addition to these data structures, others may also be discovered 
by further analysing the data requirements.  For example, there exist different types of CFG 
nodes depending on the statements they correspond to.  Computation nodes correspond to 
declaration and expression statements that define and reference variables, where as 
predicate nodes correspond to selection and iteration statements that reference variables and 
control other statements.  These distinctions between CFG nodes imply a possible 
generalization of the CFG node data structure, i.e. the classification of cases, computation 
and predicate nodes. 
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Apart from the entities derived directly from the data requirements, supplementary data 
structures can be developed to capture program statements and their values from the AST
generated by the C parser.  Program statements hold data pertaining to expression 
statements, declarations statements, iterative statements (while and for loops), 
selection\conditional statements (if and if else), etc.  The range of different statements having
multiple structures each to model a specific statement type.

A program statement module intermediates between the AST and the CFG nodes, containing
the data extracted from the AST that will then make up the key elements of a CFG node, i.e. 
the defined and referenced variables of each independent program statement.   There is also 
a secondary function for these data structures.  Since they hold the standard syntax 
necessary for each statement to run, which sadly isn’t entirely available from the AST, as 
soon as the relevant statement data is obtained from the AST, a valid statement with the 
required valid syntax can be stored and used to obtain the program’s original syntax from the 
source code file.

When converting the slice result back into the program’s original syntax, a data structure can 
be utilized to store the position of a token; in turn, a collection of these would provide the 
positions of all the relevant statements in program.   

At present, the following are that data structures that have been deemed as significant 
components in regards to the software development of the slicer:

1) Slice Criterion
2) Control Flow Graph
3) Network Process
4) Control Flow Graph Node
5) Computation Node
6) Predicate Node
7) Syntax
8) Token Point

Throughout the project life cycle we can expect to discover more data structures that tie into 
the software in some manner, or we may decide to add extra data structures to deal with 
specific functions. To see the class hierarchies, go to appendix 1.a.

3.2 Design

3.2.1 Software Architecture

Figure 6: Diagram illustrating the software architecture

Above is a diagram of the software elements (labelled in bold) that are required to slice any 
program.  The dashed lined arrows indicate input to an element, with the arrow leaving the 
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element inputted to the element it is pointing to.  The solid lined arrows indicate that the 
element it is leaving outputs the component it is pointing to.

The program to be sliced (element 1) is the main input of the slicing process that is entered by 
the user at the command line as a C program file name.  The file is then read into the parser 
(element 2) whereby it is parsed and transformed into its AST (element 3). After that, the AST 
is passed to the slicer mechanism (element 4), initiating the slicing process by supplying the 
slicer with all the necessary information on the program it will slice. Finally, the slicer outputs 
the sliced program in the form of a C program file.  

Looking at figure 6, we see that there are two software element (elements 2 and 4) that are 
software components, and three software element (elements 1, 3, and 5) that are inputs and 
outputs to these components.  

Our goal is to develop the slicer in the diagram, beginning now with its design. 

3.2.2 Modularisation

The slicer functionality is distributed between three classes:

1. Code Converter
2. Code Extractor
3. Slicer Tool

1. Code Converter

The Code Converter class is in charge of converting the raw C code into a CFG graph
representation of it.  It does this via the ANSI parser by running the parser and capturing the 
AST XML output in an XML file that Code Converter creates if the c program has no compile-
time errors, otherwise, the exception Parser Exception is thrown.  This file is then passed to 
the XML parser DOM so that the AST XML can be traversed.  While traversing the AST, the 
program statements are rebuilt, passing statement data to subclasses of the Syntax class.  
Control Flow Node classes model CFG nodes, to which Code Converter passes a Syntax 
class to an instance of.  They also are being constructed while traversing the AST.  Code 
Converter calls a method from Code Extractor to compute the token points of the statement 
stored in the syntax class.  When all the Control Flow Node objects have been assembled, 
Code Converter is able to compute a reverse control flow graph returned by the reverse 
control flow graph (rcfg) method as a Control Flow Graph data structure object.

2. Code Extractor

Code Extractor is architecturally more straightforward than the Code Converter, in that it is 
dependent on just one other module, and basically just reads and writes to files, yet it plays a 
crucial role in the slicer program. Responsible for syntax operations, Code Extractor  
pinpoints the exact position in the program file of each statement token, passing the line, and 
begin and end indices to a Token Point data structure object, returning a Token Point object 
array.  The line the statement is on is attained from the AST, and together with the statement 
code, provide a starting point to locating the begin and end indices of each token.

Another function the Code Extractor performs is creating the file that saves the slice syntax. 
The position values stored in Token Point objects allow Code Extractor to copy the same 
syntax found in the original program into the new “slice” file. A collection (array) of Token 
Point objects of all the statements that the slice should contain are enough to recreate the 
original program but of course without the unwanted statements (i.e. statements not part of
the slice).

3. Slicer Tool

Combining the two components Code Converter and Code Extractor allows us to construct a 
slice; the Slicer Tool class does just this in addition to placing the slicer’s functionality within a 
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simple command line user interface environment.  All the slicer’s inputs and outputs (section 
3.1.1) are to be accounted for by the user interface through prompting the user for the specific 
input, that is, programs to be sliced and slice criteria, and displaying on the command prompt 
screen the slicer’s outputs.  

A program file is to be entered at the command prompt as the argument to the Slicer Tool
class, which, before becoming the argument to the Code Converter class constructor, is 
evaluated and validated to confirm the file is sliceable, i.e. is a c program file. If there are no 
problems with the program file, Slicer Tool will initially ask for the slice criterion, giving an 
option of program variables to choose from for the slice set, and once entered initiates the 
slicing process by calling the rcfg method from the Code Converter class and saving the 
Control Flow Graph object returned in the Slicer Tool’s rcfg variable data member.  

Computing the slice or executing the slicing algorithm returns a set of node identifiers 
corresponding to the statement included in the slice.  The Control Flow Node objects that 
have the same node identifiers as those in the slice result are returned from the nodes 
method of rcfg; node identifiers are used as the nodes array indices to acquire each object.  
Next we retrieve each Control Flow Node object’s Token Point array and put them into one 
array holding the points of every token of every statement in the slice.  Here, the Code 
Extractor class comes into play, passing all the points to the write code method that creates
the file containing the slice, which Slicer Tool then displays for the users viewing.

3.2.3 Algorithm Design

Over all, there are two main algorithms, one for converting the raw C code into a CFG, and 
the other to compute the slice.  An algorithm for converting the code into CFG nodes has not 
been carefully planned seeing as it is just a matter of traversing the AST using DOM to iterate 
through the AST nodes extracting all the data relevant to a statement and a CFG node, and 
adding controlled nodes to their controllers. Likewise, algorithms to deal with extracting the 
source map of the C code from the original program were not looked into and are beyond the 
scope of this project.  Appendix 2.a has the pseudo code for the two algorithms.

3.2.3.1 Constructing a RCFG

A RCFG is represented as an adjacency digraph, which is a data structure that applies a 
boolean matrix to map and model nodes and arcs between them.  RCFG nodes are the 
vertices of the graph and the arcs are the edges. A vertex is modelled as a row in the matrix 
and an edge is a true value or 1 in the column of a vertex. An arc from vertex a to vertex b is 
represented as a 1 value at row a and column b.  We can construct a RCFG by simply 
generating a CFG, whereby an arc from vertex a to vertex b is represented as a 1 value at 
row b and column a, and then transpose the matrix to get the reverse graph. If we go back to 
section 3.1.2.1, the control structures described have equivalent matrix representation:

1. Sequence - a series of successive nodes from 1 to 6

Figure 7: Matrix representation of a sequence of statements

1
2
3
4
5
6

0  0  0  0  0  0
1  0  0  0  0  0
0  1  0  0  0  0
0  0  1  0  0  0
0  0  0  1  0  0
0  0  0  0  1  0

1  2  3  4  5  6
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2. Selection\Conditional Statements – a node with a consecutive and alternative branch.

Figure 8: Matrix representation of selection statements

3. Iteration statement – a node with node 1 controlling nodes 2 to 6.

Figure 9: Matrix representation of iteration statements

Sequential statements are just vertices next to each other – a vertex before the previous has 
an edge to it.  In the “if” statement example, the node (vertex) directly after the last node 
controlled by the “if” node has an edge to the “if” node and the last node(s) the “if” node
controls. As for the “else” statement, the first node in both the “if” and “else” branch have an 
edge to the “if” node and the first “else” branch nodes has no edge to the last “if” branch node.  
The node after the last “else” branch node has an edge to the last node(s) of the two 
branches. Loop nodes have an edge to the last node(s) that they control that represent 
possible control paths from the loop node.  Furthermore, the node directly after the last 
node(s) controlled by loops has an edge to the loop node.   Each predicate control structure is 
dependent on the last node(s) controlled by that structure.  Actually attaining the last 
controlled node(s) of an iteration or selection statement is not difficult; you follow the links 
between the predicate nodes and their controlled nodes until there are no more nodes left
(you reach the last one).  The entry and exit nodes are not represented as they do not add 
any useful information to the adjacency matrix.

3.2.3.2 Computing The Slice

Slicing the RCFG entails traversing it with a loop for vertex iteration, and another for the 
edges of each vertex. Nodes are processed by vertices inputting their outputs to the CFG 
nodes that correspond to the vertices’ edges.  When the current edge of the current vertex is 
a selection node with an in-degree of two, it uses a stack to hold reference the first of the two 
inputs to any selection statement.  Once we arrive at the second input edge, the reference to 
the first input is popped of the stack and the union of the two inputs are computed as the input 
for the selection node.  Current edges that are iteration nodes and that have an in-degree of 
two, indicate an input to them from outside the iteration nodes’ statement block.  The 
algorithm, after processing the iteration edge, jumps to the loop node, processes it, and then 
jumps again but this time to the iteration node’s last controlled node.  

In the first iteration of the vertices loop, loop nodes edges are monitored and the main (outer 
most) loop containing the slice node n or, if n is not controlled by a loop, the closest main loop 

1
2
3
4
5
6

0  0  0  0  0  1
1  0  0  0  0  0
0  1  0  0  0  0
0  0  1  0  0  0
0  0  0  1  0  0
0  0  0  0  1  0

1  2  3  4  5  6

1
2
3
4
5
6

0  0  0  0  0  0
1  0  0  0  0  0
0  1  0  0  0  0
1  0  1  0  0  0
0  0  0  0  0  0
0  0  0  0  0  0

1  2  3  4  5  6

1
2
3
4
5
6

0  0  0  0  0  0
1  0  0  0  0  0
0  1  0  0  0  0
1  0  0  0  0  0
0  0  0  1  0  0
0  0  0  0 1  0  

1  2  3  4  5  6

“If” Statement “If Else” Statement
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to n is calculated.  Consecutive iterations of the vertices loop iterate from the last statement 
block (controlled) node of the main loop, identified in the previous iteration, to the first node.  
The algorithm doesn’t iterate more than once if a loop node isn’t found before n.  Iteration 
ends at the first CFG node when a node outputs the same output, apart from an empty set, 
more than once.

3.3 Implementation

3.3.1 Code

See appendix b for the source code.

3.3.2 Known Limitations

Not every combination of intra-procedural statements can be tested for.  Loops within loops, 
nested empty predicate statements, and other complex code have unpredictable results, but 
in most cases, the slicer should be able to cope with slicing the code. 

Problem

Just outputting the slice set caused the slice not to contain the slice node in the absence of 
loops within the program. Including or excluding the slice node identifier as well as the slice 
set yields inaccurate slices.

Implications for Slicing Result

The slice node identifier is included in the slice result even if it doesn’t affect the slice set in 
any way.  No iterations mean that if the slice node identifier isn’t outputted with the slice set 
then the slice node is never part of the slice result.

Current Work-Around

Start the slicing algorithm by processing the slice node with both the slice set and the slice 
node identifier inputted, and if the slice node doesn't fire then take out the slice node identifier 
from the slice node's output.

Problem

Code Extractor throws an exception when reading from the file some C code written on the 
same line.

Implications for Slicing Result

May not compute slice if C program not laid out one line per statement.

Current Work- Around

Non at present.

3.4 Testing

Standard black-box testing will be the approach taken for verifying that the slicer slices 
programs and constructs precise slices with respect to the slice criterion entered.  This 
approach calls for an input (programs and slice criteria), expected outcome (the slice), and 
actual outcome (slicer’s output).   

A randomly selected set of programs and slice criteria for those programs will be presented
as input for the slicer to process.  Expected results will be compared with the actual result 
determining whether or not the slicer does what it suppose do, i.e. if the expected outcome is 
the same as the actual outcome then the slicer works, if not, there is a problem with the slicer.  
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In the event of an unexpected outcome, the actual outcome is examined and the code 
modified to achieve the desired result.

3.4.1 Testing Data Space

For the purpose of testing, we will attempt to make the scope of the test data general and 
simple so as to cover realistic cases where slicing is applied with easy to understand program 
examples. A limited range of statement configurations that includes a mixture of control 
structures (section 3.1.2.1) are to be considered for testing; trying to test every possible 
combination of statements is unfeasible and would take far too long.  The slice criteria inputs 
to the slicer are going to be single and multiple variable identifiers for the slice set at random 
positions.

The four types of test cases are:
1. sequences
2. selection statements
3. iteration statements
4. combination of the above

3.4.2 Test Result

See appendix 4a for the Test Cases.
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4 Conclusion

4.1 Outcome

In this report we have documented the implementation of a miniature slicer program that 
slices a subset of the C programming language, constructing a backward intra-procedural 
slice, and displays the slice to the user as detailed in the objective specification (section 2).

A variation on the parallel slicing algorithm approach was adopted to compute slices, and 
inadvertently lead to the innovation of a new sequential algorithm based upon the old parallel 
one.

Problems with The Parallel Algorithm

Throughout the project’s life-cycle, the parallel algorithm was thoroughly analysed and studied 
to try and fully understand how it worked.  On close inspection, it was observed that the 
algorithm wasn’t optimal in terms of its efficiency as its work increased the effort required to 
compute the slice.  In the presence of loops, the algorithm would iterate and process every 
node in the CFG for all program instances no matter where their positions were in the 
program. Thus, nodes\statements after the slice node n in the program that didn’t lie within 
the same loop as n would also be processed.  As the algorithm calculates the static backward 
slice, this would mean needlessly processing nodes that were irrelevant to the slice with 
respects to the slice criterion.  Moreover, if n came before a loop in the program, the algorithm 
would pointlessly iterate through the whole CFG even if there weren’t any loops before n.

The New Algorithm

The algorithm introduced in this report is more efficient than the parallel one because it only 
processes nodes that potentially affect the slice criterion, ignoring all other nodes.  Iteration 
occurs when i) the slice node n is contained within a loop, or ii) there is a loop before n in the 
program.    These two situations are the only time where CFG iteration is really necessary to 
check nodes within loops.  Furthermore, the node the iteration starts from at each cycle is a 
significant factor that has been considered to reduce the algorithm’s effort.  In both the 
parallel algorithm and the new one, process communication is initiated from n, which is 
specified by the slice criterion. However, the new algorithm restarts the iteration at the last 
reachable node of either, the main (loop not contained within another) loop that contains n or, 
in the case where n doesn’t lie within a loop, the closest main loop before n in the CFG.  If n is 
not contained within a loop then it along with all the nodes before the last reachable node of 
the closest main loop before n are never processed after the initial iteration.  

The New Algorithm Steps: 

1) Initial iteration - processes all the nodes from the slice node to the first node in the 
CFG, and checks for loops.

2) If a loop is found then it saves it as the “main loop”. 
3) If another loop is found then it checks if main loop is contained within this loop, 

assigning the main loop with this loop if true.
4) If no loops found then iteration ends after processing first CFG node, else for each 

consecutive iteration, the loop returns to the main loop’s last reachable node 
processing all nodes from it to the first node in the CFG.

This novel and original change to the parallel algorithm guarantees that efficiency is improved 
by only iterating through the nodes that may influence and\or be influenced by process 
communication (i.e. altering the message outputs with new inputs).  The following statements 
prove that the algorithm does what we claim it does, that is, provides an efficiency 
improvement described above: 
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Facts:

1) All nodes after the slice node n in the program have no affect on n unless it is 
contained within a loop.

2) Nodes not contained within a loop don’t receive new input after the first iteration 
unless they come before a loop in the CFG; their output remains the same.

3) Because loops have arcs to the last statement(s) that are controlled by them, a loop’s 
output is inputted to all its last statement(s) causing a process communication cycle 
that continues until a label has the same output more than once.

4.2 Interpretation of Results

On the whole, the majority of the objectives were accomplished to a satisfactory standard, 
and all were completed to some reasonable degree.  The work produced on the slicing 
algorithm was original and hopefully made the project more note worthy.

4.3 Future Work

An obvious extension to this project would be to enlarge the subset of the C language to 
perhaps allow derived variables, enumerations, and inter-procedural slicing using the same 
CFG algorithm.  Of course, the algorithm would have to be extended to handle procedural 
properties and might call for the CFG to be transformed to facilitate these properties. Another 
suggestion would be to slice another language, like Java or C++, and attempt to slice different 
object oriented features.  Although, the efficiency of the parallel algorithm has been improved, 
it hasn’t been proven to be work or speed optimal.  A natural extension would be to optimize 
the algorithm increasing its efficiency and\or speed, or measuring these algorithmic properties 
to decide whether or not it is optimal.  Slicing with another approach, for example using PDGs 
and\or Data-Flow equations, and comparing approaches is another suggestion for extending 
the project.  Slicing programs in a graphical user interface environment would present the 
slice in a fashion more suitable for reading code.
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