
Congestion Control
Mark Handley

Outline

Part 1: “Traditional” congestion control for bulk transfer.

Part 2: Congestion control for realtime traffic.

Part 3: High-speed congestion control.

Part 1

“Traditional” congestion control for bulk
transfer.

Congestion Control

End-to-end congestion control serves several purposes:

Divides bandwidth between network flows in a
"reasonably fair" manner without requiring per-flow
scheduling by routers.

Prevents congestion collapse of the network by
matching demand to supply to ensure overall goodput
remains reasonably high.

Congestion Collapse

Congestion collapse occurs when the network is increasingly
busy, but little useful work is getting done.

Problem: Classical congestion collapse:

Paths clogged with unnecessarily-retransmitted packets
[Nagle 84].

Fix:

Modern TCP retransmit timer and congestion control
algorithms [Jacobson 88].

Fragmentation-based congestion collapse

Problem:

Paths clogged with fragments of packets invalidated
because another fragment (or cell) has been discarded
along the path. [Kent and Mogul, 1987]

Fix:

MTU discovery [Mogul and Deering, 1990]

Early Packet Discard in ATM networks
[Romanow and Floyd, 1995].

Congestion collapse from undelivered packets
Problem: Paths clogged with packets that are discarded before they

reach the receiver [Floyd and Fall, 1999].
Fix: Either end-to-end congestion control, or a ``virtual-circuit'' style of

guarantee that packets that enter the network will be delivered to
the receiver.

Congestion Control

Since 1988, the Internet has remained functional despite
exponential growth, routers that are sometimes buggy or
misconfigured, rapidly changing applications and usage
patterns, and flash crowds.

This is largely because most applications use TCP, and
TCP implements end-to-end congestion control.

Ack Clocking

 A bottleneck link will space packets out in time, according it its
service rate.

 The inter-packet spacing is preserved when packets leave the link
(although later queuing can disturb it if there is cross traffic)

ts ts

Fast
link

Bottleneck
link

Fast
link

router

queue

ReceiverSender

Ack Clocking (2)

 Receiver acks immediately and sender sends only when an
ack arrives.

 Result: sender sends at precisely the rate to keep the
bottleneck link full

ts

ts

Fast
link

Bottleneck
link

Fast
link

router

queue

acks

ts

ReceiverSender

Ack Clocking (3)

 If other traffic mixes, it reduces the ack rate, so the sender sends
more slowly without changing its window.

 This automatic slowdown is important for stability. More packets end
up in the queue, but they still enter at the same rate they depart.

 If there’s not space, a drop occurs, TCP halves its window, and the
queue decreases.

ts

ts

Fast
link

Bottleneck
link

Fast
link

router

queue

Congestion Window

 So ack-clocking of a window of packets has nice stability
properties.

 It’s harder to control the rate and get these same
properties.

Rate control gives no automatic backoff if other traffic
enters the network.

 The key question then is how large a window to use?

TCP Congestion Control
Basic behaviour: Additive Increase, Multiplicative Decrease (AIMD).
 Maintain a window of the packets in flight:

 Each round-trip time, increase that window by one packet.
 If a packet is lost, halve the window.

TCP’s
Window

Time (RTTs)

TCP Fairness

x+y = l+qmax
(queue overflows)

x = y (fairness)

Flow y’s
window

Flow x’s
window

Queue

Flow x

Flow y

TCP (Details)
 TCP congestion control uses AIMD:

 Increase the congestion window by one packet every round-trip
time (RTT) that no packet is lost.

 Decrease the congestion window by half every RTT that a packet
loss occurs.

 In heavy congestion, when a retransmitted packet is itself dropped or
when there aren't enough packets to run an ACK-clock, use a
retransmit timer, which is exponential backed off if repeated losses
occur.

 Slow-start: start by doubling the congestion window every roundtrip
time.

Queuing

 The primary purpose of a queue in an IP router is to
smooth out bursty arrivals, so that the network utilization
can be high.

 But queues add delay and cause jitter.

Delay is the enemy of real-time network traffic.

Jitter is turned into delay at the receiver’s playout buffer.

Understanding and controlling network queues is key to
getting good performance from networked multimedia.

TCP Throughput and Queue Size

Green: packets in transit. Red: packets in the bottleneck queue

TCP and Queues

 TCP needs one delay-bandwidth product of buffer space at
the bottleneck link for a TCP flow to fill the link and achieve
100% utilization.

 Thus, when everything is configured correctly, the peak
delay is twice the underlying network delay.

Links are often overbuffered, because the actual RTT is
unknown to the link operator.

Real-time applications see the difference between peak
and min as jitter, and smooth to peak delay.

Two TCP Flows (Effects of Phase)

Green is flow 1, Blue is flow 2. Both do identical AIMD.

Left: sawtoothes in phase. Right: same sawtoothes, out of phase.

Multiple TCP flows and Queues

 If multiple flows all back-off in phase, the router still needs a
delay-bandwidth product of buffering.

 If multiple flows back-off out of phase, high utilization can
be maintained with smaller queues.

How to keep the flows out of phase?

Active Queue Management

Goals of Active Queue Management

 The primary goal: Controlling average queuing delay, while
still maintaining high link utilization.

 Secondary goals:
 Improving fairness (e.g., by reducing biases against

bursty low-bandwidth flows).
Reducing unnecessary packet drops.
Reducing global synchronization (i.e., for environments

with small-scale statistical multiplexing).
Accommodating transient congestion (lasting less than a

round-trip time).

Random Early Detection (RED)

 As queue builds up, randomly drop or mark packets with
increasing probability (before queue gets full).

 Advantages:

Lower average queuing delay.

Avoids penalizing streams with large bursts.

Desynchronizes co-existing flows.

Original RED Algorithm
for each packet arrival

calculate the new average queue size qavg
if minth < qavg < maxth

calculate probability pa
with probability pa:

mark/drop the arriving packet

else if maxth < qavg
drop the arriving packet

Variables:
qavg : average queue size
pa : packet marking or

dropping probability

Parameters:
minth : minimum threshold for

queue
maxth : maximum threshold for

queue

RED Drop Probabilities

D
ro

p
Pr

ob
ab

ilit
y

Average Queue
Size

1

min th

max th

max p

0

The argument for using the average queue
size in AQM

To be robust against transient bursts:

When there is a transient burst, to drop just enough
packets for end-to-end congestion control to come into
play.

To avoid biases against bursty low-bandwidth flows.

To avoid unnecessary packet drops from the transient
burst of a TCP connection slow-starting.

The problem with RED
 Parameter sensitivity

 How to set minth, maxth and maxp?

 Goal is to maintain mean queue size below the midpoint between
minth and maxth in times of normal congestion.

 maxth needs to be significantly below the maximum queue size,
because short-term transients peak well above the average.

 maxp primarily determines the drop rate. Needs to be
significantly higher than the drop rate rfequired to keep the flows
under control.

 In reality it’s hard to set the parameters robustly, even if you know
what you’re doing.

RED Drop Probabilities (Gentle Mode)

D
ro

p
Pr

ob
ab

ilit
y

Average Queue
Size

1

min th

max th

max p

0
2*

max th

Other AQM schemes.

 Adaptive RED (ARED)

 Proportional Integral (PI)

 Virtual Queue (VQ)

 Random Exponential Marking (REM)

 Dynamic-RED (DRED)

 Blue

 Many other variants... (a lot of PhDs in this area!)

AQM: Summary
Multimedia traffic has tight delay constraints.

 Droptail queuing gives unnecessarily large queuing delays if good
utiilization is needed.

 Packet loss as a signal of congestion hurts real-time traffic much
more than it hurts file transfer.

 No time to retransmit.

AQM combined with ECN can give low loss, low-ish delay, moderate
jitter service.

 No admission control or charging needed.

 But no guarantees either - it’s still best-effort.

Part 2

Congestion control for real-time traffic.

New Applications
TCP continues to serve us well as the basis of most transport protocols,
but some important applications are not well suited to TCP:

 Telephony and Video-telephony.
 Streaming Media.
 Multicast Applications.

TCP is a reliable protocol. To achieve reliability while performing
congestion control means trading delay for reliability.

 Telephony and streaming media have limited delay budgets - they
don't want total reliability.

 TCP cannot be used for multicast because of response implosion
issues (amongst other problems).

Non-TCP Congestion Control.
We can separate TCP's congestion control (AIMD) from TCP's reliability
mechanism.

 Eg: RAP (Rate Adaptation Protocol) Rejaie et al, Infocom 1999.

However, AIMD congestion control gives a flow throughput that changes
very rapidly, which is not well suited to streaming applications that want
to delivery consistent quality to the end-user.

 Streaming playback from servers can work around this using
receiver buffering (Eg: Rejaie et al, Sigcomm 1999), but it would
be better to have a congestion control scheme that was less
variable in the first place.

TCP-Friendly

 Any alternative congestion control scheme needs to coexist
with TCP in FIFO queues in the best-effort Internet, or be
protected from TCP in some manner.

 To co-exist with TCP, it must impose the same long-term
load on the network:
No greater long-term throughput as a function of packet

loss and delay so TCP doesn't suffer
Not significantly less long-term throughput or it's not too

useful

Solution Space: Unicast Streaming Media

1. AIMD with different constants

 Eg: increase window by 3/7 packets each RTT,
decrease multiplicatively by 3/4 when a loss occurs.

2. Equation-based congestion control.

 Try to design a protocol to achieve the throughput as
TCP does on medium timescales.

TFRC: General Idea

Use a model of TCP's throughout as a function of the loss rate
and RTT directly in a congestion control algorithm.

 If transmission rate is higher than that given by the
model, reduce the transmission rate to the model's rate.

Otherwise increase the transmission rate.

The model: Packet size B bytes, round-trip time R secs, no queue.
 A packet is dropped each time the window reaches W packets.
 TCP’s congestion window:

 The maximum sending rate in packets per roundtrip time: W
 The maximum sending rate in bytes/sec: W B / R
 The average sending rate T: T = (3/4)W B / R

 The packet drop rate p:

 The result:

TCP Modelling: The "Steady State" Model

An Improved "Steady State" Model
A pretty good improved model of TCP Reno, including timeouts, from
Padhye et al, Sigcomm 1998:

Would be better to have a model of TCP SACK, but the differences
aren’t critical.

Verifying the Models

TFRC Details

 The devil's in the details.

How to measure the loss rate?

How to use RTT and prevent oscillatory behavior?

 Not as simple as we first thought.

 For the details, see:

Sally Floyd, Mark Handley, Jitendra Padhye, and Joerg
Widmer, Equation-Based Congestion Control for Unicast
Applications, Proc ACM SIGCOMM 2000.

TFRC Performance (Experimental)

Datagram Congestion Control Protocol (DCCP)

 Implementing congestion control correctly is hard.
 It’s not usually the area of expertise of the application

writer, and certainly doesn’t get their product to market
faster.

 TCP is a non-starter.
 UDP has problems getting though firewalls and NATs

because it’s connectionless.

“How about providing a protocol to help out the application
writers, and give them some incentive to do the right
thing?”
Result: DCCP.

DCCP
The Datagram Congestion Control Protocol (DCCP) is a new minimalist
``transport'' protocol for apps that care more about delay than reliability.

 Allows negotiation of different congestion control algorithms.

 Provides a simple base on top of which more complex protocols
can be built.

 Explicit connection setup/teardown helps NATs and firewalls.

DCCP Congestion Control
DCCP supports negotiation of the congestion control mechanism. Two
CCIDs currently specified:

CCID 2: TCP-like congestion control.

 AIMD without TCP’s reliability

 For applications that can tolerate AIMD’s sawtooth behaviour
and rapid changes in bandwidth.

 Advantages: rapid reaction lowers loss rate, quickly takes
advantage of available capacity.

CCID 3: TFRC congestion control.

 For applications where smoothness and predictability is most
important.

DCCP status

 RFC 4340, March 2006

 Currently a few implementations, shipping in Linux.

 Operating system APIs still a work-in-progress.

 Not clear yet if it will ever become commonplace enough
for application writers, firewalls and NATs to assume it’s
existence.

Applications and Congestion Control
 “What’s in it for me?”

 Why would an multimedia application writer choose to add
congestion control?

 Disadvantages:
 Extra Complexity.
 Get to go slower.
 Variable quality may annoy users.

 “I can just add all this redundancy and FEC you told me about to
protect my flows from packet loss.”

 “If I don’t adapt my rate, all those adaptive TCP flows will just be nice
and get out of my way!”

Remaining Problems

Remaining Problems
 TFRC (or something similar) for applications that need a constant

rate in packets per second.

 TFRC for applications that can only send at certain fixed rates.

 Congestion control for lossy links.

 Loss does not always imply congestion.

 Insufficient dynamic range

 Wide-area, high speed.

 Quick startup.

 Low delay

 Overall concept of fairness (eg. BitTorrent)

Remaining Problems
 TFRC for applications that need a constant rate in packets per

second.

 TFRC for applications that can only send at certain fixed rates.

 Congestion control for lossy links.

 Loss does not always imply congestion.

 Insufficient dynamic range

 Wide-area, high speed.

 Quick startup.

 Low delay

 Overall concept of fairness (eg. BitTorrent)

Part 3

High-speed congestion control

AIMD: Insufficient Dynamic Range

 In steady state, TCP throughput is approximately:

 Transmitting at high rate across high-latency links requires:

a very large congestion window

a very low loss rate

a very long time to converge to fairness.

High Delay-Bandwidth Products
Assume one loss every half hour, 200ms RTT, 1500bytes/pkt.

How fast can we go?

⇒ 9000 RTTs increase between losses.

⇒ peak window size = 18000 pkts.

⇒ mean window size = 12000 pkts.

⇒ 18MByte/RTT

⇒ 720Mbit/s.

⇒ Needs a bit-error rate of better than 1 in 10^12.

⇒ Takes a very long time to converge or recover from a burst of loss.

High-speed Congestion Control

 High-speed TCP (S. Floyd)
 Scalable TCP (T. Kelly)
 Cubic (I. Rhee)

 FAST (S. Low)
 Compound TCP (Tan, MSFT)

 Fair queuing + packet pair (S. Keshav)
 ATM ABR service.
 XCP (D. Katabi)
 VCP (Y. Xia)
 RCP etc.

Loss driven

Delay driven

Based on modified
routers

High-speed Congestion Control

 High-speed TCP (S. Floyd)
 Scalable TCP (T. Kelly)
 Cubic (I. Rhee)

 FAST (S. Low)
 Compound TCP (Tan, MSFT)

 Fair queuing + packet pair (S. Keshav)
 ATM ABR service.
 XCP (D. Katabi)
 VCP (Y. Xia)
 RCP etc.

Loss driven

Delay driven

Based on modified
routers

High-speed TCP
Additive-increase, multiplicative-decrease:

 No Loss, each RTT:
 w = w + a

 Loss, each RTT:
 w = w - bw

For regular TCP, a = 1, b = 0.5.

General idea for High-speed TCP: as w increases, increase a and
decrease b to make TCP less sensitive to loss.

 Do this to change the response function so that W = 0.12/p0.835

 At low speeds, do the same as regular TCP so that it’s backwards
compatible.

Changing a and b
As the window increases:
 a is increased

progressively
 a corresponding value

of b is calculated so as
to track the desired
response curve.

w a(w) b(w)
---- ---- ---
38 1 0.50
118 2 0.44
221 3 0.41
347 4 0.38
495 5 0.37
663 6 0.35
851 7 0.34
1058 8 0.33
1284 9 0.32
1529 10 0.31
1793 11 0.30
2076 12 0.29
2378 13 0.28

[Source: Sally Floyd]

High-speed TCP (Floyd)

[Source: Sally Floyd]

How does this work in reality?
Bandwidth Avg Cwnd w Increase Decrease

(pkts) a (pkts) b (w)

1.5 Mbps 12.5 1 0.50
10 Mbps 83 1 0.50
100 Mbps 833 6 0.35
1 Gbps 8333 26 0.22
10 Gbps 83333 70 0.10

Values are for a network with 100ms RTT, 1500 byte packets.

[Source: Sally Floyd]

High-speed TCP

Advantages:

Simple changes to TCP

Backwards compatible with existing TCP

Requires no infrastructure change.

Disadvantages:

Same needs as TCP for large amounts of buffering in
queues

 Not good for low-delay multimedia, games, etc.

Not infinitely scalable.

High-speed Congestion Control

 High-speed TCP (S. Floyd)
 Scalable TCP (T. Kelly)
 Cubic (I. Rhee)

 FAST (S. Low)
 Compound TCP (Tan, MSFT)

 Fair queuing + packet pair (S. Keshav)
 ATM ABR service.
 XCP (D. Katabi)
 VCP (Y. Xia)
 RCP etc.

Loss driven

Delay driven

Based on modified
routers

Scalable TCP (Kelly)

Similar to high-speed TCP:

 Uses a fixed decrease parameter b of 1/8

 Uses a fixed increase per acknowledgement of 0.01.

Gives an increase parameter a of 0.005 w per window.

 The effect is a constant number of RTTs between lost
packets.

Thus scale-invariant.

Scalable TCP

Advantages:
As with High-speed TCP
Scalable to any link speeds

Disadvantages:
Same needs as TCP for large amounts of buffering in

queues.
Possible issues with convergence if drop-tail queues

cause flows to synchronize their backoffs

High-speed Congestion Control

 High-speed TCP (S. Floyd)
 Scalable TCP (T. Kelly)
 Cubic (I. Rhee)

 FAST (S. Low)
 Compound TCP (Microsoft)

 Fair queuing + packet pair (S. Keshav)
 ATM ABR service.
 XCP (D. Katabi)
 VCP (Y. Xia)
 RCP etc.

Loss driven

Delay driven

Based on modified
routers

Cubic
 Different high-speed TCP variants propose different response

functions.

 Function of time since last loss?

 Function of current window size?

W
in

do
w

 S
iz

e

BIC
HTCP

CUBIC

STCP
HSTCP

time since loss[source: Injong Rhee]

Cubic: basic idea
 Keep track of maximum window recently used (Wmax).

 Increase quickly immediately after a loss.
 Increase slowly as Wmax approaches.
 Increase steadily more quickly as Wmax is left behind.

 Motivation:
 If network conditions are unchanged, want to spend a

long time around Wmax.
 If conditions have changed, want to find new operating

point quickly.

where C is a scaling factor, t is the elapsed time from the last window
reduction, and β is a constant multiplication decrease factor

accelerate

accelerate

slow down Max Probing

Steady State

CUBIC Window Growth Function

[source: Injong Rhee]

Concave/convex functions
 History information from previous epoch will often be good.

 But adapt when it is wrong.

time

Sudden Increase of
Available BW

time

th
ro

ug
hp

ut

Sudden Decrease of
Available Bandwidth

[source: Injong Rhee]

Cubic in Linux

 Cubic is the default congestion control algorithm in Linux.

Not clear how this decision was made.

Not clear how nicely Cubic plays with other high-speed
variants.

High-speed Congestion Control

 High-speed TCP (S. Floyd)
 Scalable TCP (T. Kelly)
 Cubic (I. Rhee)

 FAST (S. Low)
 Compound TCP (Tan, MSFT)

 Fair queuing + packet pair (S. Keshav)
 ATM ABR service.
 XCP (D. Katabi)
 VCP (Y. Xia)
 RCP etc.

Loss driven

Delay driven

Based on modified
routers

FAST (S. Low et al.)

FAST uses delay as the principle way to sense congestion.
Advantages:

Delay gives multi-bit feedback per RTT.
Delay is an early congestion signal.

Disadvantages:
Hard to co-exist with existing TCP, or DoS attacks.
Congestion signal can be noisy, or confused by variable

latency links such as 802.11
Delay as a congestion signal tends to saturate when

there are many flows sharing a bottleneck.

High-speed Congestion Control

 High-speed TCP (S. Floyd)
 Scalable TCP (T. Kelly)
 Cubic (I. Rhee)

 FAST (S. Low)
 Compound TCP (Tan, MSFT)

 Fair queuing + packet pair (S. Keshav)
 ATM ABR service.
 XCP (D. Katabi)
 VCP (Y. Xia)
 RCP etc.

Loss driven

Delay driven

Based on modified
routers

Compound TCP

Motivation: FAST is good at increasing the rate rapidly when
the net is underutilized, but doesn’t play well with vanilla
TCP when the net is congested.

Can we get the best of both worlds?
Regular AIMD behaviour driven by losses.
When the net is underutilized, use a delay-based metric

to increase very rapidly.
As the net becomes congested, move progresively from

one regime to the other.

CTCP

Actual window win = cwnd + dwnd
 Adapt cwnd pretty much as with regular TCP: AIMD.

 Adapt dwnd each RTT:

Estimate Q, the number of packets backlogged

if Q < thresh
dwnd += max(α· wink - 1, 0)

else
dwnd -= ζ· Q

On loss: dwnd = max(win (1-β)-cwnd/2, 0)

rapid increase
when unloaded

reduce dwnd as
cwnd builds queue

CTCP

 Advantages:
Rapid increase to use spare capacity.
Plays fair with regular TCP
Degradation to regular TCP when delay metric gets

confused (eg wireless, etc)

 Disadvantages:
Bursty reverse-path traffic can incorrectly push Q

estimate over threshold, slowing throughput.
Convergence to fairness is primarily from cwnd AIMD,

so can be slow.

Windows Vista

 Compound TCP ships in Windows Vista.

Not enabled by default, but there for anyone who needs
to operate over very high delay-bandwidth product
networks.

High-speed Congestion Control

 High-speed TCP (S. Floyd)
 Scalable TCP (T. Kelly)
 Cubic (I. Rhee)

 FAST (S. Low)
 Compound TCP (Microsoft)

 Fair queuing + packet pair (S. Keshav)
 ATM ABR service.
 XCP (D. Katabi)
 VCP (Y. Xia)
 RCP etc.

Loss driven

Delay driven

Based on modified
routers

Explicit Congestion Control

Thought experiment:

 What if you put the current window and RTT in every
packet, so the routers know what was going on?

 What if you allowed the routers to signal exactly how a flow
should change its window?

But still keep the routers stateless (no per-flow state).

XCP
From packet headers, routers can estimate the mean RTT, mean
window, and number of flows.

Routers can calculate the per-packet delta in window needed to
converge to optimal utilization.

Routers can divide up the total delta so that different flows converge to
the same throughput, regardless of RTT.

''Internet Congestion Control for High Bandwidth-Delay Product
Environments'', D.Katabi, M.Handley & C.Rohrs, Sigcomm 2002.

Explicit signaling happens via the
congestion header
 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+-+
|version|format | protocol | length | unused |
+-+
| rtt |
+-+
| throughput |
+-+
| delta_throughput |
+-+
| reverse_feedback |
+-+

XCP Feedback Loop

[figure from Aaron Falk at ISI]

XCP Feedback Loop

Efficiency and Fairness Algorithms are
Independent

Utilization Feedback is derived from Arrivals and
Queue

Benefits of XCP
 In simulation...

 XCP fills the bottleneck pipe much more rapidly than AIMD
congestion control.

 XCP rapidly converges to fair allocation of bottleneck bandwidth.

 XCP gets better bottleneck link utilization than VJCC for large
bandwidth-delay-product flows.

 XCP maintains tiny queues

 XCP is more stable than VJCC at long RTTs

XCP vs. TCP startup behavior

[results from Aaron Falk at ISI]

Comparing TCP & XCP Throughput

XCP MeasuredTCP Measured

XCP is stable as the RTT increases

Flow 1 starts at 0 sec
Flow 2 starts at 10 sec
RTT increases by 50ms each 10
sec interval over [50ms, 2 sec]

Sender CPU reaches 100%,
can no longer fill the pipe

TCP doesn’t do as well…

Flow 1 starts at 0 sec
Flow 2 starts at 10 sec
RTT increases by 50ms each 10
sec interval over [50ms, 2 sec]

XCP Experiments Summary

 Early measurements match simulated results

 XCP fairly allocates bottleneck bandwidth to multiple flows

 XCP dynamically reallocates bottleneck bandwidth as flows
arrive and depart

 XCP remains stable as RTT varies by 4000%

XCP

Advantages:

Rapid convergence.

Low loss, low delay.

Can compensate for RTT differences.

Disadvantages:

Many bits needed in each packet.

Moderately expensive in routers.

Needs all routers/switches to be modified.

High-speed Congestion Control

 High-speed TCP (S. Floyd)
 Scalable TCP (T. Kelly)
 Cubic (I. Rhee)

 FAST (S. Low)
 Compound TCP (Microsoft)

 Fair queuing + packet pair (S. Keshav)
 ATM ABR service.
 XCP (D. Katabi)
 VCP (Y. Xia)
 RCP etc.

Loss driven

Delay driven

Based on modified
routers

VCP
“Variable-structure congestion Control Protocol”

 XCP uses separates efficiency (utilization) control and
fairness control. Both controlled by the routers.

 Observation:
 You don’t care about fairness if the network is under-

utilized.

VCP:
 Routers signal level of utilization.
 End-systems change modes, from trying to maximize

utilization to trying to maximize fairness as network
reaches full utilization.

93

sender receiver

x

router

traffic rate link capacity

(11)
(10)

(01)

codeload
factor

region

low-load

high-load

overload

control

Multiplicative Decrease (MD)

Additive Increase (AI)

Multiplicative Increase (MI)

range of interest

ACK
2-bit ECN

0

1

scale-free

2-bit ECN

VCP

94

overload

high-load

low-load

router

fairness control

efficiency control MI

AIMD

end-host
VCP

 Decouple efficiency and fairness controls in different load regions
 Use network link load factor as the congestion signal.
 Achieve high efficiency, low loss, and small queue
 Fairness model is similar to TCP:

 Long flows get lower bandwidth than in XCP (proportional vs.
max-min fairness)

 Fairness convergence much slower than XCP

High-speed Congestion Control

 High-speed TCP (S. Floyd)
 Scalable TCP (T. Kelly)
 Cubic (I. Rhee)

 FAST (S. Low)
 Compound TCP (Microsoft)

 Fair queuing + packet pair (S. Keshav)
 ATM ABR service.
 XCP (D. Katabi)
 VCP (Y. Xia)
 RCP

Loss driven

Delay driven

Based on modified
routers

Outline

Part 1: “Traditional” congestion control for bulk transfer.

Part 2: Congestion control for realtime traffic.

Part 3: High-speed congestion control.

Where next??

 Can we realistically change the routers to benefit
congestion control?

 Big packets?

A congestion control scheme that increases the packet
size (above a fixed number of packets in flight)?

 Per-flow queuing?

Provides improved isolation so many congestion control
schemes can co-exist safely.

Summary

 This is a critical time for congestion control.

The mechanisms that have served us well for 15 years
are starting to show their limitations.

The next few years will determine how we manage
network resources for a long time.

There are many possible solutions, but all seem to have
significant drawbacks.

There’s no consensus on a solution right now, nor any
process by which we might reach consensus.

