
So you think you want to simulate a network?

Mark Handley
Professor of Network Systems
UCL

Why do you want to do network simulation?

 Understand a problem.
 Demonstrate your ideas work.
 Demonstrate your ideas are better than the competition.

 Publish papers.
 Finish your PhD.
 Fame and fortune.

 But seriously… what do you think you will get from
simulation?

The limits of simulation

 Understand a problem.
 Demonstrate your ideas work.
 Demonstrate your ideas are better than the competition.

 How good a programmer are you?
 Can you write bug free code?

Simulating a bug…

 You’re doing network simulation because you don’t
understand the system you’re simulating.
 If you understood it completely, there’s no need to

simulate.

 When you get results, what do they mean?
 Did you get what you expected?
 Usually no.
 Was your intuition wrong, or did you simulate a bug?

Software engineering.

 With most computer software, the end results are part of
the specification.
 Payroll gets processed, Airbus doesn’t crash, etc.

 With network simulation, you’re usually simulating
something novel that you don’t completely understand.
 The end results are unspecified.
 How do you know when you’ve succeeded?

Software engineering.
1. Write unit tests.

 Test every single part of your code in isolation.
 Automate your unit tests. Make sure you run them after every

change.
 Yes, it’s tedious, but debugging a complete simulation is worse.

2. Use a version control system.
 CVS, subversion, whatever.
 When you get an interesting result, tag it in CVS, and note down

the tag in your log book.
 You will want to go back at some point later, when you’ve broken

the code again.

Software engineering.
3. Start simple.

 Run a two-node simulation.
 Run a three-node simulation.
 Completely understand these before moving on.

4. Start simple.
 Leave out all the optional features of your protocol on the first

pass.
 Use very simple solutions that don’t scale but that you can

understand. Eg a linked list, rather than some super fancy
efficient hash-table-balanced-tree-thingummybob.

 Then you’ll have a baseline for comparison when you write the
scalable efficient version.

Understand your simulation.

 If you’re simulating complex topologies, usually you’ll be
simulating buggy topologies.
 You need to get an intuitive feel for the topology.
 Print it out, or view it in nam.

200
nodes

2000
nodes

Simple postscript driver
%!
0.001 setlinewidth
36 36 translate
72 7.5 mul 72 7.5 mul scale
/drawbox { newpath 0 0 0 setrgbcolor moveto -0.005 -0.005 rmoveto
 0.01 0 rlineto 0 0.01 rlineto -0.01 0 rlineto 0 -0.01 rlineto
 fill } def
/redline { newpath 1 0 0 setrgbcolor moveto lineto stroke } def
/blueline { newpath 0 0 0.7 setrgbcolor moveto lineto stroke } def
0.469309 0.816928 drawbox
0.469309 0.816928 0.043651 0.769113 blueline
0.469309 0.816928 0.604013 0.968648 blueline
0.577478 0.242383 drawbox
0.577478 0.242383 0.642284 0.473466 blueline
0.577478 0.242383 0.069395 0.407594 blueline
...
0.532045 0.122970 drawbox
0.532045 0.122970 0.540032 0.040943 redline
0.532045 0.122970 0.629494 0.101863 redline
showpage

Software engineering summary.

 Writing simulation code is harder than writing normal
applications.

 You will definitely be simulating bugs for the first six
months if you don’t start simple!

Abstraction

Abstraction and Modelling

 Simulation is about modelling a system.

 Big problem:
 Real Internet is too complex to model.

 Too big.
 Too heterogeneous.
 Not stationary.
 Effects are often local.
 Topologies are secret.
 Configuration is secret.
 Real systems don’t conform to the specs (if there are any specs)

Essential Reading

 S. Floyd and V. Paxson, Difficulties in Simulating the
Internet, IEEE/ACM Transactions on Networking, Vol.9,
No.4, pp. 392-403, August 2001.

http://www.icir.org/vern/papers.html

Scale Problems

0

50

100

150

200

250

300

350

400

Au
g-
83

Au
g-
85

Au
g-
87

Au
g-
89

Au
g-
91

Au
g-
93

Au
g-
95

Au
g-
97

Au
g-
99

Au
g-
01

Au
g-
03

H
o

s
ts

 (
M

il
li
o

n
s
)

Source:Internet Software Consortium (http://www.isc.org/)

Number of computers
on the Internet

Internet map,
1999

Source: Bill Cheswick, Lumeta

You are
here

Usenet traffic
growth

 Some future properties of the Internet are predictable

Median size of FTP transfers at LBNL

 Median is normally
considered a robust
statistic.

 Need to take care not to
assume that properties of
the net are predictable over
time.

62,000 bytesJune 2000

10,000 bytesNov 2000

10,900 bytesDec 1999

5,600 bytesDec 1998

10,900 bytesMar 1998

2,100 bytesMar 1993

4,500 bytesOct 1992

Web traffic at
Lawrence
Berkeley Lab

 If you were simulating in 1992, you’d simulate the wrong
Internet.

Abstraction

 You can’t model the Internet, so you need to abstract out
only the parts of the Internet that are relevant to your
problem.

 Problem:
 Which parts are relevant?

Analysis vs. Simulation

 Analysis gives you complete control of a model.
 Gives a greater understanding of the basic forces at play.
 Risk: to make problem tractable, you’ve simplified the model to the

point where the results are useless.

 Simulation complements analysis.
 Provides a validity check.
 Allows more detail to be modelled.
 However:

• May provide less fundamental understanding.
• Only serves as a validity check if you didn’t make the same

oversimplifications.
• Harder than analysis to verify that it implements your model.

Role of Simulation

Simulation is most useful for:
 Understanding dynamics.
 Illustrating a point.
 Searching for unexpected behaviour.

Simulation is less useful (or downright dangerous) for:
 Generating absolute results.
 Comparing two solutions.

“Solutions A performs 23% better than solution B”
Both solutions may be sensitive to parameters.
At best, your parameters, topologies, traffic mix, etc, are a rough

approximation to the real world.

Simulation for Comparison

 If you can carefully define the model, you may be able to
use simulation for comparison.
 Need to simulate a wide range of parameters to

demonstrate lack of parameter sensitivity.

 Release your source code, so others can validate your
results with different parameters.
 If you do not trust your simulation enough to publish the

source code, you’ve no right to publish the results
obtained from your simulator.

Abstraction

 We know we don’t completely understand the Internet.
 How do you choose a model that keeps the important

properties and abstracts away the rest?

 Best you can hope for is to explore the simplified model
and learn from it.
 Simulation cannot demonstrate that a system will

perform well in the real world.
 Simulation can demonstrate that system performance is

not especially sensitive to parameters.

Example: Congestion Control

 Simple “dumbell” topology is commonly used:

TCP flow 1

TCP flow 5

TCP
senders

TCP
receivers

Bottleneck
link

Dumbell Topology

 Is this a good model of the real world.
 No.

 Does it capture the important properties for understanding
congestion control dynamics?
 Maybe, if you’re careful.
 It’s simple enough you might understand your results.

 It misses out the effects of multiple congested links.
 Need to simulate this separately.

Dumbell Topology

Basic parameters:
 Number of flows.
 Link speeds
 Propagation delays
 Queues:

• Droptail, RED, other.
• Queue size
• RED parameters

 TCP variants used

Dumbell Topology

Basic parameters:
 Number of flows (1-1000 flows?).
 Link speeds (28Kb/s - 1Gb/s?).
 Propagation delays (1ms - 500ms?).
 Queues:

• Droptail, RED, other.
• Queue size (0.25 - 2 RTT*BW?).
• RED parameters (min_th, max_th, max_p???).

 TCP variants used (tahoe, reno, newreno, sack?)

Dumbell: start simple
Example: TFRC controlled experiment

1% loss 10% loss 0.5% loss

Dumbell: Exploring the parameter space

Each point is one
simulation run

Suboptimal performance
- need to look at the
detailed trace output

Phase Effects.

Essential reading:

 Sally Floyd, Van Jacobson, On traffic phase effects in
packet switched gateways, Journal of Internetworking:
Practice and Experience, Vol 3, No. 3, Sept 1992.

http://www.icir.org/floyd/papers.html

Phase effects

800Kb/s

8000Kb/s

Phase

Phase φ

Random Drop to Avoid Phase Effects

 RED is very effective at
avoiding phase effects.

 But you really need to
understand RED to set
the parameters properly.

 Few real routers deploy
RED, so does this make
your simulations
unrealistic?

Reverse Traffic

 Adding some TCP flows in the reverse path can break up
phase effects.
 Small ACK packets in forward path help reduce

periodicity.
 ACK-compression in reverse path increases TCP’s

burstiness.

 In general, simulating without reverse path traffic is risky,
as ACK-compression can often be a non-trivial side-effect.

Ok, so it works now. That’s good!

 This only modelled steady state congestion behaviour.
 Now we need to look at behaviour when background load

changes.
 Impulse behaviour.
 “Realistic” background traffic.

 Now we need to look at behaviour with multiple
bottlenecks.

Background traffic

 Real traffic stats vary greatly from place to place, and time
to time.
 Could gather many real world traces to drive your

simulations.
 That would add realism.

 Problem:
 Real world protocols are adaptive.
 Cannot just replay a trace from one environment in

another environment.

Background traffic.

 Can use real traffic traces to model source behaviour.
 I.e., model when a flow starts.
 Then use ns’s TCP model to do the packet-level

behaviour.

 Problem:
 Real world sometimes has a second feedback loop.
 User doesn’t click on next web link before current on

has finished loading.
 May need to model this too.

Background traffic:

Simplistic example.

A new TCP flow starts every second, sends 1,000,000 bytes, then stops.

 If the link is greater than 8Mb/s, the first connection may complete
before the second connection starts.

 If the link is less than 8Mb/s, the first connection will not complete
before the second connection starts.

• Second connection will take more time that the first one, as it
competes with the first one.

• Number of active connections grows linearly with time.

 Not a viable model.
 Trace-driven simulation can suffer the same problem.

Background Traffic: some invariants.

 What should you model?
 Poisson session arrivals.

• The arrival of user sessions (eg web browsing session) is well
described using Poisson models.

 Log-normal connection sizes.
• Distribution of the logarithm of connection sizes is well

approximated with a Gaussian distribution.

 Heavy tailed distributions.
• Although the body of the distribution is log-normal, the upper

tails of the distribution may be better modelled as a heavy tailed
distribution.

OK, done all that. I’m done!

Can I have a PhD please?

What have you actually learned?
 Explored a large parameter space in steady state.
 Explored the dynamics.
 Explored simple and richer topologies.

Did you find where it breaks?
 If not, go back and try harder - you need to understand the limits.

And you still can’t say it will work well in the Internet.
 But it may be worth real-world experiments now to validate your

simulations.

Mobility

 A great deal of simulation today concerns mobile systems.
 There is almost no data on how mobile systems move.

 The results in mobility simulations often critically
depend on the mobility model.

 This means your mobility simulations have almost no
predictive power for real-world deployment.

 Explore the parameter space.
 Try to design algorithms that are robust, even if they

aren’t optimal.

Writing a paper.

 When you write a paper, no doubt you’ll include a lot of pretty graphs.
 Each graph has a lot of data points from a lot of simulation runs.
 It’s very each to lose track of which simulation version produced

which graph.
 End up with the best graphs in your paper, but no one version of

your code has all these good features.

 “make paper”
 Consider using a Makefile to check out the relevant version of your

simulator from CVS, re-run all the simulations, re-generate all the
graphs, and latex the final paper.

 We did this with the TFRC Sigcomm paper.

When to use ns

 Ns is a pretty good simulator for packet-level simulation.
 Tcp models are good.
 Useful traffic models.
 Useful topology generators.
 Models are improving, but beware:

 If you don’t understand a model, don’t trust it.

When to write your own simulator.

Not a packet-level simulation.
 A lot of peer-to-peer simulation can be done at the flow level. Ns

doesn’t help you.

Scale.
 Ns doesn’t scale to very high link speeds or very large numbers of

flows. To do this you need a packet-level simulator that makes
additional assumptions.

 Ns can’t simulate huge topologies. To do this, you need to
simulate at a higher level of abstraction.

Routing.
 Ns can do routing, but it’s not great at it. Unless you need a

packet-level simulation of routing, don’t use ns.
 Inter-domain routing is usually simulated at an AS-level, not at a

router level.

Why do you want to do network simulation?

 Understand a problem.
 Good reason.
 Did you understand all the factors of the system?

 Demonstrate your ideas work.
 OK, but work under what circumstances?
 Did you model the important properties?
 Did you predict the future correctly?

 Demonstrate your ideas are better than the competition.
 Risky.
 Need to explore a large parameter space.
 Need to debug their code too.
 Robust solutions better than optimal ones.

