
1

Multiserver extensions to HTTP
draft-ford-http-multi-server-00

Mark Handley, UCL
Alan Ford, Roke Manor Research

2

General Idea

• Have one HTTP client pull different parts of
the same document from multiple mirror
servers simultaneously.

3

Mirroring
• Common solution to spreading load across more than

one server/site.
– Manual choice of mirror doesn’t work well; primary

site takes most of the load.
– Auto mirroring works fairly well at balancing server

load.
• DNS load balancing (a bit of a hack).
• Front-end load balancing (if all your servers are at one

site).

• No mirroring solution balances network traffic well.

4

BitTorrent

• Very effective solution for serving content from many
unreliable peers.
– Divide content into blocks.
– Peer with many peers.
– Pull blocks from the fastest peers.

• (also because it’s P2P, upload to peers)

• Very robust to server overload or failure.
• Makes extremely good use of spare network capacity

and avoids using congested paths.

5

Multiserver HTTP
• Robustness of BitTorrent for managed web servers.

– Resilience to server or net outages.
– Allows geographic distribution of servers.

• Avoids congested paths, and automatically load
balances the network.
– Works for multihoming, as well as geographic

distribution of mirrors.

6

Basic Idea
• Client advertises multi-server capability in HTTP

request.
• Server advertises set of mirrors in response.

– Uses chunked encoding.
– Starts sending first chunk of requested data.

• Client can request additional chunks from other
mirrors in parallel.
– Sends more requests to mirrors that respond

fastest.
• Result: most data from fastest mirrors.

7

Increased net performance

• No need to pick a mirror and stick with it.
– Try four in parallel.
– Download from the fastest three.
– Use the fourth TCP connection to

experiment with new mirrors.

• Very little data is sent along congested paths.

8

Increased server performance
• Use one port for initial request, a second port for

subsequent mirror requests.
– Prioritise initial requests.

• Failed initial requests are noticeable by user.
– Serve mirror chunk requests as capacity allows.

• Each chunk served eases work on some other mirror.

• Result: a busy set of mirrors offload work to each other, to
maximise overall performance.

• Possible extension: the initial server could send no data,
or very little data, when overloaded, and then move all
load to mirrors.

9

HTTP Request Extensions
X-Multiserver-Version:

– in requests, declares capability and version

X-If-Checksum-Match:
– conditional on mirror chunk request. Only return

the chunk if the checksum given matches that of
the data.

Range:
– regular HTTP range request used to say which

chunk is required.

10

HTTP Response Extensions
X-Multiserver-Version:

– Declares server’s multi-server HTTP version
X-Checksum:

– Used in response to initial request.
– Data checksum, used to ensure all chunks are

from the same version of the content
X-Mirrors:

– Used in response to initial request.
– List of URLs that mirror the content.

Content-Range:
– regular HTTP content range used to indicate the

chunk being sent.

11

Example: Initial Request
GET /wibble/download.zip HTTP/1.1
Host: www.example.com
X-Multiserver-Version: 0.1

12

Example: Initial Response
HTTP/1.1 200 OK
Accept-Ranges: bytes
Content-Length: 10240
Content-Type: application/zip
Content-Range: bytes 1-10240/2025121
X-Multiserver-Version: 0.1
X-Checksum: MD5 "d6862c992a3d6736ad678cc865dee67f"
X-Mirrors: /wibble/download.zip 3600 \
 http://www.example2.com/wibble/download.zip \
 http://www.example3.com/wibble/download.zip

First chunk of data….

13

Subsequent chunk requests
GET /wibble/download.zip HTTP/1.1

Host: www.example.com

X-Multiserver-Version: 0.1

Range: 10241-20480

GET /wibble/download.zip HTTP/1.1
Host: www.example2.com
X-Multiserver-Version: 0.1
X-If-Checksum-Match: MD5 "d6862c992a3d6736…
Range: 20481-30720

14

A chunk response

HTTP/1.1 200 OK
Accept-Ranges: bytes
Content-Length: 10240
Content-Type: application/zip
Content-Range: bytes 10241-20480/2025121
X-Multiserver-Version: 0.1

 …this chunk of data...

15

Details
• How to handle checksum failure?
• How to handle mirror failure during chunk download?
• How best to manage connection pool with using too many

parallel connections?
• How to ensure a request pipeline from a client stays full to

each active server?
• How to allow overloaded servers to express policy and

move load efficiently?

• We have an implementation that works well
– Credit: Javier Vela Diago
– Lots of possibility here for good client heuristics.

16

Uses

• Very good for very large file download.
– Music or video download (eg. iTunes,

BBC’s iPlayer)
– Software download.
– Streaming video over HTTP

• May be good for many small images if
wildcarding could be used appropriately.
– Fetch most images from fastest mirror.

17

Uses

• Mirror URLs can even be different interfaces
on the same server.
– More traffic transferred over the less

congested link.
– Dynamic load-balancing of a multi-homed

site.

18

Summary

• Very simple extension to HTTP
– Could significantly improve net and server

pool behavior.

• Very few changes required on server.
• Most work happens on client.

– Even a fairly dumb implementation gets
very good performance.

19

The Bigger Picture

• This is part of a larger effort to improve the
robustness of the Internet, improve its ability
to self-balance traffic, and better match costs
to revenues.

• Other complentary work here:
– Multi-path TCP
– Re-ECN
– LEDBAT congestion control for BitTorrent
– Network Neutrality talks at Thurs Plenary.

