
Resource Pooling across the
Internet
Mark Handley, UCL

Resource Pooling

Make a network's resources behave like a single pooled
resource.
 Aim is to increase reliability, flexibility and efficiency.
 Method is to build mechanisms for shifting load

between the various parts of the network.

6 Mb/s

10 Mb/s

10 Mb/s

10 Mb/s

6

6
4

8

2

10

Srca

Srcb

Srcc

Dsta

Dstb

Dstc

Everyone keeps reinventing resource
pooling to solve their own local problems.

Resource Pooling is not new…

Computer communication is bursty, so a virtual circuit-based model
with rate allocations gives poor utilization.

 A packet-switched network pools the capacity of a single link.
 Goal: high utilization

 Router queues pool capacity from one time interval to the next
 Goal: high utilization, robustness to arrival patterns

We’re doing resource pooling in routing

 BGP traffic engineering:
 Slow manual process to pool resources across peering links.

 OSPF/MPLS traffic engineering:
 Slow mostly manual process to pool resources across internal

ISP links.

 BT, AT&T (and others) dynamic alternative routing

Recent resource pooling trends

 Multihoming
 Primary goal: pool reliability.
 Secondary goal: pool capacity

 Google, Akamai, content distribution networks
 Pool reliability of servers, datacenters, ISPs.
 Pool bandwidth.

 Bittorrent
 Overall: Pool upstream capacity (over space and time)
 Per-chunk: pool for reliability from unreliable servers.

Summary:
Motivations for Resource Pooling

 Robustness

 Increased capacity or utilization

Currently two main resource pooling
mechanisms:

 Routing-based traffic engineering.
 Either slow, or potentially unstable.
 There are many examples where no network-based

flow-based mechanism can achieve pooling.

 Application-based load-balancing between multiple
servers.
 Pretty effective, but strong tussle with what the

network operators are doing.

The requirements have changed

 Need a more robust Internet than we can get from simply
making better components.
 Traditional routing can’t solve this in a scalable way.

 Applications are becoming more demanding:
 VoIP, TV, Games.

 Most of the end-systems will be mobile, with multiple
radios that can be used simultaneously.

So what might work?

 Multihoming, via multiple addresses.

 Mobility, via adding and removing addresses, so upper
layers can see and adapt to this.

Then use these to do:

 Multipath.
 Use multiple paths simultaneously for each transfer.
 Only real way to get robustness is redundancy.

So what might work?

 Multipath-capable transport layers.
 Use multiple subflows within each connection.
 Congestion control the subflows, not the connection.

AS 1 AS 2

AS 3 AS 4 AS 5

Multipath transport

 Multipath transport
allows multiple links to
be treated as a single
pooled resource.

 Traffic moves away
from congested links.

 Larger bursts can be
accommodated.

ARPAnet resource pooling:

Multipath resource pooling:

Traffic moves away from congestion

Flow 1

Flow 3

Flow 2

Resource pooling
allows a wider range
of traffic matrices

Srcb Dsta

Dstb

100Mb/s

100Mb/s

100Mb/s

100Mb/s

Srca
Fl

ow
 a

(M
b/

s)

Flow b
(Mb/s)

Possible
traffic flows

100

100

Fl
ow

 a

Flow b
(Mb/s)

Possible
traffic flows

100

100

Fl
ow

 a
Flow b
(Mb/s)

Possible
traffic flows

100

100

No multi-path flows Only flow a is multi-path. Both flows are multi-path

Multipath Traffic Engineering

Dst

Src

Dst

Src

• Balancing across
dissimilar speed links

• Balancing across
dissimilar cost links

Add
congestion

marking

$$$

End-systems can optimize globally
(often ISPs cannot)

A

Dst Dst

C

B
A

C

B

ISP1 ISP2

X Y Z

Existing Multipath Transport

We already have it: BitTorrent.

Providing traffic engineering for free to ISPs who don’t want
that sort of traffic engineering :-)

If flows were accountable for congestion, BitTorrent would
be optimizing for cost.

The problem for ISPs is that it reveals their pricing model is
somewhat suboptimal.

Robustness at an Affordable Price

 What if all flows looked a bit like BitTorrent?
 Fetch from the best place right now.

 Can we build an extremely robust and cost effective
network for billions of mobile hosts based on multipath
transport and multi-server services?
 Must build in controls to allow networks to tune traffic.

Multipath Transport Design Space

Multipath TCP

Add multi-path capability to the Transmission Control
Protocol

Multi-server HTTP

Allow browsers to fetch simultaneously from multiple
mirror servers.

P2P interactions with ISPs

Impact

 Robustness
 To link failures before routing can react
 To ISP issues
 To unexpected traffic patterns

 Seamless mobility (really use multiple radios)

 Multihoming
 Link sharing (use my DSL and my neighbour’s Cable (via

Wifi) simultaneously.

 Reactive ends give the middle control to move traffic
around.

