Towards a Next-Generation Inter-domain Routing Protocol

L. Subramanian, M. Caesar, C.T. Ee, *M. Handley*, Z. Mao, S. Shenker, and I. Stoica

Inter-domain Routing Policy

Inter-domain Routing Policy

Inter-domain Routing Policy

Inter-domain Routing

BGP4 is the only inter-domain routing protocol currently in use world-wide.

- Lack of security.
- Ease of misconfiguration.
- Policy through local filtering.
- Poorly understood interaction between local policies.
- Poor convergence.
- Lack of appropriate information hiding.
- Non-determinism.
- Poor overload behaviour.

What problem does BGP attempt to solve?

- *Global interconnectivity* between Internet providers.
- Dynamic routing in the presence of failure.
 - ☐ An approximation to *shortest-path* routing.
 - □ Subject to *local policy* constraints of each ISP.

Policy, policy, and policy

- An ISP's routing policy is a commercial secret.
 - □ Don't want to tell *anyone* else what the policy is.
 - □ BGP does policy entirely through local filtering of the set of possible alternative routes.
- Need path information to set a useful range of policies.
 - □ But path information inherently reveals information about routing adjacencies.
 - □ Can trivially infer many (most?) simple policies from looking at the routing tables.

Local Filtering

Doing policy entirely through local filtering is the root cause of many of BGP's problems.

- □ Low-level mechanism for configuring what not to accept is prone to misconfiguration.
- □ No semantics in the protocol as to why a route is used make it hard to discover errors or attacks.
- □ No information about alternative routes means BGP must to a lengthy path exploration to figure out which alternatives are feasible.
- □ No information about which alternatives will work for whom means BGP can't do effective information hiding.
 - Small changes in one part of the world are frequently globally visible.

Policy Hiding

- It's not practical to hide most customer/provider routing relationships when using BGP.
 - □ Customer pays provider to advertise their route to the rest of the world.
- It is practical to hide many private peering relationships.
- Perhaps 95% of the "peerings" visible in route-views and RIPE appear to function as customer/provider links.
 - □ Note that the flow of money and whether a peering effectively functions as a customer/provider link are not necessarily correlated or revealed by the routing protocols.

Towards a Routing Framework

- Given that:
 - Most links function as customer/provider.
 - □ Customer/provider links are inherently visible to the world.
 - □ Additional semantics visible in the routing protocol would allow more informed route calculation, and permit better information hiding.
- Then it seems logical to design a routing protocol that uses this information explicitly.

IP Address Space

- The IP address space is a mess.
 - ☐ At best, a poor relationship between topology and address prefixes.
 - ☐ Many prefixes per AS.
- Binding between address prefixes and organizations is pretty stable.
 - □ Routes to a prefix change much more rapidly though due to failure or reconfiguration upstream.

Towards a Routing Framework (2)

Separate dynamic routing from address prefix binding.

- Use one protocol to distribute bindings between an address prefix and an origin AS.
 - □ Relatively static binding.
 - □ Can use strong crypto and offline computation to secure this binding.
- Use another protocol to dynamically calculate paths to origin ASes.
 - ☐ Dynamic calculation, needs fast reconvergence.
 - □ Different security mechanisms are appropriate.

Multiple Routing Hierarchies

- There is more information available within a routing hierarchy than there is between them.
 - □ Different routing algorithms may be appropriate.

Routing Protocol Styles

- Link-state:
 - ☐ Great convergence properties.
 - ☐ Scales fairly well.
 - □ Can't easily hide policy information.
- Path-vector:
 - □ Poor convergence properties.
 - □ Scales well.
 - □ Can hide policy information and implement today's routing policies.

M

Hybrid Link-State/Path Vector (HLP)

Hybrid Link-State/Path Vector (HLP)

Within Customer-Provider link-state tree:

- ☐ Good convergence.
- ☐ More information.
 - Eg. alternative route pre-computation.
 - Explicit representation of backup link for multihoming.
- □ Default policy is simple (reduces misconfiguration errors) and robust.
- ☐ Improved default security.
 - Need to be a tier-1 to do much damage.

Hybrid Link-State/Path Vector (HLP)

Between Customer-Provider trees:

- □ Use fragmented path-vector (FPV), rather than full path-vector used by BGP.
 - Number of links routed using FPV decreased drastically.
 - Reduces path-exploration space.
- Degrade gracefully from link-state towards path-vector if ISPs need to use more non-default policies.
 - □ Worst case looks pretty much like BGP.

be.

Routing Messages

be.

Route Change

Hybrid Link-State/Path Vector (HLP)

Isolation and Information Hiding.

- □ Lots of information within a Customer-Provider tree.
- □ Don't need to convey all changes into FPV.
 - Local changes that aren't too critical can be hidden from the wider world because it's easy to see that similar metric alternatives exist within the Customer-Provider tree.
 - Only large-scale changes need to be pushed via FPV.
- □ Significantly reduce global routing table churn.

Exceptions

- Not all policies conform strictly to the hierarchy
 - □ Export-policy exception.
 - □ Prefer-customer exception.
- Dealt with in HLP by using FPV rather than Link-state.
- Fortunately this is rare. Frequency of export-policy exceptions:

Type	Oct '03	Jun '03	Jan '03
Prov-Prov	0.8%	0.1%	0.3%
Prov-Peer	0.5%	0.5%	0.4%
Peer-Prov	0.1%	0.1%	0.1%

Performance: Routing Table Churn

re.

Performance: Fault Isolation

re.

Fault Isolation and Multihoming

Ŋ4

Convergence

- BGP: Worst case is fully connected *n*-node graph:
 - \square Convergence time is O((n-1)!)
- HLP: In the absence of exceptions, worst case is:
 - \square Convergence time is $O(n^{k(D)})$
 - \square k(D) is number of peering links on path to D

In the current Internet:

 $k \le 1$ for 90% of Internet routes

 $k \le 2$ for 99% of Internet routes

 $k \le 4$ for all Internet routes

HLP Advantages

- **Scalability**: route churn is the issue.
 - ☐ Information hiding.
 - □ Separation of prefix distribution from routing.

Convergence:

- ☐ Link-State converges fast.
- ☐ FPV converges faster than Path-Vector because there are fewer infeasible alternates.

Security:

- ☐ Structure adds security.
- □ Secure prefix distribution separately from dynamic routing.

Robustness:

☐ Harder to misconfigure, easier to figure out what the intent behind a route is.

HLP: Summary

- Understanding policy is critical to understanding how to change routing.
 - □ Need broad industry participation to get this right.
- Most policy is simple, some is very complex, some is inherently public, some must be kept private.
 - □ BGP doesn't distinguish.
 - □ HLP tries to take advantage of the common case, and the inherent limitations on what can be kept private.
- Transitioning away from BGP will be really hard.
 - □ Can't happen with strong incentive, and good consensus on where we want to get to.

Criteria for Successful BGP Replacement

- Interoperate with BGP without any serious degradation in capability during transition.
- Provide incremental improvement when customers and their providers both switch
 - □ outside-in deployment.
- Concepts must be familiar to ISPs.

Opportunity for Replacement?

- BGP must be seen to be failing.
 - Security problems being actively exploited?
 - □ Convergence problems too slow for high-value traffic (VoIP, IP-TV)?
 - ☐ Growth of multi-homing causes routing table growth/churn that is unsupportable?