
ROAR: Increasing the Flexibility and Performance of
Distributed Search

Costin Raiciu
University College London

c.raiciu@cs.ucl.ac.uk

Felipe Huici
NEC Europe, Heidelberg

Felipe.Huici@nw.neclab.eu

Mark Handley
University College London
m.handley@cs.ucl.ac.uk

David S. Rosenblum
University College London
d.rosenblum@cs.ucl.ac.uk

ABSTRACT
To search the web quickly, search engines partition the web index
over many machines, and consult every partition when answering a
query. To increase throughput, replicas are added for each of these
machines. The key parameter of these algorithms is the trade-off
between replication and partitioning: increasing the partitioning
level improves query completion time since more servers handle
the query, but may incur non-negligible startup costs for each sub-
query. Finding the right operating point and adapting to it can sig-
nificantly improve performance and reduce costs.

We introduce Rendezvous On a Ring (ROAR), a novel distributed
algorithm that enables on-the-fly re-configuration of the partition-
ing level. ROAR can add and remove servers without stopping the
system, cope with server failures, and provide good load-balancing
even with a heterogeneous server pool. We demonstrate these claims
using a privacy-preserving search application built upon ROAR.

Categories and Subject Descriptors
C.2.4 [Computer-Communication Nets]: Distributed Systems

General Terms
Algorithms, Design

1. INTRODUCTION
Search, possibly the web’s most important application, is im-

plemented as a distributed computation over a large inverted Web
index. In order to improve the performance of queries, this index
is partitioned into many parts, and each part is replicated on a clus-
ter of commodity PCs. When a query is executed, it is sent to one
machine in each cluster so that the whole index is covered, and the
results aggregated [5].

From a distributed algorithms point of view, which cluster each
data item is stored on and which machines each query is sent to are
independent of the actual content of the data and queries. Indeed,
the algorithm is blind to this content: it is sufficient to ensure that

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
SIGCOMM’09, August 17–21, 2009, Barcelona, Spain.
Copyright 2009 ACM 978-1-60558-594-9/09/08 ...$10.00.

Figure 1: Basic Distributed Rendezvous

each query reaches machines that between them hold all the data.
We call this class of algorithms distributed rendezvous.

Such algorithms contrast with other more constrained look-up
algorithms such as Distributed Hash Tables (DHTs), where a query
is sent to precisely the node that can answer the request. To some
extent, distributed rendezvous can be thought of as brute-force dis-
tributed matching. However inelegant this may seem, many real-
world problems fall into this category, including web search.

Successful web search engines such as Google use parallel index-
search algorithms [5], which are a form of distributed rendezvous.
The datasets involved can be many terabytes in size [5], can change
rapidly (consider Google News, updated continuously as news hap-
pens), and can have very high query rates. Only by spreading the
search across large numbers of servers can query latency be kept
low while achieving high overall throughput.

Figure 1 illustrates the basic concept. The servers are divided
into clusters and each data item to be searched is replicated on all
the machines in a single cluster. With this in place, a query is then
sent to one machine from each cluster, thus ensuring that the query
is matched against the full index. Each data entry is only matched
against the query on a single machine, allowing arbitrarily com-
plex matching rules to be performed locally. Having performed the
search, each machine ranks the matches and returns the best ones.
Finally, the results from all the query machines are merged, ranked
once again, and returned to the user.

Given this basic strategy, the obvious question is how many nodes
should be in each cluster? Each query must be sent to one node
from each cluster, so increasing the number of clusters means split-
ting the search index into more pieces. This involves more nodes
in each search, reducing the search completion time.

Although low query times are desirable, running a query on a
node also has a fixed cost, as the query must be communicated to
the node and a search thread instantiated there. These costs are

291

not negligible: if we took the extreme position of having only one
node per cluster, then every node would have to try to process every
query. Even though the search performed on each node would be
cheap, the overall throughput would be very low.

In essence, the problem is one of balancing search latency, which
benefits from a larger number of clusters, with total throughput for
all nodes, which has a preference for a smaller number of clusters.
A sensible strategy would be to choose the smallest number of clus-
ters that satisfies a latency target, such as answering all queries in
under a second. Once this target is satisfied, splitting into more
clusters would only decrease peak throughput.

Of course, for a static data set and a constant query rate there
is no great problem figuring out the number of clusters needed to
satisfy a target latency, and from there to calculate the number of
machines in each cluster needed to satisfy the overall throughput.
However, neither the data set nor the query rate remain constant for
most real applications, and the total number of machines cannot
normally be changed on short timescales.

Consider again Google’s search engine: over time the size of the
web increases, so the size of Google’s index grows. While ma-
chines can easily be added to existing clusters in order to maintain
throughput, keeping search latency constant requires repartitioning
the servers into more clusters.

Google does this by removing machines from an existing cluster
and adding them to a new cluster configuration during a low traffic
period [9]. Once this completes, the front-end load balancers start
using the updated machines to answer a fraction of queries. The
next batch of machines are then removed, repartitioned into the
new clusters and updated, and so on. This works but is inflexible:
repartitioning needs to be a rare event, and it cannot be performed
in response to a load spike because it must be done at a quiet time.

In this we paper examine the question of how to change the par-
titioning of a running distributed rendezvous system. We propose
a novel algorithm for distributing data and queries between servers
that balances load well, and is much more amenable to on-the-fly
changes to partitioning, even under conditions of heavy load. This
additional flexibility can be used to cope with flash crowds, to man-
age data sets that change even more rapidly than Google’s, and may
even be used to adaptively control the total work done in such a
data center so as to reduce overall demand for electrical power, an
important concern for data centers these days.

2. THE NATURE OF THE PROBLEM
Let us parameterize the problem:

• Each data item is replicated and stored on r servers.

• Each query is run in parallel on p servers (we say the query
has been partitioned and that p is the partitioning level).

The aim is to perform data replication and query partitioning
such that every query meets every data item. If all data items have
the same number of replicas and all queries are sent to the same
number of servers, it is trivial to see from Figure 1 that with n
servers it must be the case that:

p · r = n (1)

This characterizes the basic tradeoff in distributed rendezvous: as
p increases to improve latency, r generally decreases, so a node
stores less data but must handle more queries.

In reality the situation is not quite so simple, and so this provides
a lower bound. If load balancing is not perfect, or if nodes fail, or
just to add resilience, larger values of r may be used. Hence:

p · r ≥ n (2)

Note that on each server, a local index (such as an inverted index)
may be created based on the items (documents) assigned to that
server. This index will be used to perform fast local matching.
However, the latency of a match on each node will still grow with
the number of documents indexed, only more slowly. Further, this
does not affect the nature of the replication process across servers.

2.1 Constraints
If we double p, the total cost across all servers of matching a

single query remains unchanged, but twice the number of servers
do half the amount of work each. Normally this will reduce query
delay. However, there are additional constraints that influence the
tradeoff between p and r; these are the focus of this paper:

• The processing resources of each node are bounded. Dou-
bling p also means each node must handle double the num-
ber of queries. Each additional query requires setting up a
search thread, network bandwidth to communicate the query,
and imposes extra context switching overhead. For an overall
system running at high utilization, p cannot increase indefi-
nitely; beyond some point nodes will saturate.

• The long-term storage (memory and/or disk space depending
on the application) on each node is bounded. Thus, there is
also an upper bound on r, above which the nodes cannot store
their fraction of the data items.

• For a dataset that changes rapidly, increasing r means more
changes must be sent to each node. This extra work reduces
the capacity of each node to handle queries.

Thus, p cannot be too large lest nodes’ CPUs saturate, and it
cannot be too small or nodes’ storage will saturate. Generally we
want to choose p to be large enough to satisfy latency bounds that
are determined by usability factors, but choosing a larger p than this
will increase processing costs, requiring more machines to handle
peak workloads. For non-peak workloads one might assume that
using a larger p than necessary would not be a problem, but modern
servers require significantly more energy when they are working
hard (which is the case when p is increased, due to the additional
per-request fixed costs incurred); for companies such as Google
and Microsoft that run huge numbers of servers, minimizing power
consumption is an important goal.

In addition to these constraints, query rates vary over time due to
daily and weekly cycles as well as flash crowds. This leads to the
question of whether it is feasible to change p relatively frequently.
Indeed, it may also be possible to shut down or sleep nodes to save
power at quiet times, and thus change r without changing p. In the
next section we will examine these questions in some detail; the
result will be a design for a new distributed rendezvous system that
makes such changes possible at acceptable cost.

2.2 Dynamic Repartitioning
The repartitioning strategy described in Section 1, whereby dur-

ing a quiet time servers are taken offline to be moved into new
clusters, has several problems.

First, reducing electricity use requires running fewer servers at
relatively high utilization levels rather than more servers at lower
utilization.1 Thus, reducing the capacity of the network to repar-
tition is difficult while sustaining the required query throughput.
Either the workload must have predictable quiet periods lasting for
significant periods of time, or spare machines must be maintained
1A server requires roughly half the power when idling as when fully loaded, with the
change in power between idle and loaded being fairly linear with CPU utilization

292

(a) Storing data items (b) Executing a query

Figure 2: A simple sliding window algorithm with p=4, r=3, and n=12.

Figure 3: ROAR with n=12, p=4 and r=3. Objects
are stored in arcs of length 1/p and queries sent to
p servers at 1/p intervals.

and powered up during repartitioning, increasing additional infras-
tructure and energy costs.

Second, this strategy incurs significant data transfer costs while
repartitioning. Each server will dump its current documents and
reload its new part of the index. In effect, the index as a whole
is copied r times, which unnecessarily wastes bandwidth and cre-
ates significant stress on the backing filesystem as servers down-
load their new index. How big is this waste? Google reports p to be
around 1,000 [3]; search is done in more than 40 data centers[18]
distributed globally. In each data center the replication level is low
(1-3) [10]. Let’s approximate r to be 80.

The index is reportedly a few terabytes in size (for the sake of
argument, let us assume it is 10TB), and thus the whole network
needs to transfer around 800TB in order to repartition.

Finally, the time to repartition may be significant. An unpre-
dicted traffic spike during repartitioning may cause an overload.
Google can avoid this by repartitioning only one data center at a
time and moving traffic away from that data center using DNS load
balancing, but not all organizations can do so.

In both solutions above, distributed coordination is needed to de-
cide which servers should be migrated, when, and to which cluster.
Coordination is required to decide when to switch to the new con-
figuration and when to stop the old configuration. This makes the
whole process difficult to automate, cumbersome and lengthy.

All of these problems stem from the simplicity of the algorithm.
Simple partitioning seems good enough in cases when r and p
rarely change. On the other hand, the ability to cheaply and fre-
quently repartition on the fly can allow a great deal of flexibility,
allowing adaptation to changing operating conditions, be they due
to spikes in load, changes in the data set, or equipment failure. To
achieve this level of flexibility at reasonable cost we need to move
away from simple partitioning strategies and examine algorithms
that do not require the overlay structure to change. In the next sec-
tion we introduce ROAR, a novel distributed rendezvous algorithm
that meets these goals.

3. TOWARDS A SOLUTION
Our key observation is that there is no need to divide the nodes

into disjoint clusters: what is important is that each data item is
replicated on r nodes, and that we can arrange for every query to
visit at least one of these nodes. There are random-walk algorithms
that can do this [25], but they require p · r � n, which is usually
unacceptable. Can a deterministic algorithm do better?

The simplest solution is probably a sliding window algorithm,
where the n nodes are arranged in a circle. The first data item is

then stored on nodes 1...r, the second is stored on nodes 2...(r+1),
and the kth on nodes k...(r + k), with all arithmetic performed
modulo n. Now if a query visits every rth node it is guaranteed to
reach every data item, as shown in Figure 2. Such an algorithm has
some very nice properties:

• Each node stores the same number of items, and if a round-
robin algorithm is used to start queries, each node handles the
same number of queries (assuming r divides n precisely). In
this sense it is identical to the basic partitioning scheme.

• Increasing r by one merely requires replicating each data
item onto the successor node on the ring.

• Decreasing r by one merely requires deleting each data item
from the node that stores it that has the greatest ID.

Thus each node plays an equal role when changing r (and con-
sequently p). When decreasing r, no additional data needs to be
copied. When increasing r by one, each node needs to copy 1/nth

of the data. During the transition, search continues to function. If
r is decreasing, searches must use the new value of p during the
transition to ensure correctness. If r is increasing, searches must
use the old value of p until the transition is complete.

Despite these nice properties, such an algorithm has some short-
comings. First, while it works very well with a fixed number of
reliable nodes, it does less well if a node fails. In this case, all the
objects stored on the failed node need to be replicated once more,
as they’ve just lost one replica. These replicas need to be added
by the r successors of the failed node; this implies that each node
needs to monitor the health of its r predecessors; for large values
of r, the costs can be significant. Finally, until the new replicas are
added, query execution could miss some objects.

The basic problem with this simple sliding window algorithm
stems from the fact that the nodes have a discrete position on the
ring. Data is then replicated across consecutive nodes holding a
range of these discrete positions. If the list of nodes changes (nodes
are added, shutdown to save power, or fail), this impacts the relative
positions of nodes, and so has non-local consequences.

Beyond this, another problem is that all nodes are treated equally—
also a result of the discrete nature of the node positions on the ring.
In practice, it is rare that all nodes in a data center are of identical
performance, as equipment tends to be purchased over time. An ex-
plicit goal is to be able to effectively utilize heterogeneous servers
according to their capabilities.

293

4. ROAR: RENDEZVOUS ON A RING
The problems above led us to develop a new continuous version

of the sliding window algorithm that we call Rendezvous On A
Ring (ROAR). Rather than simply arranging servers in a circular
list, ROAR uses a continuous circular ID space [0, 1]. Each server
is given a continuous range of this ID space that it is responsible
for, such that all points on the ring are owned by some server. Thus
ROAR uses the ring in a similar way to Chord [20], although that
is where the similarity ends.

The basic idea is that given a partitioning level p, ROAR stores
each object on the servers whose range intersects an arc of size 1/p
on the ring (Figure 3); for searching, ROAR randomly chooses a
starting point on the ring and forwards each query to p equally-
spaced points around the ring. Whereas the basic sliding window
algorithm stores a data item on exactly r consecutive nodes, ROAR
stores on an arc of the ring in which, on average, there are r servers.
This allows us to decouple query routing from the server identifiers.
We now look at these mechanisms in greater detail.

4.1 Storing objects
Each data item is assigned a uniformly random identifier in [0, 1].

The data item now needs to be replicated on all the servers that are
responsible for the ring segment of length 1/p that starts with the
data item’s ID. How this replication is actually done is independent
of the basic functioning of ROAR. Possible strategies include:

• Push the data item to the first server, and then forward it from
server to server around the ring.

• Have all the servers mount a shared filesystem such as GFS [14].
Servers periodically check the filesystem for files with IDs
that should be stored in their range.

• Push the data item to all the relevant ring servers from a back-
end update server that knows the ring topology.

A peer-to-peer solution using ROAR might use the first, whereas
organizations with existing distributed filesystems might choose the
second. Our implementation does the last of these, using a central
coordinator to keep track of the ID ranges occupied by the servers.

4.2 Forwarding Queries
To perform a search, a query from a client is first sent to a front-

end server. These front-end servers are responsible for partitioning
the query and sending the sub-queries to p nodes on the ring. In
our implementation, every front-end server is kept updated with
the ranges of IDs on the ring for which each node is responsible.

The front-end server then picks a random ID q on the ring for this
query, and sends sub-queries in parallel to the node responsible for
ID q and the nodes responsible for IDs q + 1/p, q + 2/p, . . . , q +
(p − 1)/p, modulo 1. As these IDs are 1/p apart on the ring and
as each data item is replicated on a range of at least 1/p, it is easy
to see that the query will reach a node that holds every data item
(refer to Figure 3). Each server that receives the query matches it
against its data items and returns the matches (or the best matches if
the query is for a very popular term) to the front-end server, which
assembles the final list and returns it to the client.

The description above captures the basic idea of the ROAR al-
gorithm, but not the whole story. The real benefit comes from an
additional observation: if the front-end server chooses a partition-
ing value pq for a query that is larger than p, the algorithm still
matches all the data items. By default though, this would waste
effort, as the query might hit more than one server that holds the
same data item (as shown in Figure 4). However, if we embed the

Figure 4: Duplicate matches are possible when pq > p is used.
In this case, r = 4, p = 3 and pq = 4.

value pq into the query, the servers can divide up the matching task
by object ID so that no two servers match the same data item. To
do this deterministically, a server that receives a query with logical
destination idquery only runs the query against data items (objects)
that satisfy the following two conditions:

idobject < idquery (3)

idobject + 1/pq ≥ idquery (4)

Data items that do not satisfy the second condition will be matched
by the preceding server that received a sub-query (Figure 5(a)),
while data items failing the first condition will be matched by the
server receiving the following sub-query (Figure 5(b)).

There are two main reasons why it is so useful to be able to run
queries with values of p greater than the bare minimum:

• Spreading a query across more nodes decreases latency. ROAR
can dynamically trade off latency for total throughput (or
if the nodes are not saturated, power consumption) without
needing to first change the replication level.

• Allowing different values of pq to be used for queries allows
the partitioning to be changed while still serving queries.

4.3 Adding Nodes
To function correctly, each server just needs to know its ID range.

Typically, this must match up with the ranges of its immediate
neighbors on the ring.

When a server joins the overlay, it is inserted between two other
servers on the ring. The query load seen by a server is directly
proportional to the fraction of the ring it is responsible for. Thus
a simple strategy for inserting nodes is to pick the most heavily
loaded node, and insert the new node as its neighbor.

To start with, the new node has an infinitely small range, and so
does not yet receive any queries. The nodes begins by replicating
all the data items that traverse its ID. This download could be from
its neighbor, but more likely it will be from a back-end filesystem
to avoid putting extra load on an already loaded server.

Once the data download has finished, the new node communi-
cates directly with its two neighbors to determine which of them
is most loaded. It now starts to grow its range into that of the
most loaded neighbor, requesting additional data items that over-
lap the range as it grows. Every few seconds it updates the front
end servers with its new range, and also updates its neighbor so
that the neighbor can drop data items in the overlapping range.

As the new node’s range grows, its load will start to increase.
Once the new node’s load starts to approach that of its neighbors,

294

idobject:

logical position
of object

idobject + 1/p:
max extent of

replication range
of object

preceding
sub-query

sub-query

at idquery

range of

node b

range of
node c

1/pq

no match as
idobject + 1/pq < idquery

range of

node d
1/pq

range of

node a

match

(a) Match by first sub-query

idobject:

logical position
of object

idobject + 1/p:
max extent of

replication range
of object

preceding
sub-query

sub-query

at idquery

range of

node b

range of
node c

1/pq

match:

idobject + 1/pq < idquery

range of

node d
1/pq

range of

node a

no match:
query before

object

(b) Match by second sub-query

Figure 5: Avoiding duplicate matching in ROAR.

the rate of replication is slowed to a low background rate. In fact,
nodes always compare load with their neighbors and expand their
range very slowly into that of a more loaded neighbor. In this way,
the nodes progressively distribute themselves around the ring, not
with equal ranges, but with ranges that are the correct size to bal-
ance the load on the nodes, even if the nodes have heterogeneous
processing power.

4.4 Removing Nodes
A node can be removed from the ring in a controlled manner

by informing its neighbors that its load is now infinite. The two
neighbors will grow their ranges into the range of the node to be
removed by downloading the additional data needed. This data is
typically a small fraction of the data a node already has: only 1/nth

of the data on a node starts or finishes at that node; it is this data
that the neighbor will not already have. A neighbor of a shut-down
node will need to download 1/2nth of the data on average, if it
takes over half of the neighbor’s range and ranges are equal before
the node is removed.

The query load will increase by as much 50% on the neighbors
of the node being shut down, as their range has increased by 50%.
However, in practice the neighbors’ neighbors will expand their
ranges as they see the load start to increase, so this upper bound is
not normally reached.

What happens though if a node fails without warning? The fail-
ure will be discovered very quickly by the front-end servers, so they
know not to route any more queries to it. However, we still want to
match the data-items the failed node would have answered.

The front end server avoids starting a query on a failed node, but
it ignores other failures when deciding the starting point. When it
needs to send a query to a failed node, it uses a fall-back strategy.
Each data item was replicated over an average of r servers that span
a range of 1/p; any of these servers could match the query instead
of the failed node. We need to split the sub-query that would have
been sent to the failed node in two because some data items’ range
might have ended on the failed node and some might have started

(a) A failure causing a missed match. (b) Failure-handling in ROAR.

Figure 6: A node failure can cause a query to miss a match.
ROAR prevents this by splitting the failed node’s sub-query in
two and sending these to its predecessor and successor nodes.

on the failed node, as in Fig. 6(a). So long as we send the sub-query
to two nodes, one before and one after the failed node, and so long
as these nodes are not more than 1/p apart, then we are sure to
match every data item that the failed node could match (Fig. 6(b)).

To spread the extra load across the maximum number of nodes
we choose a pair of new targets for the sub-query as follows:

1. Let faillo be the lowest ID held by the failed node and failhi

be the highest ID held by the failed node.

2. Pick a new first sub-query target idq1 randomly such that:
failhi − (1/p − δ) < idq1 < faillo.
δ is a small value that captures any uncertainty in the value
of 1/p. It is chosen so that 1/p − δ is guaranteed to be less
than 1/pold for all recently used values of pold.

3. Choose a new second sub-query target idq2 such that:
idq2 = idq1 + (1/p − δ)
This ensures the new sub-queries are never so far apart that a
data item’s range can fall between them and be missed.

4. Send both new sub-queries, but in the query request specify
the original query ID. This is so that the only data items to be
matched are those that the failed node would have matched,
avoiding overlap with other sub-queries. Additionally, be-
cause the two new subqueries are maximally separated by
almost 1/p, their data sets are maximally disjoint, so they
will produce very few duplicate matches.

The overall effect is that immediately after a node has failed and
before any node has had a chance to download any failed items,
all the queries are still being responded to correctly. The number
of sub-queries being sent has increased by a fraction of 1/n be-
cause one extra query is needed for those queries that would have
hit the failed node. The total matching load does not increase as
nodes do not duplicate each other’s work, but approximately 2n/p
nodes share the extra 1/nth of the load, so their load temporarily
increases by a fraction of 2/p.

The same algorithm applies for multiple failed nodes, but if ei-
ther of the new sub-queries hits a second failed node, the process is
simply repeated from step (2), choosing a new random value.

4.5 Changing the Replication Level
So far we have seen that for a given replication level r, we can

partition queries for varying values of pq, so long as pq · r ≥ n.
However, if, in an attempt to keep query latency low we are consis-
tently running with values of pq significantly larger than the min-
imum needed, then it does not make sense to keep sending all the

295

updates to all the nodes. Maintaining a replication level higher than
needed requires extra bandwidth, using CPU and network capacity
that could have been used to serve queries. Instead, we want to
repartition by reducing r, hence increasing the minimum p.

If p is increased and r decreased, all the ROAR nodes have to do
is drop a few objects from their local store. As it is always safe to
run queries with higher pq than needed, the front-end servers can
just switch to the new pq immediately, and let the ROAR nodes
discard data in their own time.

Conversely, a ROAR system may discover that it is running with
pq · r = n, using the minimum currently-available partitioning
level. If the query latency is well below threshold, then p is proba-
bly too large, costing CPU cycles and hence increasing energy re-
quirements2. If p is really excessive, nodes will saturate, and query
delay will rapidly increase.

To decrease p to p′, r must increase, and this is done by repli-
cating each object 1/p − 1/p′ further round the ring. The ROAR
servers need to download the required objects from the filesystem,
which can take some time. Further, the nodes will not all complete
the download simultaneously. For correctness, when decreasing p
to p′, the front-end servers continue to partition queries p ways un-
til they receive positive confirmation that every one of the ROAR
nodes has obtained all the extra data needed. Only then do they
switch to partitioning queries p′ ways.

4.6 Load Balancing
The mean query rate seen by a node is directly proportional its

range. To balance load, ROAR uses a slow background process
in which each node extends its range into that of a more loaded
neighbor. The goal is not to even out ranges, but to even out load
so that a node’s range is in accordance with its processing power.

If ROAR indexes N items in total, the number that need to be
stored on a node i with a range of size gi is the number of items
that intersect the start of the node’s range plus the number of items
that start within the node’s range; this is N/p + N · gi. On average
1/p = rḡ, so for sensible values of r, the N/p term dominates,
and the amount of data stored by each node is fairly even between
nodes, even if their ranges vary considerably.

However, although the mean query rate at a node depends on
gi, by choosing a random starting point on the ring for a query,
we subject ourselves to the normal statistical variations associated
with random processes. When we implemented ROAR it became
clear that these variations could adversely affect load balancing suf-
ficiently to impact query delay.

To greatly reduce this effect, we make use of “the power of two
choices”[17]. When a front-end server partitions a query, it chooses
two IDs at random on the ring and computes the expected delays
in each resulting configuration of p servers. It will then choose the
configuration that finishes first. To do so, the front-end maintains
statistics about each server’s processing power and RTT, as well
as the tasks that have been assigned to that server and have not
completed. To compute the expected finish time on a given server,
the frontend simply uses RTT +size/CPU , if the server is idle; if
not, it also takes into account the finish times of the existing tasks.

If servers are heterogeneous, there may be some sub-queries in
the chosen configuration that finish much later than the rest, neg-
atively impacting query delay. In this case, ROAR implements
an optional load balancing mechanism at the frontend: before it
sends the sub-queries, the frontend checks if the slowest server is
expected to be more than 100ms behind the fastest one; if so the

2The reader may think that the effect is negligible, but the temperature in our air-
conditioned machine room ran 4◦C hotter when our 47 ROAR nodes were fully loaded
than when they are idling. We have since upgraded our A/C system.

front-end uses a very similar mechanism to that described for han-
dling failures. It splits the sub-query it expects to be slow in two,
and reschedules the new subqueries. This continues until the dif-
ference in delay is below threshold, or the effective pq reaches a
predefined limit.

This mechanism complements the range load balancing mecha-
nism, as it functions on a much shorter timescale: it can reduce de-
lays even if ranges are not assigned according to processing power,
at the extra cost of increasing pq.

5. EXPERIMENTAL EVALUATION
To evaluate ROAR we built a prototype application and deployed

it on 47 servers in the HEN testbed at UCL and on 1000 servers on
Amazon’s EC2 [1]. We also simulated ROAR extensively to exam-
ine scalability, but simulation fails to capture issues such as context
switch overhead and I/O bottlenecks that impact real-world perfor-
mance, so all the results below are from our testbed deployments.

The evaluation has two major goals. First, we wish to see how
p impacts the properties of the system, including the average query
delay, throughput, and system load. This gives insight into the
range of values that are appropriate for p in practice, and tell us
whether changing p has any sizable impact.

Second, we wish to evaluate ROAR. How does throughput and
query delay scale with the number of nodes involved in the search?
How easy is it to change p at runtime? How does ROAR cope with
failures? How well do the load balancing mechanisms work?

5.1 The Application
Ideally we would have liked to evaluate ROAR using a full-

blown web search application distributed across thousands of servers,
as this is the most widely used distributed rendezvous application.

Unsurprisingly though, such large-scale search engines are not
freely available for experimentation. We considered implementing
a miniature search engine, but at small scale the query setup costs
tend to dominate the query times, so the results would not be so
meaningful. In the end we decided that to run a small scale exper-
iment but still see meaningful results, we needed a more difficult
matching application, where the matching costs would be compar-
atively large. Such an application still benefits significantly from
being parallelized on the scales we can achieve on our testbed.

The application we chose to stress ROAR is called Privacy Pre-
serving Search (PPS). Our system allows untrusted servers to match
encrypted queries against encrypted metadata. The servers only
learn the outcome of the match, not the contents of the query or
the metadata [19]. It can be used, for instance, to protect privacy
in online storage, such as Google Docs [2]. This application is
CPU intensive because of the cryptographic operations required to
perform a match. Files are encrypted before being stored, and en-
crypted metadata is also created and stored on the servers to allow
the searching. When the user wants to retrieve some files, PPS
runs queries to find which files the user is interested in. These
queries are run on the servers, so the client platform can be ex-
tremely lightweight, such as a mobile phone.

In PPS, users each have many files (perhaps on the order of mil-
lions) for which they provide searchable metadata, and PPS’s job is
to answer queries for that data. To create metadata for our tests we
used the files from a Linux filesystem. The test queries used ran-
domly chosen keywords. From a usability point of view, we impose
a delay bound of one second that the PPS system must meet.

We have two versions of PPS that exhibit different fixed costs.
PPS is written in Java, and the cost of running the Java garbage
collector is not negligible. PPS_LM (low memory) forces a run of
the garbage collector immediately after finishing a query. This has

296

 0
 50

 100
 150
 200
 250

 0 200 400 600 800 1000O
bj

ec
ts

 (
K

/s
ec

on
d)

Thousands of objects

Throughput Variation with Dataset Sizes

PPS_LM
PPS_LC

 0
 1
 2
 3
 4
 5

 0 200 400 600 800 1000

D
el

ay
 (

s)

Thousands of objects

Query Delay Variation with Dataset Sizes

PPS_LM
PPS_LC

Figure 7: Single server performance

 0

 1

 2

 3

 4

 5

 6

 5 10 15 20 25 30 35 40 45 50

Q
ue

ry
 D

el
ay

 (
s)

p

Query Delay Variation with p

PPS_LM 2 q/s
PPS_LM 6 q/s

PPS_LM 10 q/s
PPS_LC 2 q/s
PPS_LC 6 q/s

PPS_LC 10 q/s
Target Delay

Figure 8: Effect of p on query delay

 0

 20

 40

 60

 80

 100

 120

 0 10 20 30 40 50

Lo
ad

 (
%

)

p

CPU Load Variation with p

PPS_LM 2 q/s
PPS_LM 6 q/s

PPS_LM 10 q/s
PPS_LC 2 q/s
PPS_LC 6 q/s

PPS_LC 10 q/s

Figure 9: Effect of p on CPU Load

the advantages of minimizing memory usage and preventing the
garbage collector running during a query, which would increase
query delay, but the disadvantage of adding to the fixed costs of a
query. PPS_LC (low CPU) does not force a garbage collection run
after a query; it has lower fixed costs, but uses more memory and
may exhibit more variable query delays.

We do not claim that PPS is an “optimal” application in any way,
but merely note that real-world search applications also vary con-
siderably in their ratio of fixed to variable costs. For example,
Google’s web search runs from memory, and has relatively low
fixed costs because all users search the same web index. In con-
trast, with Google’s Gmail, queries from different users obviously
have to search different indexes. It doesn’t make sense to store all
such indexes in memory for all users. Loading a file from disk has a
large seek/rotate latency followed by a fast consecutive read phase,
so has a comparatively high fixed cost.

As a test application PPS shares the main properties with web
search. The mechanisms are different, but the average cost of match-
ing in both cases has a large component that grows linearly with
the number of documents searched, although PPS search costs are
less dependent on the contents of the query. Both applications are
bottlenecked on CPU cycles or memory bandwidth. The different
versions of PPS have quite different fixed costs, as we would also
expect when comparing regular web search with webmail search.

5.1.1 Characterizing PPS
Before applying ROAR to PPS, we first examine how PPS per-

forms on a single machine. The main issue is query delay as shown
in Fig. 7. As expected, once the fixed costs are satisfied, query de-
lay increases with the number of metadata objects to be searched.

When the number of objects is smaller, the fixed costs associated
with running a query cease to be negligible, which shows up as a
performance drop off in the bottom graph in Fig. 7. The drop is
steeper for the low memory version.

In absolute terms, when searching one million metadata items a
single server takes 4.2 seconds to perform a query, which is unac-
ceptable, especially if many users are using PPS simultaneously.
Ideally we would like a PPS system that is able to respond to mul-
tiple, simultaneous requests in at most one second each. We will
now use ROAR to distribute PPS across multiple networked servers
in order to achieve this aim while increasing request throughput.

5.2 Basic Tradeoff
To examine how p impacts query delay and throughput we cre-

ated a dataset of one million files. From these we created an en-

crypted metadata index consisting of 30 keywords per file, plus
some other metadata. We distributed this index to our 47-server
ROAR deployment, and searched it with queries consisting of two
randomly chosen keywords that must both match for the file to
match. While this is a slightly artificial workload, the precise con-
tents being searched are not terribly relevant as distributed ren-
dezvous is content-agnostic.

To allow a single server to search its part of the index in one sec-
ond, we started with a value of p = 5, the smallest value that has
any hope of meeting our target search latency. From here, we pro-
gressively increased p all the way up to the largest possible value
of 47, at which point every server is processing 1/47 of every re-
quest. For each value of p, we tried workloads from two queries per
second up to ten queries per second; these corresponded to light,
moderate, and heavy workloads.

5.2.1 Query Latencies Decrease with p
The query latencies are shown in Figure 8. At low and mod-

erate load, query latency scales inversely proportional to p, as we
would hope, and is similar for both versions of PPS. It is clear that
to achieve a target latency we need to have p greater than a partic-
ular threshold. However, this threshold is not fixed, but depends
on the offered load. This should not be a surprise: a query can-
not complete until all its sub-queries complete. There is inevitably
some short-term variation in the loads on the different machines, so
some sub-queries are delayed.

The heavy workload is sustainable at any p by the LC version,
and shows a similar slope to the other workloads. However, av-
erage delay for LM decreases initially, then increases as p = 20.
This is because nodes are close to saturation at this point, and any
small variation in query arrivals induces longer delays. If we in-
crease p further, LM saturates some nodes and cannot cope with
the load. This example serves to show that fixed overheads de-
crease the maximum throughput when p increases.

5.2.2 Query Overheads Increase with p
Figure 9 plots mean CPU load (as measured by the “top” util-

ity) for varying values of p and for each of the workloads. The
error-bars show the standard deviation. The trend is clear: CPU uti-
lization increases with p. For the low memory version, the curves
show relative increases of 80% (from 22% to 40%), 54%(from 53%
to 85%), for the workloads of two and six queries per second re-
spectively. For the LC version, the relative increases are of ap-
proximately 10% in both cases. The differences between the two
versions show the overhead of more frequent garbage collection.

297

 0
 20
 40
 60
 80

 100

 0 10 20 30 40 50 60 70 80

Lo
ad

 (
%

)

Time (s)

p=10

 0 10 20 30 40 50 60 70 80

Time (s)

p=47

Figure 10: Average system load for each node

Model PE 2950 PE 1950 PE 1850 Sun X4100
PPS_LM 51W 50W 10W 7W
PPS_LC 18.9W 17W 3W 2W

Table 1: Energy Savings running at p = 5 instead of p = 47

At the highest load, the increase is more modest for LM, because
the nodes are saturated. For LC, the relative increase is 22% (from
67% to 82%).

To see this in more detail, Figure 10 shows a 20-second average
of CPU load for all our PPS_LM servers when p = 10 and p = 47
with 6 queries per second. When p = 10, individual load fluctuates
much more as queries come and go. When p = 47 there are few
idle times and load is heavily and constant.

Our cluster can handle two of these workloads with any value
of p, but using large p values uses enough extra CPU power to
waste considerable energy (Table 1). Comparing p = 5 with p =
47, our newer servers3 were measured to consume 18W more with
PPS_LC and 50W more with PPS_LM. Our older servers4 have
less good CPU power management, so less savings. We expect that
the latest Intel Nehalem CPUs will show even greater savings than
those shown.

Each query requires a disk seek then reading 250MB of contigu-
ous data. On our systems the kernel disk buffer cache reduces I/O
and PPS is largely CPU bound, but in machines with less mem-
ory disk performance might matter. The ratio of seeks to reads
increases with p, wasting I/O bandwidth. The Maxtor 10K V disks
in our servers take 7.5ms on average to seek and transfer data at
73MB/s. When p = 5 it takes each server 680ms to sequentially
read its part of the data; when p = 47 it takes 80ms. At this point
seeks accounts for 10% of the transfer times, so if the system were
disk bound, using a higher p would reduce maximum throughput
by 10%.

Finally, the bandwidth required to run a single query increases
proportionally5 with p. This does not create a sizeable impact on
energy consumption, but will increase usage of the scarce cross-
section bandwidth. We will go in more detail on cross-section
bandwidth usage in Section 5.6.

In summary, increasing p above the minimum needed to satisfy
the required delay bounds increases system load. Depending on the
workload, very large values of p may reduce the peak throughput
that can be handled, or at the very least waste resources and energy.

5.2.3 Update Overhead increases with r
To see how server throughput (matches/second) is affected by

background updates of the dataset we created medium (5K up-
dates/sec) and high (20K updates/sec) update rates. Figure 11 shows

3Dell PowerEdge 2950, with two quad-core Xeon CPUss and PowerEdge 1950, with
two dual core Xeon CPUs
4Sun X4100 with one AMD Opteron CPU and Dell 1850 with one older Xeon CPU
5In our PPS deployment the increase is modest: from 2.5KB to 24KB per query

 0

 50000

 100000

 150000

 200000

 250000

 300000

 350000

 0 2 4 6 8 10 12

T
hr

ou
gh

pu
t (

F
ile

s/
s)

Time (s)

Zero Updates
Low Update Rate
High Update Rate

Figure 11: Effect of updates on server throughput

a single server’s throughput in these conditions in comparison with
no update load. Unsurprisingly, the higher the load the bigger the
reduction in throughput. For the moderate load, the average drop in
throughput is 20%; for the higher load, the drop is even sharper. In
applications like PPS, where the data are stored to disk, this effect
needs to be considered when determining and changing r.

5.2.4 Does the trade-off matter?
We have seen that larger values of p give lower delays but higher

system load, so there is a natural push of p to the minimum value
that achieves the desired query latency. We’ve also seen that higher
update rates, which can result from larger values of r, reduce server
processing speed; thus there is a push to minimize r. Taking these
two together, it follows that a distributed rendezvous system should
be run close to the minimum combination of p and r, that is p · r =
n, where n is the server count.

To summarize, minimizing p subject to latency constraints seems
a sensible goal. However, small p implies large r, which, in turn,
increases the bandwidth used to replicate the changing dataset and
the update processing load of the servers. Thus the ability to dy-
namically change the tradeoff between r and p is very useful to
ensure that the system runs at a good near-optimal operating point.

5.3 Changing p Dynamically
One of the benefits of ROAR is its ability to repartition on-the-fly

while still serving queries. To investigate how this works in practice
we implemented a simple adaptive strategy to change p based on
the average query latency seen by the front-end servers. Given an
average target delay of one second, the front-end servers instructed
the ROAR servers to adapt p to the minimum value that still yielded
the target latency (allowing for an error of 10%). Increasing p had
no cost, of course, but to decrease it servers needed to copy data;
this increased their load, so is more interesting.

We ran an experiment with this adaptive strategy starting with no
replication and p = 40, as if the system had just booted. We loaded
the system with a moderate search rate of six queries per second,
and plotted the behavior of the system as time goes by in Figure 12.

To start with, CPU load is very high and the query delay is less
than it needs to be. We see that ROAR can quickly change p with
minimal disruption to queries: within minutes average CPU load
decreases while query delay stays within acceptable bounds.

This same experiment can serve as an example of adaptation for
flash crowds: when load becomes too high (above some predefined
threshold) the system sacrifices query latency for lower CPU load.

The strategy of minimizing p while maintaining the desired query
delay seems sensible, yet in reality many other factors need to be
taken into account. The cost of pushing dataset changes out to
nodes gets higher as p decreases, so using larger values of p might
be desirable. In addition, p might need to be increased to reduce
the memory strain on each server (this seems to be a constraint in

298

 0
 10
 20
 30
 40
 50
 60
 70
 80
 90

 100

 0 50 100 150 200 250

S
ys

te
m

 L
oa

d
(%

)

Time(s)

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

 0 50 100 150 200 250

D
el

ay
 (

s)

Time(s)

Query Delay
Target Delay

 0

 10

 20

 30

 40

 50

 0 50 100 150 200 250

P

Time(s)

Values of P

Figure 12: ROAR Changing p Dynamically

Google’s case). Bandwidth utilization depends on p too. In some
cases rather complex optimization functions might be required; in
any event, a ROAR system can implement the required changes of
p so long as an optimization function can be defined that captures
the relevant constraints.

5.4 Node Failures
What is the impact of server failures on ROAR? We are more

interested in short term effects, as in the long run the load balancing
mechanism evens out load across all the servers (see next section).

To test the impact, we set p = 20, so that r was very small
(approximately 2). This reduces ROAR’s options for alternative
servers to the bare minimum, and hence represents a worst case for
the increase in load on the remaining nodes caused by a node fail-
ure. With this setup, we ran queries at a rate of six per second, then
killed a single server. Query delays remained roughly the same.
We noticed a small increase in CPU load of roughly 10% for the
two neighbors of the failed node. This agrees with our analytic
predictions in Section 4.4.

In the second experiment we generated queries at a lower rate (3
per second) and progressively killed 20 out of the 47 servers. To
maintain correctness, we did not kill consecutive servers because
with such an artificially small value of r there was not much redun-
dancy. The effect on query delay and server CPU load is plotted in
Figure 13. The average CPU load doubles for most servers, as ex-
pected, though query delays only increase marginally for this work-
load. Clearly if the initial workload had been higher than 50%, this
failure would have pushed load above 100% and so query delays
would have been affected. In such a scenario the correct course of
action would then be to decrease p, as shown in Section 5.3.

 0

 500

 1000

 1500

 2000

 0 50 100 150 200

Q
ue

ry
 D

el
ay

 (
m

s)

Time (s)

Query Delay

First node failed
20 nodes failed

 0

 20

 40

 60

 80

 100

 0 50 100 150 200

C
P

U
 U

sa
ge

 (
%

)

Time (s)

CPU Load

First node failed
20 nodes failed

Figure 13: Effects of 20 Node Failures on ROAR

 0
 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7

 0 500 1000 1500 2000 2500 3000 3500

P
ro

ba
bi

lit
y

Delay (ms)

Fast Load Balancing: Query Delay Histogram

p=5
p=5...6

p=5...10

Figure 14: Delay Distribution with Fast Load Balancing when
using pq > p

To summarize, the results show that ROAR handles node failures
gracefully, and so long as the load does not exceed 100%, query
execution is not disrupted.

5.5 Load Balancing
The previous experiments were conducted with homogeneous

servers. In a data center it is unlikely that all servers will be equally
fast, as machines are bought in batches and computing power in-
creases from one batch to another. To test this effect, we included
15 powerful machines in our testbed (each server with two quad-
core processors). These run the same million metadata query four
times faster than our slower servers.

To cope with heterogeneous servers, ROAR implements two load
balancing mechanisms(§4.6):

• The background process by which ranges migrate.

• A request scheduling mechanism implemented in the front-
end load balancer.

These run simultaneously, though on different timescales.
The front-end load balancer was not enabled in any of the exper-

iments up to this point, but with heterogeneous servers it helps sig-
nificantly. We started all the servers, assigned them equal ranges,
set p = 5 (r � 9), and generated six queries per second. Fig-
ure 14 shows the distribution of delays when the front-end load
balancer is turned off (p = 5), when it is allowed one extra sub-
query (p = 5...6), and when it is allowed to increase pq as high as

299

 0

 20

 40

 60

 80

 100

 0 10 20 30 40 50 60 70 80 90

C
P

U
 L

oa
d

(%
)

Time (s)

p=5

 0

 20

 40

 60

 80

 100

 0 10 20 30 40 50 60 70 80 90

Time (s)

p=5,6

 0

 20

 40

 60

 80

 100

 0 10 20 30 40 50 60 70 80 90

Time (s)

p=5,6,7,8,9,10

Figure 15: Fast Load Balancing with pq > p

 0

 100

 200

 300

 400

 500

 0 5 10 15 20 25 30 35 40 45

Lo
ad

 (
R

an
ge

/C
P

U
)

Computer Number

After Load Balance
Before Load Balance

Figure 16: Range Load Balancing

10 if needed. It is clear that this mechanism is effective at moving
load onto the faster servers.

Figure 15 shows the load on the machines as the load balancer
learns which machines are fastest. In the p = 5 graph, we can see
a band in CPU load at around 12.5%; this corresponds to the fast
servers which are given similar workload to the slower servers. As
pq is allowed to increase, this band moves up, and the upper band
(the slow servers) moves down. When pq is allowed to grow up to
10, sometimes slow servers are not given any work, simply because
all the load can be processed quicker on the fast servers. When the
load is increased, the slow servers start to be used again.

To test the long-term range load balancing, we started the servers
with equal ranges and ran one query per second. Before long the
front-end servers compute a new configuration for the network where
ranges are better balanced. The load balancing procedure iterates
many times, evening out ranges between neighbors where the load
difference is greater then 1.5.

The results are encouraging: the big range differences between
neighbors are amortized (Fig. 16). The zig-zag shape of the result-
ing load allocation is the effect of the distributed, neighbor-only
load balancing mechanism. The effects of load balancing are clear
in Fig. 17. This range expansion increases the effectiveness of the
front-end balancer: for light loads most servers are not used at all,
as the powerful servers can run all the queries in less time.

Many of these unused servers can actually be put to sleep to save
electricity. They do however need to be updated when they are
woken again. One strategy is to wake some of them periodically for
updates to reduce the wake up time when they are actually needed.

5.6 Cross-Sectional Bandwidth Usage
Typical data-center networking architectures connect racks of

servers with one switch per rack, and have one or two layers of
switches that interconnect the racks. The tree hierarchy causes
bandwidth further up in the tree to be scarce compared to intra-rack
bandwidth. Although it is possible to increase the cross-sectional

 0

 20

 40

 60

 80

 100

 0 50 100 150 200 250 300 350

C
P

U
 L

oa
d

(%
)

Time(s)

CPU Load

 0

 1

 2

 3

 4

 5

 0 50 100 150 200 250 300 350

D
el

ay
 (

s)

Time(s)

Query Delay

Figure 17: Effects of Range Load Balancing

bandwidth, achieving full bandwidth between any two nodes is
very expensive. As a consequence, cross-sectional bandwidth us-
age is a major concern in data-center algorithm design. In this con-
text, it becomes important to understand how ROAR compares with
simple partioning in cross-sectional bandwidth usage.

Distributed algorithms can exploit the physical network structure
to minimize cross-sectional bandwidth usage. We can either place
data replicas in a small number of racks, or attempt to run a query
in as few racks as possible. These are mutually exclusive at large
scale, so we can typically optimize cross-sectional bandwidth usage
for only one of the two.

Google’s web search generates too little cross-sectional band-
width to be of concern, mostly because it has many data-centers
worldwide [9]. However, if all the servers were in the same data-
center, would this be an issue?

Our estimates of bandwidth usage6 for running queries at Google
give 1Gbps to serve 1000 queries per second, with p = 1000. This
assumes no caching; in reality, cache hit ratios can be on the or-
der of 30-60% [10] so the bandwidth overhead is much smaller:
500Mbps. This is modest in comparison with updates to the index:
if r is 80, and the entire 10TB index is redistributed daily[8] to
80 replicas, the total bandwidth needed is around 75Gbps. Even if

6The query keywords and options take 50 bytes at most; the reply is 80 bytes long if
it includes 10 64 bit document IDs. Altogether, this takes 130 bytes.

300

p 100 250 500 1000
Delay (ms) 997 341 1132 2183
CPU Usage 10% 12% 15% 19%

Match Delay (ms) 430 160 80 20
Match Variability 1.2 1.5 2.5 4

Schedule Delay (ms) 1.17 3.4 9.2 23
Serialize Delay (ms) 8.3 24 50 155

Table 2: ROAR performance running on 1000 servers in EC2

only incremental updates are sent, it would make sense to optimize
update bandwidth.

Google could place one cluster of nodes (i.e. nodes with the
same data) in as few racks as possible, say l. To update the data,
each item needs to be sent to a single machine in each rack; it will
be then propagated locally within the rack. Assuming incoming
update traffic is D, updates will use lD cross-sectional bandwidth;
in the example above, and assuming 40 servers per rack, this could
result in 2Gbps of cross-sectional traffic.

ROAR can similarly use physical placement of servers to mini-
mize update cost, by assigning servers in the same rack to be con-
secutive on the ring. In this case, each update will be pushed to l or
(l + 1) racks. ROAR will generate (l + 1)D cross-sectional traffic
for each update, which is marginally more than Google.

To implement this optimization in ROAR, it suffices to use the
peer-to-peer like update algorithm we have described: the updates
for an object are pushed to the server responsible for that object’s
ID. This server forwards to its successor, and so forth, as long as
the successor is within the replication range. Almost all of these
hops will be intra-rack.

5.7 Large Scale Deployment
Small-scale tests on our testbed show that ROAR works, but we

also wish to see how it scales. ROAR stores r replicas of each data
item, and splits each query p ways while ensuring p · r = n. This
is the lower bound for all distributed rendezvous algorithms, so we
are confident that ROAR’s basic costs scale well. Simulation indi-
cates that the algorithms should scale, but there are always practical
surprises when scaling a system up significantly. Our immediate
concern is the frontend scheduler, which is centralized.

We briefly acquired a thousand servers from Amazon EC2 [1].
These are virtualized servers, each with a 1.7Ghz CPU and 1.7GB
of memory, plus a large local hard drive. Our front-end server is
instantiated on a more powerful machine with eight virtual proces-
sors and 17GB of memory.

Basic performance of PPS on a single EC2 instance is roughly
half that on our HEN servers because the CPU is slower: a query
of one million metadata items takes eight seconds.

We created a larger dataset of 5 million entries, and replicated
it at r = 10 on 1000 servers. We then ran one query per second
at different p values (min p for correctness is 100). Table 2 sum-
marizes the results. Query delay initially decreases as p goes from
100 to 250, but then increases after that. Average CPU utilization
increases with p as we expect: it roughly doubles when p goes from
100 to 1000. As the CPUs are not overloaded, the u-shaped delay
curve is intriguing.

We profiled the frontend server to see how local computation af-
fects latency. Scheduling delay increases roughly with n log n and
reaches 25ms on average when n = 1000. The time to compose
and send the 500 byte query from the frontend application also in-
creases with n: it takes 125ms on average to send a message to all
the 1000 servers. Although not negligible these delays can be eas-

 0.001

 0.01

 0.1

 1

 10

 100

 0 50 100

D
el

ay
 (

se
cs

)

Time (s)

p=100

 50 100

p=250

 50 100

p=500

 50 100

p=1000

Query Delay
Frontend DelayFrontend Delay

Query Delay

Figure 18: Delay Breakdown as seen at Frontend Server

ily reduced in an optimized implementation and are not a scaling
concern. They are not large enough to explain the u-shaped curve.

We then examined the query matching times on the ROAR nodes.
The mean performance is as expected: delays decrease with 1/p.
However, larger values of p exhibit higher variability in run-times:
variability7 increases from 1.2 to 4 when p goes from 100 to 1000.

To nail the cause of high delays observed, Figure 18 shows a
real-time breakdown of frontend delays and query delays for vari-
ous values of p. Many queries finish very quickly when p = 1000,
just after all the data has been sent. Variable round-trip delays made
us wonder if we were bottlenecked on bandwidth, despite the low
transmit rate of 4Mb/s. Brief tests with iperf showed this was not
the case, but they did reveal a mean drop probability of roughly 1
in 1000 packets, presumably caused by competing uses of EC2. As
we use TCP between the frontend and each ROAR server, a drop
on any flow delays the whole query. The query rate to each server
is low, so TCP’s fast retransmit cannot kick in and a lost packet has
to wait for a TCP retransmit timeout. The large delays spikes in
Figure 18 indicate losses are bursty too, making matters worse. A
simple technique might mitigate these losses: the frontend should
resend unfinished query parts as soon as most of the query has com-
pleted. As least for our application, this implies that UDP might be
a more appropriate transport for ROAR.

Our large-scale deployment gives us confidence that ROAR itself
scales well. It also provided insight in the effects of p, beyond the
ones we observed in our small scale testbed. In particular, larger
p values greatly exacerbates any inherent variability in runtimes,
increasing overall query delays. This strengthens our belief that
dynamically adapting p is advantageous.

6. RELATED WORK
There are many proposed distributed rendezvous solutions in the

literature [5, 12, 24, 25, 13]; almost all offer a fixed trade-off be-
tween the partitioning and replication levels. The Google cluster
architecture [5] is the classical cluster-based solution, with a fixed
r-p trade-off.

Another solution is the Load Balancing Matrix (LBM) [13]. LBM
is the only solution we are aware of that allows changing r dynam-
ically. LBM maps clusters on a DHT: server i from cluster j is
mapped to the server in charge of hash(i, j). When repartitioning,
7defined as the ratio between the finish time of the slowest node and the average finish
time of all nodes running a query.

301

LBM inherits most of the problems of the Google approach, but
does not require changing the network structure. However, LBM
has load balancing problems as virtual cluster servers are mapped
using consistent hashing onto the Chord ring: with high probabil-
ity, the busiest server will host log n/ log log n cluster servers. To
fix this, each server has to insert itself many times on the ring (as
many as log n/ log log n), which significantly increases distributed
rendezvous costs for large networks.

There are a few randomized solutions: Ferreira et al. [12] use
random walks for both object storing and for queries, while Bub-
bleStorm [25] uses bubbles to speed up object storing and query
execution. These algorithms are built for peer to peer systems so
have great resilience yet their operating costs are much higher (for
instance with BubbleStorm p · r = 4n).
Structured Overlays and P2P Search. Much research has gone
into executing queries on structured overlays, including keyword
search [23, 22] and range queries [7]. These solutions are applica-
ble to many problems. However, when queries are complex, con-
tent distribution is skewed, or content is unavailable (as with en-
crypted search), content-based solutions do not work well. ROAR’s
content-agnostic approach is a better solution in many such cases.
Distributed Databases. Research in distributed databases aims to
optimize execution of powerful relational queries in a distributed
setting [21, 26, 16]. ROAR is much simpler: it is just a “select”
operation executed in a distributed manner on a single table. In ef-
fect, ROAR can be used as a tool underlying traditional databases
to optimize access to large tables with poor indexing options. At
a conceptual level, ROAR is similar to the exchange operator pro-
posed by Graefe et al. to provide extensible query execution [15].
Distributed Computation. There are many algorithms for dis-
tributing computation among machines [6, 4, 11]. Google’s MapRe-
duce [11] offers a simplified, functional programming model that
hides parallelization from the programmer. ROAR offers a weaker
programming abstraction, equivalent to the “map” operation, but
differs in its handling of data objects: while MapReduce moves
data to the servers performing the computation, ROAR will run the
computation on enough servers such that all the data objects are
visited without actually moving the data objects. Instead, ROAR
allows the application to change r, which controls the minimum
number of servers that must be visited. Not copying data for every
query allows ROAR to save bandwidth and obtain smaller delays.

7. CONCLUSIONS
The performance of web search engines is heavily influenced by

the partitioning level p, which controls how an ensemble of servers
handle queries and store a web index. This parameter is the primary
control that determines search latency, and so has a huge impact on
the usability of distributed search systems. Despite this and the fact
that p should be continuosuly adapted according to the system’s
load in order to achieve optimal performance, search engines such
as Google rely on simple distributed rendezvous algorithms that do
not allow for dynamic reconfiguration of p.

In this paper we introduced ROAR, a novel distributed rendezvous
algorithm that allows on-the-fly re-configuration of p at minimal
cost while still servicing queries. Further, ROAR can add and re-
move servers without stopping the system, cope with temporary
and permanent server failures, and provide very good load-balancing
even in the face of servers having heterogeneous hardware capabil-
ities.

We have provided experimental results that support these claims
and that show that the ability to change partitioning dynamically
has many benefits, from allowing the network to cope with load
fluctuations gracefully to reducing bandwidth and energy costs. We

derived these results by implementing a privacy-preserving search
application that used ROAR as its underlying algorithm, and run-
ning experiments on a 47-server dedicated testbed and on a 1000-
server configuration using Amazon’s EC2. Our experiments show
that ROAR works well in practice: it can cope with failures and it
balances load well. Given a target query delay, ROAR can auto-
matically reconfigure the network to achieve that delay while min-
imizing other costs.

In the future, we hope to test ROAR more on large clusters with
thousands of nodes using a more robust transport, build smarter
optimization criteria, and to see how ROAR can be used in other
search applications.

8. REFERENCES
[1] Amazon Elastic Compute Cloud. http://aws.amazon.com/ec2/.
[2] Google Docs. http://docs.google.com/.
[3] The Google Search Query - a technical look.

http://www.webmasterworld.com/google/3694079.htm.
[4] R. H. Arpaci-Dusseau, E. Anderson, N. Treuhaft, D. E. Culler, J. M. Hellerstein,

D. Patterson, and K. Yelick. Cluster i/o with river: making the fast case
common. In Proc. Workshop on I/O in parallel and distributed systems, 1999.

[5] L. A. Barroso, J. Dean, and U. Holzle. Web search for a planet: The google
cluster architecture. Micro, IEEE, 23, 2003.

[6] J. Bent, D. Thain, A. C. Arpaci-Dusseau, R. H. Arpaci-Dusseau, and M. Livny.
Explicit control a batch-aware distributed file system. In NSDI, 2004.

[7] A. R. Bharambe, M. Agrawal, and S. Seshan. Mercury: supporting scalable
multi-attribute range queries. SIGCOMM Comput. Commun. Rev., 34(4), 2004.

[8] M. Cutts. Gadgets, Google, and SEO: Explaining algorithm updates and data
refreshes, Dec. 2006.

[9] J. Dean. Personal Communication. Google.
[10] J. Dean. Challenges in Building Large Scale Information Systems. Keynote

Presentation at ACM WSDM, 2009.
[11] J. Dean and S. Ghemawat. MapReduce: Simplified data processing on large

clusters. In Proc. OSDI, 2004.
[12] R. A. Ferreira, M. K. Ramanathan, A. Awan, A. Grama, and S. Jagannathan.

Search with probabilistic guarantees in unstructured peer-to-peer networks. In
Proc. P2P, 2005.

[13] J. Gao and P. Steenkiste. Design and evaluation of a distributed scalable content
discovery system. IEEE JSAC, 22, Jan. 2004.

[14] S. Ghemawat, H. Gobioff, and S.-T. Leung. The google file system. In SOSP
’03: Proceedings of the nineteenth ACM symposium on Operating systems
principles, pages 29–43, New York, NY, USA, 2003. ACM Press.

[15] G. Graefe and D. L. Davison. Encapsulation of parallelism and
architecture-independence in extensible database query execution. IEEE Trans.
Softw. Eng., 19(8), 1993.

[16] B. Kröll and P. Widmayer. Distributing a search tree among a growing number
of processors. SIGMOD Rec., 23(2), 1994.

[17] M. Mitzenmacher. The power of two choices in randomized load balancing.
IEEE Trans. Parallel Distrib. Syst., 12(10):1094–1104, 2001.

[18] N. Patel. Learning from google’s data centers.
http://www.pronetadvertising.com/, 2006.

[19] C. Raiciu and D. S. Rosenblum. Enabling confidentiality in content-based
publish/subscribe infrastructures. In Proc. Securecomm, 2006.

[20] I. Stoica, R. Morris, D. Karger, F. Kaashoek, and H. Balakrishnan. Chord: A
scalable Peer-To-Peer lookup service for internet applications. In Proc.
SIGCOMM, 2001.

[21] M. Stonebraker, P. M. Aoki, W. Litwin, A. Pfeffer, A. Sah, J. Sidell, C. Staelin,
and A. Yu. Mariposa: a wide-area distributed database system. The VLDB
Journal, 5(1), 1996.

[22] C. Tang, Z. Xu, and S. Dwarkadas. Peer-to-peer information retrieval using
self-organizing semantic overlay networks. In Proc. Sigcomm, 2003.

[23] C. Tang, Z. Xu, and M. Mahalingam. psearch: information retrieval in
structured overlays. SIGCOMM Comput. Commun. Rev., 33(1), 2003.

[24] W. W. Terpstra, S. Behnel, L. Fiege, J. Kangasharju, and A. Buchmann. Bit
zipper Rendezvous—Optimal data placement for general P2P queries. In Proc.
EDBT Workshop on Peer-to-Peer Computing and DataBases, 2004.

[25] W. W. Terpstra, J. Kangasharju, C. Leng, and A. P. Buchmann. Bubblestorm:
resilient, probabilistic, and exhaustive peer-to-peer search. In Proc. SIGCOMM,
2007.

[26] F. Tian and D. J. DeWitt. Tuple routing strategies for distributed eddies. In
Proc. VLDB, 2003.

302

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.3
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.33333
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /PDFX1a:2001
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

