From Protocol Stack to Protocol Heap
— Role-Based Architecture

Robert Braden Ted Faber Mark Handley
USC Information Sciences USC Information Sciences International Computer
Institute Institute Science Institute

4676 Admiralty Way
Marina del Rey, CA

Braden@isi.edu

ABSTRACT

Questioning whether layering is still an adequate founda-
tion for networking architectures, this paper investigates
non-layered approaches to the design and implementation
of network protocols. The goals are greater flexibility and
control with fewer feature interaction problems. The pa-
per further proposes a specific non-layered paradigm called
role-based architecture.

Categories and Subject Descriptors

C.2.2 [Computer-Communication Networks]: Network
Protocols—Protocol Architecture

Keywords

Non-layered architecture, role-based, modularity, metadata,
signaling, processing rules

1. INTRODUCTION

Traditional packet-based network architecture assumes that
communication functions are organized into nested levels of
abstraction called protocol layers [7], and that the metadata
that controls packet delivery is organized into protocol head-
ers, one for each protocol layer [4].

Protocol layering has served well as an organizing prin-
ciple, but it worked better for the more strict end-to-end
model of the original Internet architecture than it does to-
day. We see constant pressure for “layer violations” (which
are often assumption violations), and unexpected feature
interactions emerge. In part this is due to the rapid pro-
liferation of “middle boxes” (firewalls, NAT boxes, proxies,
explicit and implicit caches, etc.), but other multi-way in-
teractions such as QoS, multicast, overlay routing, and tun-
neling are also guilty.

The complex interactions that result are difficult to de-
scribe using strict layering, and the implicit “last on, first
off” assumption of layering often makes a new service fit
poorly into the existing layer structure. The result is an
inability to reason about feature interaction in the network.
A reluctance to change working implementations and long-
standing inter-layer interfaces often lead designers to insert
new functionality between existing layers rather than mod-

HotNets |, Princeton, NJ, USA, October 2002. Thisresearch was sponsored
in part by DARPA contract F30602-00-1-0540 and by AT& T Research.

4676 Admiralty Way
Marina del Rey, CA

Faber@isi.edu

1947 Center St, Suite 600
Berkeley, CA 94704

mjh@icir.org

ify existing layers." In addition, it is very hard to evolve
network protocols, especially at the network level. Partly
this is for performance reasons’?, but partly it is because
layering tends to lead to a relatively coarse granularity of
protocol functionality.

The limits of layering are clear from even simple examples.
There is currently no way for a TCP SYN packet to port 80
(HTTP) to signal that it does not want to be redirected to
an application-layer web cache. Also, network congestion is
signaled by a router (network layer), but rate-control occurs
at the flow level (transport layer), so signaling between the
flow and the network is difficult. In both cases, layering is
an important part of the problem.

These considerations suggest that layering may not be a
sufficiently flexible abstraction for network software modu-
larity. This inflexibility might be considered desirable, as it
forces compliance with existing standards, but in practice
it often results in short-sighted solutions that may violate
assumptions made by other protocols.

If protocol layering is inadequate as an abstraction, we
need an alternative organizational principle for protocol func-
tionality. Our task is to allow more flexible relationships
among communication abstractions, with the aim of provid-
ing greater clarity, generality, and extensibility than the tra-
ditional approach allows. This paper proposes a non-stack
approach to network architecture that we call role-based ar-
chitecture or RBA.

1.1 Role-based Architecture

Instead of using protocol layers, an RBA organizes com-
munication using functional units called roles. Since roles
are not generally organized hierarchically, they may be more
richly interconnected than are traditional protocol layers.
The inputs and outputs of a role are application data pay-
loads and controlling metadata that is addressed to specific
roles.

With a non-layered approach, layer violations should be
replaced by explicit and architected role interactions. Of
course, “role violations” will still be possible, but the gener-
ality of the mechanism should typically make them unnec-
essary, and suitable access controls over metadata can make
them difficult.

!For example, MultiProtocol Label Switching was inserted
at “layer 2.5”, IPsec at “layer 3.5”, and Transport-Layer
Security at “layer 4.5”.

2For example, IPv4 options are rarely used.

The intent is that roles will be building blocks that are
well-defined and perhaps well-known. To enable interoper-
ability, a real network using RBA would need a relatively
few (tens to hundreds) of well-known roles defined and stan-
dardized.> However, the number of special-purpose, experi-
mental, or locally defined roles is likely to be much greater.

An important attribute of role-based architecture is that
it can provide explicit signaling of functionality. The lack of
architected signaling is one of the main reasons why middle-
boxes do not fit into the current layered architecture. For
example, there is no defined way to signal to an end-system
that a packet really did traverse the firewall protecting the
site, or to signal that an end-system does not want its re-
quest redirected to a web cache. RBA is designed to perform
such signaling in a robust and extensible manner.

Role-based architecture allows all the components com-
prising a network to be explicitly identified, addressed, and

communicated with. RBA could allow allow re-modularization

of current “large” protocols such as IP, TCP, and HTTP
into somewhat smaller units that are addressed to specific
tasks. Examples of such tasks might be “packet forwarding”,
“fragmentation”, “flow rate control”, “byte-stream packeti-
zation”, “request web page”, or “suppress caching”. Each
of these comprise separable functionality that could be per-
formed by a specific role in a role-based architecture.

The purpose of this paper is to examine the general prop-
erties of any role-based architecture rather than to describe
in detail any particular instance of an RBA. It is intended
to suggest a fruitful research direction, which holds some
promise for improving the clarity and generality of network
protocol design. Since moving to a non-layered architecture
requires a distinct shift in thinking, the next section exam-
ines the implications of removing layering constraints. Sec-
tion 2 then outlines what role-based architecture might ac-
tually look like in principle and gives some simple examples
of the use of RBA. Section 3 describes a range of approaches
to applying the RBA ideas in the real world of networking
and discusses implementation issues.

1.2 Non-Layered Architecture Implications

The concept of a non-layered protocol architecture has
immediate implications. Layering provides modularity, a
structure and ordering for the processing of metadata, and
encapsulation. Modularity, with its opportunity for infor-
mation hiding and independence, is an indispensable tool
for system design. Any alternative proposal must provide
modularity, but also adequately address the other aspects
of layering:

Metadata Structure: Without layering, the structure of
metadata carried in a packet header no longer logically forms
a “stack”, it forms a logical “heap” of protocol headers.
That is, the packet header is replaced by a container that
can hold variable-sized blocks of metadata, and these blocks
may be inserted, accessed, modified, and removed in any or-
der by the modular protocol units.

Processing Rules: A non-layered architecture requires

new rules to control processing order and to control access

to metadata, to replace the rules implicit in layering.
Consider ordering first. In the simplest case when roles

3Note that role-based architecture will not remove the need
for standardization.

are completely independent, a non-layered architecture spec-
ifies no processing order; protocol modules may operate in
any order, or even simultaneously, on various subsets of the
metadata. More commonly, however, an appropriate partial
ordering is required among specific roles.

Other rules must specify how access to metadata is to be
controlled. By controlling the association between program
and (meta)data, the architecture can explicitly control in-
teractions among the different protocol modules, enhancing
security as well as extensibility.

Encapsulation: In a layered architecture, each layer is
encapsulated in the layer below. In non-layered architec-
tures, a different organizational principle is needed for the
data and metadata in a packet. Encapsulation does not dis-
appear, but its role is much reduced. Encapsulation is no
longer the main enforcer of processing order. It is reserved
for cases where the functionality is that of a container or
adaptor, such as the encapsulation of a reliable byte stream
within a flow of packets. Even in such cases, metadata about
the data being encapsulated need not be itself encapsulated,
as it would be in a layered architecture.

1.3 Prior Work

There have been very many papers about different ways
to generalize protocol design and processing, to ease the
limitations of strictly-layered stacks of complex protocols
and of monolithic implementations.*

Early work [3, 9] emphasized the modular construction
of protocol processing stacks for flexibility and extensibil-
ity. Many later papers have discussed the decomposition of
complex protocols into micro-protocols, either for reusabil-
ity, customization, and ease of programming [1, 5, 8, 6], or to
improve protocol processing performance using parallelism
[2, 10]. Here micro-protocols roughly correspond to our roles
(as abstractions) or to our actors (as a protocol processing
modules); see [1] for example.

Some of these papers suggest generalizations from strict
layering, but their primary emphasis is on protocol imple-
mentations rather than on the protocols themselves. This
paper focuses on the protocols themselves (the distributed
algorithms and the “bits on the wire”) and on what it means
to completely give up layering. Our work has also been
aimed at the new architectural issues raised by middleboxes.
RBA is a general proposal for achieving modularity through
a non-layered protocol paradigm, non-layered in both pro-
tocol headers and processing modules.

However, in order to realize an RBA it will be necessary
to specify ways to define and structure roles and to design
machinery for instantiating and executing roles. Here the
prior research will become highly relevant and may provide
important answers. We therefore believe that this paper is
complementary to much of the earlier work on generalized
protocol processing.

2. THEIDEALIZED RBA

In light of the discussion above, we propose role-based ar-
chitecture (RBA) as a particular non-layered architecture in
which the modular protocol unit is called a role. A role is
a functional description of a communication building block

“This paper can list only some of the papers that are par-
ticularly relevant to RBA.

[Role A Role B Role C

T

— RSH 3 ——
g Payload >

Packet

Figure 1: Role-Specific Header Processing within a
Node

that performs some specific function relevant to forward-
ing or processing packets. Roles are abstract entities, and it
should be possible to reason about them somewhat formally.

Roles are instantiated in nodes by code called actors. For
many purposes, the distinction between a role and its actors
will not matter, so we can often simply speak of roles as hav-
ing particular properties. A role may logically span multiple
nodes, so it may be distributed in an abstract sense, while
each actor executes in a particular node.

The metadata in a packet, called role data, is divided into
chunks called role-specific headers (RSHs). This is illus-
trated in Figure 1, which shows a node containing three
roles that read and perhaps write specific RSHs in a packet
header.

Roles are the principal form of addressing in a role-based
architecture, in that RSHs are addressed to roles. Whether
the RSH also specifies which actor should instantiate the
role is optional. Typically a role will name some modular
functionality or mechanism. As network functionality is of-
ten distributed with the actors forming a closely coupled
system, sometimes a role will name a distributed mecha-
nism, and sometimes it will name the components of such
a mechanism. Only deployment experience can determine
what the exact functional breakdown into roles should be.

An end system does not necessarily know that a packet
it sends will encounter a node that cares about a particular
role. For example, there may be no web-cache-redirector
role on a particular path, but if there is, including a signaling
RSH addressed to this role will ensure that the cache receives
the metadata. Any node along the path can add an RSH
to a passing packet. For example, suppose that a firewall
has some lightweight way of signing that a packet has been
examined and found to conform to the site’s security policy;
it can include this signature in an RSH attached to the data
packet and addressed to the host firewall role.

2.1 RBA Objectives

RBA is designed to achieve the following objectives.

Extensibility: RBA is inherently extensible, both me-
chanically and conceptually. Mechanically, RBA uses
a (type, length, value) mechanism to encode all role
data. Conceptually, the flexible modularity of RBA
should enhance extensibility of networked systems.

Portability: The role abstraction is designed to be inde-
pendent of the particular choice of nodes in which a

role will be performed. This portability of roles enables
flexible network engineering, since functions can be
grouped into boxes as most appropriate. Role porta-
bility may, but won’t generally, imply role mobility,
where a role can migrate between nodes.

Explicit Architectural Basis for Middle Boxes: RBA
is intended to allow endpoints to communicate explic-
itly with middle boxes and middle boxes to communi-
cate with each other.

Controlled Access to Metadata: RBA includes a gen-
eral scheme for controlling access to metadata, allow-
ing control over which nodes can read and modify spe-
cific subsets of the metadata as well as the application
data. This access control implies control of the services
that can be requested and control of the operations
that can be performed on a packet.

Auditability: An endpoint may wish to audit received
data packets to ascertain that they were subjected to
requested processing, for example through a validator
or an encrypted firewall. Auditability is not generally
feasible with the current layered architecture because
the relevant metadata will have been processed and
removed before the data reaches the receiver. RBA
role data can be used to indicate that the requested
service was provided.

2.2 General Properties of Roles

A role has well-defined inputs and outputs in the form of
RSHs whose syntax and semantics can be tightly specified.
It may also have specified APIs to other software compo-
nents in the local node.

A role is identified by a unique name called a RoleID.
A RolelID reflects the functionality provided. A full RoleID
may have a multicomponent structure like a file name; the
hierarchy would reflect the derivation of a specific role from
a more generic one (Section 2.4). For efficient transport and
matching, a corresponding short-form fixed-length integer
RoleID will normally be used.

The RoleID only addresses meta-data to the provider of
a type of functionality; it does not indicate which node will
perform that functionality. RSHs in packets can also be ad-
dressed to the specific actor that instantiates a role’. RBA
requires that node interfaces have unique addresses called
NodelDs, which would correspond to “network addresses”
in the traditional layered architecture. Symbolically, we de-
note a role address in the form RoleID@NodelD, or RolelD@x*
if the NodelD is to be left unspecified.

To perform their tasks, role actors may contain internal
role state. Establishing, modifying, and deleting role state
generally requires signaling, which is done through the ex-
change of RSHs.

Some roles operate in a pair of nodes to enforce some
condition in the intervening data path; simple examples are
the pairs: (Fragment, Reassemble), (Compress, Expand) or
(Encrypt, Decrypt). We call these reflective roles. It is
possible to consider a reflective role to be either a pair of
distinct sub-roles or to be a single distributed role.

Other special role categories may emerge as the role-based
model is developed further. These sort of categories are

SWe speak of the address of a role, meaning the address of
one of its actors.

useful in bounding the flexibility that RBA provides, so that
we can reason about the interaction between roles.

There are families of related roles that differ in detail but
perform the same generic function. This generic function
may be abstractly represented by a generic role. Specific
roles may be derived from the generic role through one or
more stages of specification (see Section 2.4). For example,
corresponding to the generic role ReliableDataDelivery there
might be specific roles for reliable ordered byte streams and
for reliable datagrams.

2.3 RoleData

Under the idealized RBA model, all data in a packet, in-
cluding the payload, is role data that is divided into RSHs.
The set of RSHs in a particular header may vary widely de-
pending on the services requested by the client and can vary
dynamically as a packet transits the network. The relation-
ship between roles and RSHs is generally many-to-many —
a particular RSH may be addressed to multiple roles, and a
single role may receive and send multiple RSHs.

Just as roles modularize the communication algorithms
and state in nodes, so RSHs modularize the metadata car-
ried in packets. RSHs divide the metadata along role bound-
aries, so an RSH forms a natural unit for ordering and access
control on the metadata; it can be encrypted or authenti-
cated as a unit.

The granularity of RSHs is a significant design parameter,
since role data cannot be shared among roles at a smaller
granularity than complete RSHs. At the finest granularity,
each header field could be a distinct RSH; this would avoid
any replication of data elements required by multiple roles.
However, overhead in both packet space and processing re-
quirements increases with the number of RSHs in a packet,
so such fine-granularity RSHs are not generally feasible. As
in all modularity issues, the optimal division into RSHs will
be an engineering trade-off.

A role might modify its activity depending upon the par-
ticular set of RSHs in the packet. Furthermore, the presence
of a particular RSH may constitute the request for a service
from subsequent nodes. Thus, the RSHs provide a form of
signaling that may piggy-back on any packet.

The format of an RSH is role-specific. It might have the
fixed-field format of a conventional protocol header or it
might have a (type, length, value) format, for example. An
RSH contains a list of role addresses to which this RSH is
directed and a body containing role data items. We denote
this symbolically as:

RSH(<RoleAddressList> ; <RSHBody>)

For example, RSH(Expand@N3, Decrypt@*; ...) represents
an RSH addressed to the role named Ezpand at node N3
and to the role named Decrypt at any node.

RBA provides a model for packet header processing, not a
mechanism for routing packets. Rather, RBA incorporates
whatever forwarding mechanism is in use through a generic
Forward role, which may depend upon global or local state
in each node. A mechanism to create that state, e.g., a
distributed SPF routing calculation, is simply another ap-
plication from the viewpoint of RBA. Once the forwarding
rules determine the actual route taken by a packet, the RBA
sequence and scheduling rules come into play to determine
the sequence of operations.

2.4 Technical Issues

Further definition of RBA requires specific solutions to a
number of technical problems.

e Role Matching

Rules must be specified for matching role addresses in
RSHs with actors, taking into account the access con-
trol rules. An actor may have access to an RSH either
because the RSH was explicitly addressed to that actor
or because the actor was promiscuously “listening” for
particular RSHs (again subject to access control rules.)
An actor may read or write (add, modify or delete) an
RSH (see the arrows in Figure 1).

e Actor Execution Scheduling

Once the matching actors are selected, the node must
determine in what order they should be executed. This
scheduling problem must consider ordering requirements
imposed by roles; these requirements are called se-
quencing rules. For example, such rules might prevent
undesirable sequences like Encrypt, Compress (com-
pression is not useful after encryption) or Ezpand, Com-
press (wrong order), or Compress, Encrypt, Erpand,
Decrypt (reflective pairs are improperly nested). These
rules must consider dynamic precedence information
carried in packets as well as static precedence associ-
ated with the actors in the nodes.

e RSH Access Control

By controlling access to RSHs, RBA allows nodes, in-
cluding end systems, to control what network services
can be applied to specific packets. RBA provides two
levels of access control, de jure and absolute. De jure
access control is provided by bits in each RSH that
grant specific roles read and/or write permission for
the RSH. Write access would provide the ability to
modify or delete the RSH from the packet.

De jure access control is sufficient as long as nodes
follow the RBA rules. Otherwise, nodes can absolutely
control access to RSHs by encrypting these RSHs; of
course, this greater certainty has greater cost.

e Role Definition

To fully define a specific role, it is necessary to define
its internal state, its algorithms, and the RSHs to be
sent and received. In addition, some roles have non-
network interfaces that must be defined.

It remains to be seen whether RBA is amenable to the
use of formal protocol specification techniques. One
possible direction is to exploit the analogy between
object-oriented programming and the derivation of spe-
cific roles from generic roles. If roles correspond to
classes, then actors are instantiations of these classes,
and RBA communication can be modeled by actors
communicating via message passing.

e Role Composition

Two roles R, and R, that communicate directly with
each other using RSHs (which may originate and ter-
minate in the two roles, or may be passing through
one or both) should be composable into a larger role
R.. This binds R, and R} into the same node, and
allows inter-role communication to be replaced by in-
ternal communication, e.g., shared data.

Conversely, a complex role may be decomposed into
component roles, replacing shared data by explicit role
data communication using RSHs.

25 RBA Examples

25.1 Smple Datagram Delivery

As a simple RBA example, the RBA equivalent to a simple
IP datagram might be a packet containing the four RSHs:

{ RSH
RSH
RSH
RSH

LinkLayer@ NextHopAddr;),
HbHForward@:x; destNodelD),
HbHSource®x; sourceNodelD),
DestApp@destNodelD; AppID, payload) }

—_—a=

Here the LinkLayer role presents the link layer protocol,
and its RSH is addressed to the next hop node. The DestApp
role is the generic destination application role that delivers
the payload in the role data to the application-level protocol
specified by AppID. The HbHForward role represents a hop-
by-hop forwarding function, invoked in every node along the
path, with the destination address as its role data. It is one
specific rule derived from the generic Forward role, which
is the fundamental action of a router and of most middle
boxes. It uses role data to determine one or more outgo-
ing interfaces or next hops. HBHSource indicates the node
ID that can be used to return a response by hop-by-hop
forwarding.

2.5.2 Network Address Trandlators

Regardless of their architectural merit, network address
translators (NATs) make a good RBA example since they
do not fit well into a layered architecture. A NAT is essen-
tially a packet relay that separates two different addressing
realms. Complication is added by application-level proto-
cols that are unaware of the NAT’s existence but need to
communicate addresses or ports end-to-end.

There are essentially two types of NAT. Pure NATSs per-
form a dynamic but one-to-one mapping between a small
pool of external addresses and a larger number of internal
addresses. NAPTs perform a one-to-many mapping between
a single external address and many internal addresses, by
overloading of TCP or UDP port fields.

Pure NATS are simple to accommodate using RBA. The
NAT simply inserts a RSH addressed to the role called nat-
recetver giving the original address, and all software on any
downstream nodes can listen to the nat-receiver role, see
that the translation has occurred and act accordingly.

The RBA equivalent of a NAPT is a little more complex.
A NAPT can behave exactly like a pure-NAT in its insertion
of the nat-receiver RSH, but it also needs some way to de-
multiplex incoming packets to the correct internal address.
One way to do this might use a general-purpose echo role.
On outgoing packets, the NAPT inserts an RSH addressed
to the echo role, giving a token that is unique to the inter-
nal address. All RBA systems should be aware of the echo
role. If any RBA node generates a response to a packet con-
taining a RSH addressed to the echo role, it should echo the
token by including an RSH in the response packet addressed
to the echo-sender role. This token mechanism is not NAT-
specific, and it can form a useful building block for many
new mechanisms.

This NAT example raises an interesting issue with regard
to role naming. If, in the traditional manner, we named the

RSHs rather than the roles we would have called the RSHs
token and token-echo. The RBA philosophy is that it is
the role played by the recipient that is named, and not the
RSH. The distinction is an important and subtle one, as it
significantly affects how future extensions may be deployed.

3. REALIZATION OF RBA

The role-based architecture approach described in earlier
sections may be applied to network protocol design in a va-
riety of ways. Further research will be required to determine
which of these directions will be most fruitful.

In the extreme, one could build an architecture that is en-
tirely role-based, i.e., all protocol functions from the present
link layer to the present application layer as well as all mid-
dlebox functions would be replaced by roles or sets of roles.
This would yield a completely layer-free, remodularized ar-
chitecture.

There are two possible directions for less extreme ways
to use the RBA approach. First, one can apply RBA only
above a particular layer of the stack, retaining layering be-
low that point. These partial stack implementations of RBA
trade off generality and flexibility for efficiency and real-
ity. For example, we may consider link-layer protocols to
be immutable, since they are designed by industry groups
to match particular technological constraints. A practical
RBA subset might therefore retain the link layer as a distinct
layer “below” RBA. Furthermore, retaining the IP layer as
the highly-optimized common end-to-end packet transport
service could significantly help to solve the efficiency issues
with RBA; RBA processing would be needed only in end
systems and middleboxes. A less strong argument could be
made to retain the transport layer and apply RBA only as
an application-layer architecture (note that this could still
help immensely with the middlebox problem.)

The other possible direction is to use RBA to provide an
unlayered network control (signaling) mechanism for essen-
tially the current general modularity. From this viewpoint
the network functionality would be divided into major pro-
tocol entities that might (or might not) assume particular
roles. This viewpoint emphasizes the addressability of a
role; RSHs would generally be created by protocol entities
but addressed to, and received by, roles assumed by other
entities.

Finally, the idealized RBA may be useful simply as an
abstraction for reasoning about protocols, their functions
and interactions.

A critical design decision when instantiating a role-based
architecture is designing the packet format. There is a clear
tradeoff between making the RSH header format quite pow-
erful and general, versus wasting too many bytes on role
addressing relative to the size of the information carried in
each RSH. In the earliest sketch of RBA, we imagined a
small number of well-defined roles and a field as small as
6 bits to address each RSH. Later we realized that RBA
would be much more powerful if we could address RSHs
more generally, and so the addressing information grew to
include NodeIDs and larger RoleIDs. This has a direct ef-
fect - it is probably not cost-effective to split very simple
low-level functionality into separate roles. The advantage is
that at higher levels we have a more powerful mechanism
for expressing complex interactions.

Furthermore, forwarding performance is an important real-
world issue. In a very large network like the Internet, there

S

* A 4

Index D

1P Hdr Véctor :] N Payload
Heap Area

Packet Layout

FIagsE DD&ecrl Length (bytes)

RolelD
Nodel D or zero
A RSH Body A
Flags gr?;'kn Byte Offset
Access
Bits

Element of RSH Index Vector

Figure 2: Possible RBA Packet Layout

are strong reasons to keep the basic packet forwarding ma-
chinery as simple and efficient as possible. A practical RBA
would therefore retain the IP layer of the Internet, with its

high-speed forwarding machinery and efficient packet header.

RBA would then be applied above the Internet layer, i.e.,
it would replace only the transport and application layers.
As a result, RBA would be implemented only in end sys-
tems and middle boxes, where performance requirements are
much less severe than within the core network.

These assumptions could be incorporated into RBA by
declaring that the generic Forwarding role and the reflective
pair (Fragment, Reassemble) are “built in”. These simplifi-
cations should not interfere with a major rationale for RBA,
providing a consistent architectural basis for middle boxes,
but they should make a RBA approach a realistic proposi-
tion for real networks.

3.1 Packet Structure

Figure 2 suggests a possible packet format for a practi-
cal RBA. This figure shows an encapsulating IP header, as-
suming that RBA is going to be applied only above the IP
layer; this assumption is not necessary. If the network layer
were brought under RBA, the IP header would be replaced
by the actual Forward.HbH RSH, placed at a fixed loca-
tion at the beginning of the packet to allow very efficient
hardware-based forwarding through the network core.

The role address lists (see Section 2.3) of all RSHs in the
packet are gathered together into a inder vector of fixed-
length entries. This should allow efficient processing of pack-
ets under RBA. Each entry includes a pointer (byte offset)
to the corresponding RSH body in the heap area.

The RoleID is a globally-unique 32-bit short name for a
role to which the RSH specified by this index element is
addressed. As suggested earlier, it can be generated as a
hash of the long name. This is shown as a 32-bit IPv4 ad-
dress of the node to which this index element is addressed
(RoleID@NodelD), or zero to indicate a wildcard (RolelD@x)

As a packet traverses the network, RSHs may be added
and deleted from its header. There are many engineering
strategies that can help to keep this reasonably simple and
efficient. There is no specified maximum size for the RSH
space — the index vector or the heap area — but generally a
source will have a good guess on how much space to reserve
between IP header and payload for RSHs. The boundary
between index vector and heap can be flexible, and these two
segments can grow towards each other. A series of deletions
and additions of RSHs could force garbage collection of the

heap or movement of the payload to expand the heap size
in an intermediate node. This is relatively complex and
expensive, but it should seldom be necessary. In case a
node is unable to add a new RSH to a packet, it can send
a “RSH Overflow” RBA control message back to the sender
node, requesting a larger RSH space in succeeding packets.

4. CONCLUSIONS

This document has proposed role-based architecture to
simplify the design and deployment of communication proto-
cols in today’s world, where the complex interactions among
networking elements often do not follow a strict layering
model. RBA provides a uniform way to structure proto-
cols and protocol processing without the confines of strict
layering.

The generality of RBA does not come without cost, of
course. The layered-network model has been a very pow-
erful tool for conceptualizing and designing protocols. We
need to satisfy ourselves that roles will provide a tool that
is at least as good as, if not better than, layers for develop-
ing protocols. Furthermore, RBA requires a more general
data structuring in packet headers, which has a cost in im-
plementation, packet size, and execution performance. We
must show that these costs are containable.

5. ACKNOWLEDGMENTS

We are grateful to the other members of the NewArch
project, who have given much encouragement on developing
the RBA concepts. We especially thank Dave Clark, John
Wroclawski, Karen Sollins, Noel Chiappa, and Aaron Falk.

6. REFERENCES

[1] N. Bhatti and R. Schlichting. A System for
Constructing Configurable High-Level Protocols. Proc.
ACM SIGCOMM ’95, 138-150, 1995.

[2] Z. Haas. A Protocol Structure for High-Speed
Communication over Broadband ISDN. IEEFE
Network, 5(1):66-70, January 1991.

[3] N. Hutchinson and L. Peterson. The x-Kernel: An
Architecture for Implementing Network Protocols.
IEEE Trans on Software Eng., 17(1):64-76, 1991.

[4] ISO. Information Processing Systems - Open Systems
Interconnection - Basic Reference Model. ISO 7498,
1984.

[6] E. Kohler, M. Kaashoek and D. Montgomery. A
Readable TCP in the Prolac Protocol Language. Proc
SIGCOMM 99, 1999.

[6] E. Kohler, R. Morris, B. Chen, J. Jannotti, and
M. Kaashoek. The Click modular router. ACM Trans
on Computer Sys., 18(3):263-297, 2000.

[7] E. Meyer. ARPA Network Protocol Notes. RFC 46,
Network Working Group, April 1970.

[8] S. O’'Malley and L. Peterson. A Dynamic Network
Architecture. ACM Trans. Comp. Sys., 10(2):11-143,
May 1992.

[9] C. Tschudin. Flexible Protocol Stacks Proc. ACM
SIGCOMM ’91, 197-204, 1991.

[10] M. Zitterbart, B. Stiller, A. Tantawy. A Model for
Flexible High-Performance Communication
Subsystems IEEE JSAC, 11(4):507-518, May 1993.

