
The Case for Pushing DNS

Mark Handley, Adam Greenhalgh
University College, London�

m.handley, a.greenhalgh � @cs.ucl.ac.uk

We present the case for using a peer-to-peer infras-
tructure to push DNS name server records to thousands
of name servers world wide. We show that such an in-
frastructure increases the robustness of the DNS in an
increasingly hostile Internet. We further show that the
overheads of a peer-to-peer DNS infrastructure are both
manageable and scalable.

1 INTRODUCTION

The Domain Name System (DNS, [2]) has long been a
critical part of the Internet infrastructure. The success-
ful Denial-of-Service (DoS) attacks against Microsoft’s
DNS servers in 2001 and the unsuccessful DoS attacks
on the root name servers in 2002 have raised concerns
about the vulnerability of the DNS. Operators responded
by hardening the infrastructure, and using BGP anycast
to replicate the root name servers, so such attacks would
need to be larger today to be successful.

Most recent large DoS attacks appear to have been
financially motivated, and so the root and top-level name
servers have not been a primary target. However, it is
hard to predict the motivation of future attackers, so there
is still concern that a very large DoS attack on these name
servers could cause serious disruption. Thus it is worth
investigating alternative ways to harden the DNS infras-
tructure against attack. This is the goal of our work.

If we consider how DNS functions, it essentially com-
prises a single hierarchy that performs three functions:

� Namespace hierarchy: the name example.com is
under com in the hierarchy.

� Lookup hierarchy: to query for example.com, we
query “.”, which gives us the name servers for .com.
We then query the .com name servers, which give
us the name servers for example.com and so on.

� Trust hierarchy: example.com trusts the name servers
for .com to return the right answer.

The current DNS infrastructure uses the same hierarchy
for all three of these. Most people would agree that we
only want to have a single namespace hierarchy, as seen
by Internet users, but it is not clear that we also want this
to be the same hierarchy as used for lookup or trust. In
particular, this places a great deal of trust in the motives
and technical expertise of the operators of the root zone
and the top level domains.

Our concern though is not primarily trust but robust-
ness of mechanism. The problem we wish to tackle is
the technical one of providing a robust DNS lookup in-
frastructure that is invulnerable to attack, although this is
inevitably closely coupled with the issue of trust.

Our solution, in outline, is to use a peer-to-peer in-
frastructure composed of DNS servers located at thou-
sands of ISPs throughout the world to distribute signed
DNS name server records. This solution is pure brute-
force. If everyone knows all the NS records, then no DoS
attack can cause a global DNS failure. This may seem in-
feasible or uneconomic at first glance. We will show that
it is not only technically feasible and extremely robust,
but also that the costs are reasonable.

In this paper, we will first sketch out a design (Sec-
tion 2), then discuss the trust and security issues in more
detail (Section 3), and conclude with simulation and mea-
surement data demonstrating that the proposed design is
technically feasible and robust to attack (Section 4).

2 DESIGN

In this section we’ll discuss the mechanisms we can use
to push DNS data to thousands of name servers world
wide, using a peer-to-peer infrastructure.

To simplify the explanation, we shall start by assum-
ing that there is a single master DNS organisation that
has access to all the name server records for the root zone
and all the top level domains (.com, .net, .co.uk, etc), and
that this organisation has published a public key which is
known by all the DNS servers in our peer-to-peer infras-
tructure. Such a keying infrastructure is similar to that
used for SSL[1], where all web browsers ship with a
built-in set of public key certificates.

In Section 3 we’ll revisit these assumptions, and dis-
cuss how multiple authorities can be accommodated to
further increase robustness.

2.1 Simplest Design

In the simplest DNS push architecture, the master site
takes all the DNS name server (NS) records for the root
and top level domains, and creates a single file. It then
signs this file using its private key, and distributes the
signed file to a number of nodes of a peer-to-peer mesh
comprised of DNS servers distributed world-wide.

When a peer-to-peer node receives this file, it first
uses its in-built public key to check the signature on the

file. If the signature is good, then the node caches the file.
It uses the data from the file to answer DNS requests, and
it also passes on the unmodified signed file to other peers.
In such a way, the DNS file is eventually distributed to
all the nodes, and all these nodes can then use this data
to answer local DNS requests.

Such a simple infrastructure has some important prop-
erties. No node in the network can corrupt or modify the
data because each node will check the signature for itself.
Indeed if a node receives bad data from a peer, then with
high likelihood it knows that this peer is bad, and it can
simply refuse to talk to the peer again. Thus for this ap-
plication, many of the usual security problems associated
with peer-to-peer networks simply do not apply.

How big is such a DNS file? The only information
it makes sense to distribute for each domain are the NS
records and their glue records, the SOA record, and the
domain name itself. Our experiments show that a not-
terribly-efficient ASCII representation for this data typi-
cally comprises less than 100 bytes per domain.

According to Verisign[3], there were 76.9 million do-
mains registered in Q1 2005, including both generic TLDs
(.com, etc) and country-code TLDs (.uk, etc). Thus the
zone file for all these would comprise 7.5 GBytes. Stor-
ing this on disk is no problem, but few current machines
could hold it all in main memory. Fortunately this isn’t
necessary, as the working set that any DNS server needs
to cache in memory is much smaller than this.

Each peer node needs to receive this file once. As-
suming each node transfers it on to three other nodes,
then we could reach 20,000 DNS servers (roughly the
number of active Autonomous Systems in the world) in
less than 10 generations. If the master DNS site regener-
ates the master file on a daily basis, and wishes it to reach
all servers worldwide in 24 hours, then each site needs to
transfer the file on to three sites in 2.4 hours, which re-
quires an outgoing data rate of 21 Mb/s. This is a high
data rate for a small site, but not for a large ISP.

To permit efficient DNS lookups, we want to store the
data uncompressed on disk, but it makes sense to com-
press it for transfer. Our measurements show that we can
achieve a compression ratio of 3:1 on this data, reducing
the outgoing data rate to about 7 Mb/s for the simplest
design. This is feasible, although still not negligible.

2.2 Data Chunking

Such a naive design has its limitations. In particular, you
must receive a very large file before checking the signa-
ture and forwarding. A better design is to split the orig-
inal data into moderate sized chunks, each labelled with
a timestamp1, chunk number, and the total number of

1The timestamp may include an element of randomness to prevent
the originating source being determined based upon the timestamp.

chunks. A reasonable chunk size might be 1 MByte: large
enough that the overhead of the signature and metadata
is negligible, but small enough to be able to check the
signature before too much data has been received.

It is now easier to satisfy the requirement of sub-24-
hour total distribution latency, as the first chunk can be
re-sent to the next peer while the second chunk is being
received. Although the total volume of data sent is un-
changed, each node can now spread the transfer across
almost the whole 24 hour period. We can reduce the fanout
at each node to two, as the extra generations have less ef-
fect on overall latency, and so the outgoing compressed
bitrate falls to about 470 Kb/s. Such data rates are negli-
gible for almost all ISPs.

2.3 Data Routing and Robustness

To be resistant to DoS, we wish to hide the nodes used
to inject data into the peer-to-peer mesh. This imposes
constraints on how we can route data. It is important that
the peer-to-peer network can still function if some of the
peers are compromised and are actively malicious. As a
node cannot pass on bad data, the main way to misbehave
is to fail to pass on good data, thus acting as a sink for
data that would normally be forwarded to other nodes.

Some peerings between nodes may be configured,
whereas others will be learned via the peer-to-peer net-
work. DNS servers are generally long-lived entities, so it
makes sense for each peer to store a list of every node
with which it has interacted. On reboot, a node estab-
lishes TCP connections to all of its configured peers and
to a random subset of the learned peers. The goal is to
establish many more connections than will actually for-
ward the data. A reasonable target might be twenty peers.

When a node receives a chunk of data it checks the
signature. If the signature is bad, it discards the chunk,
and drops that peering. If the signature is good, the node
sends an alert to each peer, indicating that it has this par-
ticular chunk. It then sends an offer message to at least
one of its configured peers (and perhaps all, if configured
to do so), and to at least one randomly chosen learned
peer. When these neighbours receive the offer, if they do
not have the chunk, they reply with a request message,
and the data is then sent to them. If a peer does not re-
ceive any requests from the nodes it offered the chunk to,
it then offers the chunk to each additional peer in turn. It
stops offering when it has sent the data to at least two
peers, or when all peers have the data.

If, after a node has forwarded a message to its two
chosen peers, it does not receive an alert from another
peer, then it can deduce that this peer has been bypassed
by the normal flooding process. In such circumstances,
another offer message may be sent to the peer missing
the data, so as to work around problems elsewhere. As we
will show later, this is much more effective than directly

fanning out to three peers without waiting.
The result is semi-random flooding, where each chunk

takes a different path through the peer-to-peer mesh. The
randomness makes it impossible for an attacker to locate
himself at a critical point in the network, and it makes it
very hard to find the nodes originally injecting the data.
Unless all its peers already have a chunk, each node fans
it out to at least two peers. In almost all cases this is all
that is required, but in a few cases the exponential in-
crease fails to reach some nodes. Typically this is be-
cause there were few links into a small region, and the
nodes feeding these links chose to offer elsewhere. This
is solved by sending delayed offers, but under normal
circumstances these are rare. So long as the good nodes
form a well connected graph, then they will all receive
the data. With a node degree of twenty, the probability of
the network being disconnected is extremely small, even
in the presence of a high fraction of compromised nodes.

2.4 Incremental Update

So far we have assumed that the data is pushed daily, but
there is no need to do so if we can incrementally update
the existing data. For example, the master site could re-
generate the entire file and push this weekly, with deltas
to this then being pushed hourly. This reduces the band-
width needed, and provides a faster change notification
mechanism. DNS name server records do not change all
that frequently, so the data rate for these updates is low.

When a new node joins the mesh, it receives the signed
weekly update chunks from its peers, who have this data
stored, and it also receives all of the signed incremental
change messages sent since the weekly update. We eval-
uate the costs of such incremental updates in section 4.2.

2.5 Bootstrap

All peer-to-peer systems need a bootstrap mechanism so
peers can find each other. However, unlike most peer-to-
peer networks, DNSpush nodes are long lived, so past
peers are likely to be available in the future. Thus a DoS
attack on the bootstrap mechanism will only affect new
nodes with no configured peers. Hence the details of boot-
strap are unimportant, and it is feasible to use conven-
tional DNS for this mechanism.

Many nodes will not use the bootstrap mechanism,
as they will have configured peers. Indeed NNTP en-
tirely functions in this way. However, the learned peers
add randomness to the mesh, which improves large-scale
robustness, and give the peer-to-peer mesh small-world
properties. For local robustness, using configured peer-
ings between sites that trust each other provides both lo-
cal robustness and increases the locality of the traffic, re-
ducing the load on the backbone networks. Thus a mix-
ture of both learned and configured peers gives both good
small-scale and large-scale properties.

3 TRUST

In Section 2 we considered the case where a single au-
thority signs the DNS data before injection. In this sec-
tion we will revisit this assumption, but before doing so,
we must consider where the data originates.

Every domain under a top-level domain registers two
or more name servers. It is these registered name servers
that are returned when the TLD server is queried. How-
ever, this information is often out-of-date with respect to
the NS records given by the domain’s own name servers.
This can cause robustness and performance issues.

The data we push could be either the registered data
or the authoritative data returned by each domain’s own
name servers. Regular DNS needs the former for the op-
eration of the existing DNS hierarchical mechanisms, but
a push mechanism has different constraints, and we be-
lieve it is better to push the more up-to-date data reported
by each domain itself.

Given that this is not the same as the data given by
the registries, the organisation that injects the data into
the peer-to-peer network does not need to be a registry.
All that is needed to run such a site is a list of registered
domain names - the data itself can be harvested using the
existing DNS mechanisms, which would of course still
function to serve sites not using DNSpush.

Returning to the issue of trust, it becomes clear that
any site injecting data into the peer-to-peer mesh will
need to actively harvest the DNS data. Thus there can
be multiple such organisations operating simultaneously,
which gives improved robustness. While we know of no
case where a master SSL key has been compromised, it
is unacceptable to design a mechanism that is fragile to
such a single compromise.

With DNSpush, there can be multiple organisations
that sign and inject data into the peer-to-peer mesh. Each
peer-to-peer server can have multiple public key certifi-
cates embedded, one for each originating organisation.
When multiple organisations all inject their own copies
of the data, each server passes on all data that is correctly
signed and timestamped, but when it comes to using the
data, it takes a majority vote for each domain. In such a
way the compromise of a master key would not by itself
be catastrophic.

Obviously we also need to design DNSpush in such
a way that a signing key can be permanently revoked,
and in such a way that a master key need never be kept
online. Such issues can be dealt with in the conventional
manner, by using the master key to create a certificate
for a signing key, which itself is used to sign the data.
Thus the signing key can be changed in the event of
compromise, by simply flooding a message through the
DNSpush mesh containing a key-change message for the
compromised signing key, signed by the master key. Even

 0
 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8
 0.9

 1

 0 10 20 30 40 50 60 70 80 90 100

P
ro

ba
bi

lit
y

of
 R

ec
ep

tio
n

by
 E

ac
h

G
oo

d
N

od
e

Percentage of Compromised Nodes

4 Peers (3C,1L)
5 Peers (3C,2L)

10 Peers (5C,5L)
20 Peers (5C,15L)

FIGURE 1—Effect of number of peers on probability of receiving a
message in the presence of malicious nodes

master keys could be revoked (but not changed) in this
way if the need ever arose, but distributing a new mas-
ter certificate is not trivial. It would be better to pre-
distribute spare master certificates which would not be
valid until the previous master certificate for the same
organisation had been revoked.

The main cost of having multiple signatory author-
ities is that we need to transmit multiple copies of the
data. However, if the authorities are willing to cooperate,
the additional costs can be minimised by having some
authorities send data that is merely a signed delta from
the data distributed by another authority. In this way the
additional robustness and decentralisation of trust comes
at very little additional bandwidth cost.

4 EVALUATION

Most peer-to-peer systems are vulnerable to attack from
inside the peer-to-peer network. As we are proposing a
distribution infrastructure serving a critical role and com-
prising tens of thousands of servers, we need to be sure
that the our solution is not vulnerable to such attacks.

There is no possibility for a node to pass on bad data,
as each node checks the signature and timestamp on the
data before forwarding it. Thus the attacks we are con-
cerned about are denial-of-service attacks, where an at-
tacker attempts to prevent the peer-to-peer infrastructure
from delivering up-to-date DNS data.

As it is unlikely that tens of thousands of servers can
all be maintained perfectly, we must assume that some
fraction of them will be compromised at any time.

To answer these questions we built a simple peer-to-
peer simulator which, although it does not model net-
work topology or latency issues, does illustrate the ba-
sic robustness properties. In our simulation, each peer
connects to a number of other peers, which can be ei-
ther “configured” peers or “learned” peers. Each node is
given a random location on a square grid. Each node’s
configured peers are chosen randomly from the nodes in
its local vicinity, with the learned peers chosen randomly
from the set of all peers. This allows us to examine issues
related to the tradeoff between robustness, hop count la-
tency, and traffic localisation.

 0
 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8
 0.9

 1

 0 10 20 30 40 50 60 70 80 90 100

P
ro

ba
bi

lit
y

of
 R

ec
ep

tio
n

by
 E

ac
h

G
oo

d
N

od
e

Percentage of Compromised Nodes

Fanout: 2 Immediate
Fanout: 3 Immediate

Fanout: 2 Immediate, 1 Delayed

FIGURE 2—Effect of node fanout on probability of receiving a mes-
sage in the presence of malicious nodes

We simulated varying numbers of malicious peer-to-
peer nodes to understand the effect they had on data prop-
agation. A malicious node in these simulations never for-
wards a message to any neighbour, and only sends an
alert to the neighbour that sent it the message. In this
way it serves as a data sink, where each malicious node
can sink as many messages as it has neighbours. Given
that each good node has limited fanout to avoid sending
excessive data, the concern is whether the exponential in-
crease in nodes which have received the data can exceed
the effect of many data sinks. In these experiments, we
initially inject the data to ten randomly chosen nodes, so
it is unlikely all ten nodes we choose will be bad.

Figure 1 shows the effect of the number of peers on
robustness. In these simulations there are 20,000 nodes,
some fraction of which are malicious. On receipt of a
message, each node forwards it to one configured peer
and one learned peer and, after a short delay, forwards
it to one additional peer if any of its peers still needs the
message. The results are very good - when each node has
5 configured peers and 15 learned peers (“5C,15L”), 90%
of the nodes can be malicious, and on average half the
good nodes still receive the message. With fewer peers,
the network is less robust, but even with only 5 peers per
node, there is no appreciable degradation in robustness
until more than 30% of nodes are malicious.

Figure 2 shows the effect of different fanout poli-
cies on robustness. As expected, a fanout of 3 is much
more robust than a fanout of 2, but delaying the trans-
mission of the third message improves results even fur-
ther. The reason is fairly obvious - we don’t waste the last
transmission on nodes that would be reached through the
normal exponential increase using the first two transmis-
sions. Thus this last transmission does much more good,
as it has a much higher probability of reaching a node
that otherwise could not be reached.

These robustness results are almost identical for net-
works of 1000 and 100,000 nodes, giving confidence that
they are relatively scale-invariant. There appears to be
little point from a robustness point of view in increasing
fanout much beyond three.

If we consider the possibility of a zero-day exploit in

 0
 50

 100
 150
 200
 250
 300
 350
 400

 0 10 20 30 40 50 60 70 80 90 100

M
ax

 D
el

ay
 (

H
op

s)

Percentage of Compromised Nodes

4 Peers (3C,1L)
5 Peers (3C,2L)

10 Peers (5C,5L)
20 Peers (5C,15)

FIGURE 3—Effect of number of peers on maximum delay before re-
ceiving a message in the presence of malicious nodes

the peer-to-peer software itself, then these results seem
to indicate that two independent software bases would
be sufficient to provide a robust peer-to-peer distribution
service, even if one software base was compromised. Of
course this only holds if no single version of the software
comprises more than about 70% of the installed base, and
in practice more software diversity would be better.

The presence of malicious nodes also affects latency.
Figure 3 shows the delay before the last good node in the
mesh receives the message. In these simulations, time is
not accurately modelled, so delay is in units of single-
hop transmission times. As expected, the paths end up
being significantly longer in the presence of malicious
nodes, and the delay before each node forwards the third
copy of the message also adds to latency. However, as
the sender will be pushing more than 7,500 messages of
1 MByte each, even delays of 400 message transmission
times are still small relative to the time to transmit all the
messages in the first place. The sharp drop off to the right
of the peak in each curve indicates that above this point
very few nodes receive the data, so it doesn’t take long to
reach those few.

4.1 Alternative Attacks

The results above are based on a model of a malicious
node that simply acts as a data sink. In the 20 peers case,
such a malicious node will have to sink ten times the nor-
mal traffic load, which may in practice be self-limiting.

Another two avenues for attack are possible:

� Have each malicious p2p node establish learned
peerings with as many other nodes as possible.

� Use a large botnet of zombie hosts to set up learned
peerings with as many genuine nodes as possible.

In practice, the former will be even more self-limiting
than the regular case, but the latter may be feasible. What
effect does this have on the peer-to-peer network?

The worst case is a dual-pronged attack, with a sig-
nificant fraction of the peer-to-peer nodes being compro-
mised, and many zombies also joining the peer-to-peer

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 10 20 30 40 50 60 70 80 90 100

P
ro

ba
bi

lit
y

of
 R

ec
ep

tio
n

by
 E

ac
h

G
oo

d
N

od
e

Percentage of Compromised Nodes

20 Peers (5C,15L) no zombies
20 Peers (5C,15L) with zombies

FIGURE 4—Effects of many zombies as learned peers

network to establish learned peerings with the legitimate
nodes and act as data sinks.

Figure 4 shows the effects of this attack. The origi-
nal 20-node curve from figure 1 is shown, and compared
against a simulation where zombie nodes comprise every
single learned peering from the good nodes. The main
thing that prevents this attack being successful is the ex-
istence of configured peers, and the nodes’ preference for
sending to configured peers first. Clearly the attack de-
grades performance, but it is not successful in disrupting
the peer-to-peer network unless a majority of the peer-to-
peer nodes are themselves compromised.

The simulation above shows a worst-case scenario.
In practice any good implementation would have a pref-
erence for peering with nodes that it has known about for
a long time, thus it is very unlikely that all of the learned
peerings will reach malicious zombie nodes unless those
zombies have been actively participating in the peer-to-
peer mesh for a very long time.

4.2 Data Churn

In section 2.4 we raised the possibility of incremental up-
dates as a way to reduce the cost of keeping the data up to
date. An interesting question is whether each incremen-
tal update sent since the entire file was pushed should
replace or supplement previous incremental updates.

To better understand how DNS data changes, we mon-
itored 37,000 randomly chosen domains on a daily ba-
sis. Figure 5 shows the results. Each day about 0.5%
of domains changed name servers, and about 0.1% of
domains expired permanently. Extrapolating to the en-
tire DNS, approximately 420,000 domains change and
100,000 domains expire each day. Versign’s data indi-
cates that for the last few years the number of regis-
tered domains grows by approximately 10 million do-
mains each year, or a current growth rate of about 27,000
domains per day (over and above what is required to re-
place those that expire). The growth rate from Verisign’s
data appears to be linear. The churn doesn’t appear to
be a problem today, and it is unlikely to be a problem
in future, as the exponential increase in CPU power and
bandwidth out-pace the linear growth in registered do-

 0

 50

 100

 150

 200

 250

 300

06/04 06/11 06/18 06/25 07/02 07/09 07/16 07/23

N
um

be
r

of
 d

om
ai

ns

Date

changes
expired

FIGURE 5—Domains changing name servers or returning no data,
daily from random sample of 37,000 domains.

mains.
If this data turns out to be a good predictor of future

behaviour, then compressed incremental updates would
need to be about 760 KBytes/hour. If these updates were
sent in a cumulative update, they would be about 120
MBytes in size by the end of a week. If we wanted to
use hourly updates, then to stream such a cumulative up-
date in an hour to three outgoing peers would require
about 850 Kb/s, which is probably manageable. Non-
cumulative incremental updates would require an aver-
age of only 5 Kb/s, but would make it much more critical
that every single cumulative update was received. The
best solution may be somewhere in between, with mul-
tiple levels of incremental updates, similar to the system
of dumplevels frequently used for disk backups.

In actual fact, these numbers may over-estimate the
actual change rate. Figure 6 shows a histogram of how
often a domain changes (in the same 54-day same period
measured) against how many domains change that fre-
quently. 87% of the domains don’t change at all, and a
further 9% change only once. Two-thirds of the changes
come from domains that change many times, which is
almost certainly dominated by some form of DNS round
robin. If rate of change becomes an issue, we can always
return the (relatively static) records from the TLD servers
for these few domains, or simply accumulate the full set
of servers by polling multiple times, rather than treating
these as urgent changes.

5 CONCLUSIONS

In this short paper we have discussed the use of a sim-
ple peer-to-peer distribution mechanism to push the top
levels of the DNS namespace hierarchy to large numbers
of name servers world wide. The goal is to provide an
extremely robust root to the DNS hierarchy, rendering it
much more robust against denial-of-service attacks.

Results from simulation show that the mechanisms
are indeed very robust to the attacks we have devised.
It is of course possible that we have missed some criti-
cal flaw, and so these ideas obviously need more wide-
spread evaluation before we can proceed with actual de-
ployment. Our measurement results show that it is tech-

 1

 10

 100

 1000

 10000

 100000

 0 5 10 15 20 25 30 35 40

N
um

be
r

of
 d

om
ai

ns

Number of times a domain changes.

FIGURE 6—Frequency of NS record change amongst the 37,000 ran-
domly sampled domains.

nically and (we believe) economically viable to push this
data. As DNS data in the top levels of the hierarchy has
been growing linearly for the last few years, it is likely
that we have recently passed the point where Moores law
now makes such a brute-force approach viable.

Many enhancements to the basic design are possible.
For example, message-level FEC might be used to fur-
ther improve robustness to message loss. As each mes-
sage takes a different semi-random path through the mesh,
this might enable messages that happen to take a bad path
to be recovered from those that take a good path.

As we have described it, there is a single distribution
channel for a single set of DNS data. However we can
easily envisage the peer-to-peer mesh distributing mul-
tiple channels giving more specific data. For example,
some subset of peer-to-peer nodes at sites that care about
the ability to reach Windows Update might wish to sub-
scribe to the microsoft.com DNS channel to receive not
only NS records but also A records for Microsoft.

Finally there is some concern about whether the reg-
istries will permit distribution of lists of all the domains
that have been registered. In practice this does not matter,
as if a domain is not in the pushed data then the peer-to-
peer DNS server will query it via the normal DNS hier-
archy. Once one node discovers that a domain exists, a
low rate feedback channel in the peer-to-peer mesh can
return this information to the master sites, which can add
the domain to the list of domains they monitor. Thus such
a peer-to-peer network can be set up by any organisation
with sufficient network capacity to poll a large number
of name servers. In practice though, the updates will be
more timely if the registries play an active role in pushing
DNS data.

REFERENCES

[1] Kipp Hickman. The ssl protocol. Technical report,
Netscape Communications Corp., February 1995.

[2] P. Mockapetris. Domain names - concepts and facilities.
RFC 1034, Internet Engineering Task Force, Nov 1987.

[3] Verisign. The domain name industry brief, May 2005.

