
Fraud and Data Availability Proofs:
Detecting Invalid Blocks in Light Clients

Mustafa Al-Bassam1, Alberto Sonnino1, Vitalik Buterin2, and Ismail Khoffi3

1 University College London
{m.albassam,a.sonnino}@cs.ucl.ac.uk

2 Ethereum Research
vitalik@ethereum.org

3 LazyLedger Labs
ismail@lazyledger.io

Abstract. Light clients, also known as Simple Payment Verification
(SPV) clients, are nodes which only download a small portion of the
data in a blockchain, and use indirect means to verify that a given chain
is valid. Instead of validating blocks, they assume that the chain favoured
by the blockchain’s consensus algorithm only contains valid blocks, and
that the majority of block producers are honest. By allowing such clients
to receive fraud proofs generated by fully validating nodes that show
that a block violates the protocol rules, and combining this with prob-
abilistic sampling techniques to verify that all of the data in a block
actually is available to be downloaded so that fraud can be detected,
we can eliminate the honest-majority assumption for block validity, and
instead make much weaker assumptions about a minimum number of
honest nodes that rebroadcast data. Fraud and data availability proofs
are key to enabling on-chain scaling of blockchains while maintaining a
strong assurance that on-chain data is available and valid. We present,
implement, and evaluate a fraud and data availability proof system.

1 Introduction and Motivation
Due to the scalability limitations of existing blockchains, popular services

have stopped accepting Bitcoin [26] payments due to transactions fees rising as
high as $20 [18, 27], and a popular Ethereum [7] contract caused the pending
transactions backlog to increase six-fold [38]. Users pay higher fees as they com-
pete to get their transactions included on the chain, due to space being limited,
e.g., by Bitcoin’s block size limit [2] or Ethereum’s block gas limit [39].

While increasing on-chain capacity limits would yield higher transaction
throughput, there are concerns that this creates a trade-off that would decrease
decentralisation and security. This is because increasing on-chain capacity would
increase the computational resources required for ordinary users to fully down-
load and verify the blockchain, to check that all transactions are correct and
valid. Consequently fewer users would afford to run fully validating nodes (full
nodes) that independently verify the blockchain, requiring users to instead run
light clients that assume that the chain favoured by the blockchain’s consensus
algorithm only contains valid transactions [24].

2 Mustafa Al-Bassam, Alberto Sonnino, Vitalik Buterin, and Ismail Khoffi

Light clients operate well under normal circumstances, but have weaker as-
surances compared to full nodes when the majority of the consensus (e.g., miners
or block producers) is dishonest (also known as a ‘51% attack’). When running
a full node, a 51% attack on the Bitcoin or Ethereum network can only censor,
reverse or double spend transactions, i.e., by forking the chain. However if users
run light clients, a 51% attack can generate blocks that contain invalid trans-
actions that, for example, steal funds or create new money out of thin air, and
light clients would not be able to detect this as they do not verify the chain.
This increases the incentive for conducting a 51% attack. On the other hand,
full nodes would reject those invalid blocks immediately as they verify the chain.

In this paper, we decrease the on-chain capacity vs. security trade-off by
making it possible for light clients to receive and verify fraud proofs of invalid
blocks from any full node that generates such proofs, so that they too can reject
them. This gives light clients a level of security similar to full nodes. We also
design a data availability proof system, a necessary complement to fraud proofs,
so that light clients have assurance that the block data required for full nodes to
generate fraud proofs from is available, given that there is a minimum number
of honest light clients to reconstruct missing data from blocks. This solves the
‘data availability problem’, which asks: how can light clients efficiently check
that all the data for a block has been made available by the block producer?

We also implement and evaluate the security and efficiency of our overall
design, and show in Section 5.4 that less than 1% of block data needs to be
downloaded in order to check that the entire data of the block is available with
99% probability. Fraud proofs for invalid blocks are in the order of kilobytes;
with practical parameters we show in Section 6 that for a 1MB block, fraud
proofs are under 27KB.

Our work also plays a key role in efforts to scale blockchains with sharding
[1, 8, 20], as in a sharded system no single node in the network is expected to
download and validate the state of all shards, and thus fraud proofs are necessary
to detect invalid blocks from malicious shards. By running light clients that
download block headers for shards, nodes can receive fraud proofs for invalid
shard block using the techniques described in this paper.

2 Background

Blockchains. The data structure of a blockchain consists of a chain of blocks.
Each block contains two components: a header and a list of transactions. In ad-
dition to other metadata, the header stores at minimum the hash of the previous
block, and the root of the Merkle tree of all transactions in the block.

Validity Rule. Blockchain networks have a consensus algorithm [3] to deter-
mine which chain should be favoured in the event of a fork, e.g., if proof-of-
work [26] is used, then the chain with the most accumulated work is favoured.
They also have a set of transaction validity rules that dictate which transactions
are valid, and thus blocks that contain invalid transactions will never be favoured
by the consensus algorithm and should in fact always be rejected.

Fraud Proofs 3

Full Nodes and Light Clients. Full nodes (also known as fully-validating
nodes) are nodes which download block headers as well as the list of transactions,
verifying that the transactions are valid according to the transaction validity
rules. Light clients only download block headers, and assume that the list of
transactions are valid according to the transaction validity rules. Light clients
verify blocks against the consensus rules, but not the transaction validity rules,
and thus assume that the consensus is honest in that they only included valid
transactions (unlike full nodes). Light clients may also receive Merkle proofs
from full nodes that a specific transaction or state is included in a block header.
Sparse Merkle Trees. A Sparse Merkle tree [11,21] is a Merkle tree that allows
for commitments to key-value maps, where values can be updated, inserted or
deleted trivially on average in O(log(k)) time in a tree with k keys. The tree is
initialised with n leaves where n is extremely large (e.g., n = 2256), but where
almost all of the leaves have the same default empty value (e.g., 0). The index
of each leaf in the tree is its key. Sub-trees with only empty descendant leaves
can be replaced by a placeholder value, and sub-trees with only one non-empty
descendant leaf can be replaced by a single node. Therefore despite the extremely
large number of leaves, each operation takes O(log(k)) time.
Erasure Codes and Reed-Solomon Codes. Erasure codes are error-correcting
codes [13, 30] working under the assumption of bit erasures rather than bit er-
rors; in particular, the users knows which bits have to be reconstructed. Error-
correcting codes transform a message of length k into a longer message of length
n > k such that the original message can be recovered from a subset of the n
symbols. Reed-Solomon (RS) codes [37] have various applications and are among
the most studied error-correcting codes. They can correct up to any combination
of k of 2k known erasures, and operate over a finite field of order q (where q is a
prime power) such that k < n ≤ q. RS codes have been generalised to multidi-
mensional codes [12,34] in various ways [33,35,40]. In a p multidimensional code,
the message is encoded p times along p orthogonal axis, and can be represented
as coding in different dimensions of a multidimensional array.

3 Assumptions and Threat Model
We present the network and threat model under which our fraud proofs

(Section 4) and data availability proofs (Section 5) apply. First, we present some
primitives that we use in the rest of the paper.

– hash(x) is a cryptographically secure hash function that returns the digest
of x (e.g., SHA-256).

– root(L) returns the Merkle root for a list of items L.
– {e→ r} denotes a Merkle proof that an element e is a member of the Merkle

tree committed by root r.
– VerifyMerkleProof(e, {e→ r}, r, n, i) returns true if the Merkle proof is valid,

otherwise false, where n additionally denotes the total number of elements
in the underlying tree and i is the index of e in the tree. This verifies that e
is at index i, as well as its membership.

– {k, v → r} denotes a Merkle proof that a key-value pair k, v is a member of
the Sparse Merkle tree committed by root r.

4 Mustafa Al-Bassam, Alberto Sonnino, Vitalik Buterin, and Ismail Khoffi

3.1 Blockchain Model

We assume a generalised blockchain architecture, where the blockchain con-
sists of a hash-based chain of block headers H = (h0, h1, ...). Each block header
hi contains a Merkle root txRooti of a list of transactions Ti, such that root(Ti) =
txRooti. Given a node that downloads the list of unauthenticated transactions
Ni from the network, a block header hi is considered to be valid if (i) root(Ni) =
txRooti and (ii) given some validity function

valid(T, S) ∈ {true, false}

where T is a list of transactions and S is the state of the blockchain, then
valid(Ti, Si−1) must return true, where Si is the state of the blockchain after
applying all of the transactions in Ti on the state from the previous block Si−1.
We assume that valid(T, S) takes O(n) time to execute, where n is the number
of transactions in T .

In terms of transactions, we assume that given a list of transactions Ti =
(t0i , t

1
i , ..., t

n
i), where tji denotes a transaction j at block i, there exists a state

transition function transition that returns the post-state S′ of executing a trans-
action on a particular pre-state S, or an error if the transition is illegal:

transition(S, t) ∈ {S′, err}

transition(err, t) = err

We introduce the concept of intermediate state, which is the state of the chain
after processing only some of the transactions in a given block. Thus given the
intermediate state Iji = transition(Ij−1i , tji) after executing the first j transactions

(t0i , t
1
i , ..., t

j
i) in block i where j ≤ n, and the base case I−1i = Si−1, then Si = Ini .

In other words, the final intermediate state of a block is the post-state.
Therefore, valid(Ti, Si−1) = true if and only if Ini 6= err.

Aim. The aim of this paper is to prove to clients that for a given block header
hi, valid(Ti, Si−i) returns false in less than O(n) time and less than O(n) space,
relying on as few security assumptions as possible.

3.2 Participants and Threat Model

Our protocol assumes a network that consists of full nodes and light clients.
Full nodes. These nodes download and verify the entire blockchain, gen-

erating and distributing fraud proofs if a block is invalid. Full nodes store and
rebroadcast valid blocks that they download to other full nodes, and broadcast
block headers associated with valid blocks to light clients. Some of these nodes
may participate in consensus by producing blocks, which we call block producers.

Full nodes may be dishonest, e.g., they may not relay information (e.g., fraud
proofs), or they may relay invalid blocks. However we assume that the graph of
honest full nodes is well connected, a standard assumption made in previous
work [19, 20, 23, 26]. This results in a broadcast network, due to the synchrony
assumption we will make below.

Fraud Proofs 5

Light clients. These nodes have computational capacity and network band-
width that is too low to download and verify the entire blockchain. They receive
block headers from full nodes, and on request, Merkle proofs that some trans-
action or state is a part of the block header. These nodes receive fraud proofs
from full nodes in the event that a block is invalid.

As is the status quo in prior work [7,26], we assume that each light client is
connected to at least one honest full node (i.e., is not under an eclipse attack
[17]), as this is necessary to achieve a synchronous gossiping network (discussed
below). However when a light client is connected to multiple full nodes, they do
not know which nodes are honest or dishonest, just that at least one of them is.
Consequently, light clients may be connected to dishonest full nodes that send
block headers that have consensus (state agreement) but correspond to invalid
or unavailable blocks (violating state validity), and thus need fraud and data
availability proofs to detect this.

For data availability proofs, we assume a minimum number of honest light
clients in the network to allow for a block to be reconstructed, as each light
client downloads a small chunk of every block. The specific number depends on
the parameters of the system, and is analysed in Section 5.4.

Network assumptions. We assume a synchronous peer-to-peer gossip-
ing network [5], a standard assumption in the consensus protocols of most
blockchains [20, 23, 26, 28, 42] due to FLP impossibility [16]. Specifically, we as-
sume a maximum network delay δ; such that if one honest node can connect
to the network and download some data (e.g., a block) at time T , then it is
guaranteed that any other honest node will be able to do the same at time
T ′ ≤ T + δ. In order to guarantee that light clients do not accept block headers
that do not have state validity, they must receive fraud proofs in time, hence a
synchrony assumption is required. Block headers may be created by adversarial
actors, and thus may be invalid, and we cannot rely on an honest majority of
consensus-participating nodes for state validity.

4 Fraud Proofs
In order to support efficient fraud proofs, it is necessary to design a blockchain

data structure that supports fraud proof generation by design. Extending the
model described in Section 3.1, a block header hi at height i contains at least the
following elements (not including any extra data required e.g., for consensus):

prevHashi The hash of the previous block header.
dataRooti The root of the Merkle tree of the data (e.g., transactions) included

in the block.
dataLengthi The number of leaves represented by dataRooti.
stateRooti The root of a Sparse Merkle tree of the state of the blockchain (to

be described in Section 4.1).

Additionally, the hash of each block header blockHashi = hash(hi) is also
stored by clients and nodes. Note that typically blockchains have the Merkle
root of transactions included in headers. We have abstracted this to a ‘Merkle

6 Mustafa Al-Bassam, Alberto Sonnino, Vitalik Buterin, and Ismail Khoffi

root of data’ called dataRooti, because as we shall see, as well as including
transactions in the block data, we also need to include intermediate state roots.

4.1 State Root and Execution Trace Construction

To instantiate a blockchain based on the state-based model described in
Section 3.1, we make use of Sparse Merkle trees, and represent the state as a
key-value map. In a UTXO-based blockchain e.g., Bitcoin [26], keys would be
UTXO identifiers, and values would be booleans representing if the UTXOs are
unspent or not. The state keeps track of all data relevant to block processing.

We now define a variation of the function transition defined in Section 3.1,
called rootTransition, that performs transitions without requiring the whole state
tree, but only the state root and Merkle proofs of parts of the state tree that
the transaction reads or modifies (which we call “state witness”, or w for short).
These Merkle proofs are effectively a deep sub-tree of the same state tree.

rootTransition(stateRoot, t, w) ∈ {stateRoot′, err}

A state witness w consists of a set of (k, v) key-value pairs and their associated
Sparse Merkle proofs in the state tree, w = {(k0, v0, {k0, v0 → stateRoot}), (k1, v1,
{k1, v1 → stateRoot}), ...}.

After executing t on the parts of the state shown by w, if t modifies any of
the state, then the new resulting stateRoot′ can be generated by computing the
root of the new sub-tree with the modified leafs. If w is invalid and does not
contain all of the state required by t during execution, then err is returned.

Let us denote, for the list of transactions Ti = (t0i , t
1
i , ..., t

n
i), where tji denotes

a transaction j at block i, then wj
i is the state witness for transaction tji for

stateRooti.
Given the intermediate state root interRootji = rootTransition(interRootj−1i ,

tji , w
j
i) after executing the first j transactions (t0i , t

1
i , ..., t

j
i) in block i where j ≤ n,

and the base case interRoot−1i = stateRooti−1, then stateRooti = interRootni .

Hence, interRootji denotes the intermediate state root at block i after applying

the first j transactions t0i , t
1
i , ..., t

j
i in block i.

4.2 Data Root and Periods

The data represented by the dataRooti of a block contains transactions ar-
ranged into fixed-size chunks of data called ‘shares’, interspersed with intermedi-
ate state roots called ‘traces’ between transactions. We denote traceji as the jth
intermediate state root in block i. It is necessary to arrange data into fixed-size
shares to allow for data availability proofs as we shall see in Section 5. Each leaf
in the data tree represents a share.

Given a list of shares (sh0, sh1, ...) we define a function parseShares which
parses these shares and outputs an ordered list of messages (m0,m1, ...), which
are either transactions or intermediate state roots. For example, parseShares on
some shares in the middle of some block i may return (trace1i , t

4
i , t

5
i , t

6
i , trace

2
i).

parseShares((sh0, sh1, ...)) = (m0,m1, ...)

Fraud Proofs 7

Note that as the block data does not necessarily contain an intermediate state
root after every transaction, we assume a ‘period criterion’, a protocol rule that
defines how often an intermediate state root should be included in the block’s
data. For example, the rule could be at least once every p transactions, or b bytes
or g gas (i.e., in Ethereum [39]).

We thus define a function parsePeriod which parses a list of messages, and re-
turns a pre-state intermediate root tracexi , a post-state intermediate root tracex+1

i ,

and a list of transaction (tgi , t
g+1
i , ..., tg+h

i) such that applying these transactions
on tracexi is expected to return tracex+1

i . If the list of messages violate the pe-
riod criterion, then the function may return err, for example if there too many
transactions in the messages to constitute a period.

parsePeriod((m0,m1, ...)) ∈ {(tracexi , tracex+1
i , (tgi , t

g+1
i , ..., tg+h

i)), err}

Note that tracexi may be nil if no pre-state root was parsed, as this may be
the case if the first messages in the block are being parsed, and thus the pre-state
root is the state root of the previous block stateRooti−i. Likewise, tracex+1

i may
be nil if no post-state root was parsed i.e., if the last messages in the block are
being parsed, as the post-state root would be stateRooti.

4.3 Proof of Invalid State Transition
A malicious block producer may provide a bad stateRooti in the block header

that modifies the state an invalid way, i.e., it does not match the new state root
that should be returned according to rootTransition. We can use the execution
trace provided in dataRooti to prove that some part of the execution trace re-
sulting in stateRooti was invalid, by pin-pointing the first intermediate state root
that is invalid. We define a function VerifyTransitionFraudProof and its param-
eters which verifies fraud proofs of invalid state transitions received from full
nodes. We denote dji as share number j in block i.

Summary of VerifyTransitionFraudProof. A state transition fraud proof
consists of (i) the relevant shares in the block that contain the bad state tran-
sition, (ii) Merkle proofs that those shares are in dataRooti, and (iii) the state
witnesses for the transactions contained in those shares. The function takes as
input this fraud proof, then (i) verifies the Merkle proofs of the shares, (ii) parses
the transactions from the shares, and (iii) checks if applying the transactions
on the intermediate pre-state root results in the intermediate post-state root
specified in the shares. If it does not, then the fraud proof is valid, and the block
that the fraud proof is for should be permanently rejected by the client.

VerifyTransitionFraudProof(blockHashi,

(dyi , d
y+1
i , ..., dy+m

i), y, (shares)

({dyi → dataRooti}, {dy+1
i → dataRooti}}, ..., {dy+m

i → dataRooti}}),
(wy

i , w
y+1
i , ..., wy+m

i), (tx witnesses)

) ∈ {true, false}

8 Mustafa Al-Bassam, Alberto Sonnino, Vitalik Buterin, and Ismail Khoffi

VerifyTransitionFraudProof returns true if all of the following conditions are
met, otherwise false is returned:

1. blockHashi corresponds to a block header hi that the client has downloaded
and stored.

2. For each share dy+a
i in the proof, VerifyMerkleProof(dy+a

i , {dy+a
i → dataRooti},

dataRooti, dataLengthi, y + a) returns true.
3. Given parsePeriod(parseShares((dyi , d

y+1
i , ..., dy+m

i))) ∈ {(tracexi , trace
x+1
i , (tgi ,

tg+1
i , ..., tg+h

i)), err}, the result must not be err. If tracexi is nil, then y = 0 is
true, and if tracex+1

i is nil, then y +m = dataLengthi is true.

4. Check that applying (tgi , t
g+1
i , ..., tg+h

i) on tracexi results in tracex+1
i . For-

mally, let the intermediate state roots after applying every transaction in
the proof one at a time be interRootji = rootTransition(interRootj−1i , tji , w

j
i).

If tracex is not nil, then the base case is interRootyi = tracex, otherwise

interRootyi = stateRooti−1. If tracex+1 is not nil, tracex+1 = interRootg+h
i is

true, otherwise stateRooti = interRooty+m
i is true.

5 Data Availability Proofs
A malicious block producer could prevent full nodes from generating fraud

proofs by withholding the data needed to recompute dataRooti and only releasing
the block header to the network. The block producer could then only release the
data—which may contain invalid transactions or state transitions—long after
the block has been published, and make the block invalid. This would cause a
rollback of transactions on the ledger of future blocks. It is therefore necessary for
light clients to have a high level of assurance that the data matching dataRooti
is indeed available to the network.

We propose a data availability scheme based on Reed-Solomon erasure cod-
ing, where light clients request random shares of data to get high probability
guarantees that all the data associated with the root of a Merkle tree is avail-
able. The scheme assumes there is a sufficient number of honest light clients
making the same requests such that the network can recover the data, as light
clients upload these shares to full nodes, if a full node who does not have the
complete data requests it. It is fundamental for light clients to have assurance
that all the transaction data is available, because it is only necessary to withhold
a few bytes to hide an invalid transaction in a block.

A naive data availability proof scheme may simply apply a standard one
dimenisonal Reed-Solomon encoding to extend the block data. However a mali-
cious block producer could incorrectly generate the extended data. In that case,
proving that the extended data is incorrectly generated would be equivalent
to sending the entire block itself, as clients would have to re-encode all data
themselves to verify the mismatch with the given extended data. It is therefore
necessary to use multi-dimensional encoding, so that proofs of incorrectly gen-
erated codes are limited to a specific axis, rather than the entire data—limiting
the size of the proof to O(d

√
t) for d dimensions instead of O(t). For simplicity,

we will only consider bi-dimensional Reed-Solomon encodings in this paper, but
our scheme can be easily generalised to higher dimensions.

Fraud Proofs 9

We first describe how dataRooti should be constructed under the scheme in
Section 5.1, and how light clients can use this to have assurance that the full
data is available in Section 5.2.

5.1 2D Reed-Solomon Encoded Merkle Tree Construction

c1 ck c2k

r1

rk

r2k

…

… original tx

data

extended

data

extended

data

extended

data

Fig. 1: Diagram showing a 2D Reed-Solomon encoding process.

Let extend be a function that takes in a list of k shares, and returns a list
of 2k shares that represent the extended shares encoded using a standard one
dimensional Reed-Solomon code.

extend(sh1, sh2, ..., shk) = (sh1, sh2, ..., sh2k)

The first k shares that are returned are the input shares, and the latter k are
the coded shares. Recall that all 2k shares can be recovered with knowledge of
any k of the 2k shares. A 2D Reed-Solomon Encoded Merkle tree can then be
constructed as follows from a block of data:

1. Split the original data into shares of size shareSize each, and arrange them
into a k × k matrix Oi; apply padding if the last share is not exactly of
size shareSize, or if there are not enough shares to complete the matrix. In
the next step, we extend this k × k matrix to a 2k × 2k matrix Mi with
Reed-Solomon encoding.

2. For each row in the original k × k matrix Oi, pass the k shares in that row
to extend(sh1, sh2, ..., shk) and append the extra shares outputted (shk+1, ...,
sh2k) to the row to create an extended row of length 2k, thus extending the
matrix horizontally. Repeat this process for the columns in Oi to extend
the matrix vertically, so that each original column now has length 2k. This
creates an extended 2k×2k matrix with the upper-right and lower-left quad-
rants filled, as shown in Figure 1. Then finally apply Reed-Solomon encoding
horizontally on each row of the vertically extended portion of the matrix to
complete the bottom-right quadrant of the 2k × 2k matrix. This results in
the extended matrix Mi for block i.

10 Mustafa Al-Bassam, Alberto Sonnino, Vitalik Buterin, and Ismail Khoffi

3. Compute the root of the Merkle tree for each row and column in the 2k×2k
matrix, where each leaf is a share. We have rowRootji = root((M j,1

i ,M j,2
i ,

...,M j,2k
i)) and columnRootji = root((M1,j

i ,M2,j
i , ...,M2k,j

i)), where Mx,y
i

represents the share in row x, column y in the matrix.
4. Compute the root of the Merkle tree of the roots computed in step 3 and

use this as dataRooti. We have dataRooti = root((rowRoot1i , rowRoot
2
i , ...,

rowRoot2ki , columnRoot1i , columnRoot2i , ..., columnRoot2ki)).

We note that in step 2, we have chosen to extend the vertically extended
portion of the matrix horizontally to complete the extended matrix, however
it would be equally acceptable to extend the horizontally extended portion of
the matrix vertically to complete the extended matrix; this will result in the
same matrix because Reed-Solomon coding is linear and commutative with itself
[34]. The resulting matrix has the property that all rows and columns have
reconstruction capabilities.

The resulting tree of dataRooti has dataLengthi = 2× (2k)2 elements, where
the first 1

2dataLengthi elements are in leaves via the row roots, and the latter
half are in leaves via the column roots.

In order to allow for Merkle proofs from dataRooti to individual shares, we as-
sume a wrapper function around VerifyMerkleProof called VerifyShareMerkleProof
with the same parameters which takes into account how the underlying Merkle
trees deal with an unbalanced number of leaves, as dataRooti is composed from
multiple trees constructed independently from each other.

The width of the matrix can be derived as matrixWidthi =
√

1
2dataLengthi.

If we are only interested in the row and column roots of dataRooti, rather than
the actual shares, then we can assume that dataRooti has 2×matrixWidthi leaves
when verifying a Merkle proof of a row or column root.

A light client or full node is able to reconstruct dataRooti from all the row and
column roots by recomputing step 4. In order to gain data availability assurances,
all light clients should at minimum download all the row and column roots needed
to reconstruct dataRooti and check that step 4 was computed correctly, because
as we shall see in Section 5.3, they are necessary to generate fraud proofs of
incorrectly generated extended data.

We nevertheless represent all of the row and column roots as a a single
dataRooti to allow ‘super-light’ clients which do not download the row and col-
umn roots, but these clients cannot be assured of data availability and thus do
not fully benefit from the increased security of allowing fraud proofs.

5.2 Random Sampling and Network Block Recovery

In order for any share in the 2D Reed-Solomon matrix to be unrecoverable,
then at least (k+1)2 out of (2k)2 shares must be unavailable (see Theorem 1), as
opposed to k+1 out of 2k with a 1D code. When light clients receive a new block
header from the network, they should randomly sample 0 < s ≤ (2k)2 distinct
shares from the extended matrix, and only accept the block if they receive all
shares. The higher the s, the greater the confidence a light client can have that
the data is available (this will be analysed in Section 5.4). Additionally, light

Fraud Proofs 11

clients gossip shares that they have received to the network, so that the full
block can be recovered by honest full nodes.

The protocol between a light client and the full nodes that it is connected to
works as follows:

1. The light client receives a new block header hi from one of the full nodes it is
connected to, and a set of row and column roots R = (rowRoot1i , rowRoot

2
i , ...,

rowRoot2ki , columnRoot1i , columnRoot2i , ..., columnRoot2ki). If the check root(R)
= dataRooti is false, then the light client rejects the header.

2. The light client randomly chooses a set of unique (x, y) coordinates S =
{(x0, y0)(x1, y1), ..., (xn, yn)} where 0 < x ≤ matrixWidthi and 0 < y ≤
matrixWidthi, corresponding to points on the extended matrix, and sends
them to one or more of the full nodes it is connected to.

3. If a full node has all of the shares corresponding to the coordinates in S
and their associated Merkle proofs, then for each coordinate (xa, yb) the full
node responds with Mxa,yb

i , {Mxa,yb

i → rowRootai } or Mxa,yb

i , {Mxa,yb

i →
columnRootbi}. Note that there are two possible Merkle proofs for each share;
one from the row roots, and one from the column roots, and thus the full
node must also specify for each Merkle proof if it is associated with a row or
column root.

4. For each share Mxa,yb

i that the light client has received, the light client checks
VerifyMerkleProof(Mxa,yb

i , {Mxa,yb

i → rowRootai }, rowRoot
a
i ,matrixWidthi, b)

is true if the proof is from a row root, otherwise if the proof is from a column
root then VerifyMerkleProof(Mxa,yb

i , {Mxa,yb

i → columnRootbi}, columnRootbi ,
matrixWidthi, a) is true.

5. Each share and valid Merkle proof that is received by the light client is
gossiped to all the full nodes that the light client is connected to if the full
nodes do not have them, and those full nodes gossip it to all of the full nodes
that they are connected to.

6. If all the proofs in step 4 succeeded, and no shares are missing from the
sample made in step 2, then the block is accepted as available if within 2× δ
no fraud proofs for the block’s erasure code is received (Section 5.3).

Recovery and Selective Share Disclosure There must be a sufficient number
of light clients to sample at least (2k)2 − (k + 1)2 different shares in total for
the block to be recoverable; recall if (k + 1)2 shares are unavailable, the Reed-
Solomon matrix may be unrecoverable. Additionally, the block producer can
selectively releases shares as light clients ask for them, and always pass the
sampling challenge of the clients that ask for the first (2k)2− (k+ 1)2 shares, as
they will accept the blocks as available despite them being unrecoverable. The
number of light clients will be discussed in Section 5.4.

Table 1 in Section 5.4 will show that the number of light clients that this
may apply to is in the hundreds to low thousands if s is set to a reasonable size,
which is extremely low (less than ∼ 0.2% of users) compared to for example 1M+
users who have installed a popular Bitcoin Android SPV client [4]. Alternatively,
block producers can be prevented from selectively releasing shares to the first
clients if one assumes an enhanced network model where each sample request

12 Mustafa Al-Bassam, Alberto Sonnino, Vitalik Buterin, and Ismail Khoffi

for each share is anonymous (i.e., sample requests cannot be linked to the same
client) and the distribution in which every sample request is received is uniformly
random, for example by using a mix net [10]. As the network would not be able
to link different per-share sample requests to the same clients, shares cannot
be selectively released on a per-client basis. This also prevents adversarial block
producers from targeting a specific light client via its known IP address, by only
releasing shares to that light client. See Appendix A.2 for proofs.

5.3 Fraud Proofs of Incorrectly Generated Extended Data

If a full node has enough shares to recover any row or column, and after doing
so detects that recovered data does not match its respective row or column root,
then it should distribute a fraud proof consisting of enough shares in that row
or column to be able to recover it, and a Merkle proof for each share.

We define a function VerifyCodecFraudProof and its parameters that verifies
these fraud proofs, where axisRootji ∈ {rowRoot

j
i , columnRootji}. We denote axis

and axj as row or column boolean indicators; 0 for rows and 1 for columns.
Summary of VerifyCodecFraudProof. The fraud proof consists of (i) the

Merkle root of the incorrectly generated row or column, (ii) a Merkle proof that
the row or column root is in the data tree, (iii) enough shares to be able to
reconstruct that row or column, and (iv) Merkle proofs that each share is in the
data tree. The function takes as input this fraud proof, and checks that (i) all
of the supplied Merkle proofs are valid, (ii) all of the shares given by the prover
are in the same row or column and (iii) that the recovered row or column indeed
does not match the row or column root in the block. If all these conditions are
true, then the fraud proof is valid, and the block that the fraud proof is for
should be permanently rejected by the client.

VerifyCodecFraudProof(blockHashi,

axisRootji , {axisRoot
j
i → dataRooti}, j, (row or column root)

axis, (row or column indicator)

((sh0, pos0, ax0), (sh1, pos1, ax1), ..., (shk, posk, axk)), (shares)

({sh0 → dataRooti}, {sh1 → dataRooti}}, ..., {shk → dataRooti}})
) ∈ {true, false}

Let recover be a function that takes a list of shares and their positions in
the row or column ((sh0, pos0), (sh1, pos1), ..., (shk, posk)), and the length of the
extended row or column 2k. The function outputs the full recovered shares
(sh0, sh1, ..., sh2k) or err if the shares are unrecoverable.

recover(((sh0, pos0), (sh1, pos1), ..., (shk, posk)), 2k) ∈ {(sh0, sh1, ..., sh2k), err}

VerifyCodecFraudProof returns true if all of the following conditions are met:

1. blockHashi corresponds to a block header hi that the client has downloaded
and stored.

Fraud Proofs 13

2. If axis = 0 (row root), VerifyMerkleProof(axisRootji , {axisRoot
j
i → dataRooti},

dataRooti, 2×matrixWidthi, j) returns true.
3. If axis = 1 (col. root), VerifyMerkleProof(axisRootji , {axisRoot

j
i → dataRooti},

dataRooti, 2×matrixWidthi,
1
2dataLengthi + j) returns true.

4. For each (shx, posx, axx), VerifyShareMerkleProof(shx, {shx → dataRooti},
dataRooti, dataLength, index) returns true, where index is the expected in-
dex of the shx in the data tree based on posx assuming it is in the same row
or column as axisRootji . See Appendix B for how index can be computed.
Note that full nodes can specify Merkle proofs of shares in rows or columns
from either the row or column roots e.g., if a row is invalid but the full
nodes only has Merkle proofs for the row’s share from column roots. This
also allows for full nodes to generate fraud proofs if there are inconsistencies
in the data between rows and columns e.g., if the same cell in the matrix
has a different share in its row and column trees.

5. root(recover(((sh0, pos0), (sh1, pos1), ..., (shk, posk)))) = axisRootji is false.

If VerifyCodecFraudProof for blockHashi returns true, then the block header
hi is permanently rejected by the light client.

5.4 Security Probability Analysis

We present how the data availability scheme presented in Section 5 can pro-
vide lights clients with a high level of assurance that block data is available to
the network.

5 10 15 20
0.2

0.4

0.6

0.8

k=32
k=64
k=128

Fig. 2: p1(X ≥ 1) versus the number of
samples.

5 10 15 20 25
200

400

600

800

1000

k=32
k=64
k=128

Fig. 3: Light clients ĉ for which pc(Y >
ĉ) ≥ 0.99.

Unrecoverable Block Detection Figure 2 shows the probability p1(X ≥ 1)
that a single light client samples at least one unavailable share in a matrix with
(k + 1)2 unavailable shares, thus detecting that a block may be unrecoverable
(see Theorem 2 in Appendix A.1). Figure 2 shows how this probability varies
with the number of samples s for k = 32, 64, 128; each light client samples at
least one unavailable share with about 60% probability after 3 samplings (i.e.,
after querying respectively 0.073% of the block shares for k = 32 and 0.005%
of the block shares for k = 128), and with more than 99% probability after 15
samplings (i.e., after querying respectively 0.4% of the block shares for k = 32

14 Mustafa Al-Bassam, Alberto Sonnino, Vitalik Buterin, and Ismail Khoffi

pe(Z ≥ γ) s = 2 s = 5 s = 10 s = 20 s = 50

k = 16 692 277 138 69 28
k = 32 2805 1,122 561 280 112
k = 64 11,289 4,516 2,258 1,129 451
k = 128 >40,000 ∼18,000 ∼9,000 ∼4,500 1,811

Table 1: Minimum number of light clients (c) required to achieve pe(Z ≥ γ) > 0.99 for
various values of k and s. The approximate values have been approached numerically
as evaluating Theorem 4 can be extremely resource-intensive for large values of k.

and 0.02% of the block shares for k = 128). Furthermore, this probability is
almost independent of k for large values of k (see Corollary 2 in Appendix A.1).
Multi-Client Unrecoverable Block Detection pc(Y > ĉ) is the probability
that more than ĉ out of c light clients sample at least one unavailable share in
a matrix with (k + 1)2 unavailable shares (see Theorem 3 in Appendix A.1).
Figure 3 shows the variation of the number of light clients ĉ for which pc(Y >
ĉ) ≥ 0.99 with the sampling size s, fixing c = 1000, and the matrix sizes are
k = 64, 128, 256. pc(Y > ĉ) is almost independent of k, and can be used to
determine the number of light clients that will detect incomplete matrices with
high probability (pc(Y > ĉ) ≥ 0.99); there is little gain in increasing s over 15.
Recovery and Selective Share Disclosure Table 1 presents the probability
pe(Z ≥ γ) > 0.99 that light clients collectively samples enough shares to recover
every share of the 2k × 2k matrix (see Corollary 3 in Appendix A.1). We are
interested in the probability that light clients—each sampling s distinct shares—
collectively samples at least γ distinct shares, where γ is the minimum number
of distinct shares (randomly chosen) needed to have the certainty to be able to
recover the 2k × 2k matrix (see Corollary 1 in Appendix A.1).

6 Performance and Implementation
We implemented the data availability proof scheme described in Section 5

and a prototype of the state transition fraud proof scheme described in Section 4
in 2,683 lines of Go code and released the code as a series of free and open-
source libraries.4 We perform the measurements on a laptop with an Intel Core
i5 1.3GHz processor and 16GB of RAM, and use SHA-256 for hashing.

Table 2 shows the space complexity and sizes for different objects. We observe
that the size of the state transition fraud proofs only grows logarithmically with
the size of the block and state; this is because the number of transactions in
a period remains static, but the size of the Merkle proof for each transaction
increases logarithmically. On the other hand, the availability fraud proofs (as
well as block headers with the axis roots) grow at least in proportion to the
square root of the size of the block, as the size of a single row or column is
proportional to the square root of the size of the block.

Table 3 shows the time complexity and benchmarks for various actions. To
generate and verify availability fraud proofs, we use an algorithm based on Fast

4 URLs omitted for double-blind review.

Fraud Proofs 15

Object Space complexity 250KB block 1MB block

State fraud proof O(p+ p log(d) + w log(s) + w) 14,090b 14,410b
Availability fraud proof O(d0.5 + d0.5 log(d0.5)) 12,320b 26,688b
Single sample response O(shareSize + log(d)) 320b 368b
Header O(1) 128b 128b
Header + axis roots O(d0.5) 2,176b 4,224b

Table 2: Worst case space complexity and illustrative sizes for various objects for
250KB and 1MB blocks. p represents the number of transactions in a period, w repre-
sents the number of witnesses for those transactions, d is short for dataLength, and s
is the number of key-value pairs in the state tree. For the illustrative sizes, we assume
that a period consists of 10 transactions, the average transaction size is 225 bytes, and
that conservatively there are 230 non-default nodes in the state tree.

Action Time complexity 250KB block 1MB block

[G] State fraud proof O(b+ p log(d) + w log(s)) 41.22ms 182.80ms
[V] State fraud proof O(p+ p log(d) + w) 0.03ms 0.03ms
[G] Availability fraud proof O(d log(d0.5) + d0.5 log(d0.5)) 4.91ms 19.18ms
[V] Availability fraud proof O(d0.5 log(d0.5)) 0.05ms 0.08ms
[G] Single sample response O(log(d0.5)) < 0.00001ms < 0.00001ms
[V] Single sample response O(log(d0.5)) < 0.00001ms < 0.00001ms

Table 3: Worst case time complexity and benchmarks for various actions for 250KB
and 1MB blocks (mean over 10 repeats), where [G] means generate and [V] means
verify. p represents the number of transactions in a period, b represents the number of
transactions in the block, w represents the number of witnesses for those transactions,
d is short for dataLength, and s is the number of key-value pairs in the state tree.
For the benchmarks, we assume that a period consists of 10 transactions, the average
transaction size is 225 bytes, and each transaction writes to one key in the state tree.

Fourier Transforms (FFT) to perform the encoding and decoding, which has a
O(k log(k)) complexity for a message of k shares [22,32]. As expected, verifying
an availability fraud proof is significantly quicker than generating one. This is
because generation requires checking the entire data matrix, whereas verification
only requires checking one row or column.

7 Related Work
The Bitcoin paper [26] briefly mentions the possibility of ‘alerts’, which are

messages sent by full nodes to alert light clients that a block is invalid, prompt-
ing them to download the full block to verify the inconsistency. Little further
exploration has been done on this, partly due to the data availability problem.

There have been online discussions about how one may go about designing
a fraud proof system [31, 36], but no complete design that deals with all block
invalidity cases and data availability has been proposed. These earlier systems
have taken the approach of attempting to design a fraud proof for each possible

16 Mustafa Al-Bassam, Alberto Sonnino, Vitalik Buterin, and Ismail Khoffi

way to create a block that violates the protocol rules (e.g., double spending in-
puts, mining a block with a reward too high, etc), whereas this paper generalises
the blockchain into a state transition system with only one fraud proof.

On the data availability side, Perard et al. [29] have proposed using era-
sure coding to allow light clients to voluntarily contribute to help storing the
blockchain without having to download all of it, however they do not propose
a scheme to allow light clients to verify that the data is available via random
sampling and fraud proofs of incorrectly generated erasure codes.

Error coding as a potential solution has been briefly discussed on IRC chat-
rooms with no analysis, however these early ideas [25] require semi-trusted third
parties to inform clients of missing samples, and do not make use of 2D cod-
ing and proofs of incorrectly generated codes and are thus vulnerable to block
producers that generate invalid codes.

Cachin and Stefano [9] introduce verifiable information dispersal, which stores
files by distributing them amongst a set of servers in a storage-efficient way,
where up to one third of the servers and an arbitrary number of clients may
be malicious. Data availability proofs on the other hand do not make any hon-
est majority assumptions about nodes, however require a minimum number of
honest light clients.

7.1 SParse frAud pRotection (SPAR)

Since the release of this paper’s pre-print, new work by Yu et al. [41] on
data availability proofs was presented in FC’20 that builds on this work, which
adopts our security definitions and framework. An alternative data availability
proof scheme called SPAR is proposed where only an O(1) hash commitment is
required in each header with respect to the size of the block, compared to an
O(
√
n) commitment in our scheme. The scheme uses a Merkle tree where each

layer of the tree is coded with an LDPC code [6]. The scheme considers sampling
with two types of adversarial block producers: a strong adversary and a weak
adversary. A strong adversary can find, with NP-hardness, the specific shares
that must be hidden (the stopping set) in order to make the data unavailable. A
weak adversary cannot find the stopping set, and thus randomly selects shares
to withhold. Under a threat model that assumes a strong adversary, clients must
therefore sample more shares to achieve the same data availability guarantees.

According to the evaluation of the scheme in the paper [41], light clients
are required to download 2.5-4x more samples than our 2D-RS scheme from
each block to achieve the same level of data availability guarantee under a weak
adversary, and 10-16x more under a strong adversary. Furthermore, the size of
each sample is increased as shares must be downloaded from multiple layers of
the tree, as opposed to only the bottom layer in our 2D-RS scheme. However,
the overall amount of data that needs to be downloaded only increases loga-
rithmically with the block size as the size of the Merkle proofs only increase
logarithmically, while the header size is O(1) instead of O(

√
n).

Figure 4 in Appendix C compares the overall header and sampling bandwidth
cost for different block sizes for both the 2D-RS scheme and the SPAR scheme,
with a target data availability guarantee of 99% and 256 byte shares (used in

Fraud Proofs 17

the evaluation in both this paper and SPAR). We observe that due to the high
sampling cost of SPAR, it outperforms 2D-RS in bandwidth costs only when the
block size is greater than 50MB under the weak adversary model. After 50MB,
the fact that the bandwidth cost only increases logarithmically in SPAR becomes
advantageous.

On the other hand, the size of each SPAR sample is smaller when the size of
the shares are smaller. To compare the best case scenario, Figure 5 in Appendix C
shows the comparison between SPAR and 2D-RS assuming 32 byte shares (i.e.,
the size of shares are equivalent to the size of the SHA-256 hash). This shows
that SPAR outperforms 2D-RS for blocks greater than 6MB under the weak
adversary model. However, decreasing the share size increases the fraud proof size
and decoding complexity—we refer readers to the SPAR paper [41] for metrics.

8 Conclusion

We presented, implemented and evaluated a complete fraud and data avail-
ability proof scheme, which enables light clients to have security guarantees
almost at the level of a full node, with the added assumptions that there is at
least one honest full node in the network that distributes fraud proofs within a
maximum network delay, and that there is a minimum number of light clients
in the network to collectively recover blocks.

Acknowledgements

Mustafa Al-Bassam is supported by a scholarship from The Alan Turing In-
stitute and Alberto Sonnino is supported by the European Commission Horizon
2020 DECODE project under grant agreement number 732546.

Thanks to George Danezis, Alexander Hicks and Sarah Meiklejohn for helpful
discussions about the mathematical proofs.

Thanks to our shephard Sreeram Kannan for providing helpful feedback.

References
1. Al-Bassam, M., Sonnino, A., Bano, S., Hrycyszyn, D., Danezis, G.: Chainspace: A

sharded smart contracts platform. In: Proceedings of the Network and Distributed
System Security Symposium (NDSS) (2018)

2. Antonopoulos, A.M.: Mastering Bitcoin: Unlocking Digital Crypto-Currencies.
O’Reilly Media, Inc., 1st edn. (2014)

3. Bano, S., Sonnino, A., Al-Bassam, M., Azouvi, S., McCorry, P., Meiklejohn, S.,
Danezis, G.: Consensus in the age of blockchains. CoRR abs/1711.03936 (2017),
https://arxiv.org/abs/1711.03936

4. Bitcoin Wallet Developers: Bitcoin wallet - apps on Google Play (2018), https:
//play.google.com/store/apps/details?id=de.schildbach.wallet

5. Boyd, S., Ghosh, A., Prabhakar, B., Shah, D.: Randomized gossip algorithms.
IEEE transactions on information theory 52(6), 2508–2530 (2006)

6. Burshtein, D., Miller, G.: Asymptotic enumeration methods for analyzing ldpc
codes. IEEE Transactions on Information Theory 50(6), 1115–1131 (2004).
https://doi.org/10.1109/TIT.2004.828064

https://arxiv.org/abs/1711.03936
https://play.google.com/store/apps/details?id=de.schildbach.wallet
https://play.google.com/store/apps/details?id=de.schildbach.wallet
https://doi.org/10.1109/TIT.2004.828064

18 Mustafa Al-Bassam, Alberto Sonnino, Vitalik Buterin, and Ismail Khoffi

7. Buterin, V.: Ethereum: The ultimate smart contract and decentralized application
platform (white paper) (2013), http://web.archive.org/web/20131228111141/

http://vbuterin.com/ethereum.html

8. Buterin, V.: Ethereum sharding FAQs (2018), https://github.com/ethereum/

wiki/wiki/Sharding-FAQs/c54cf1b520b0bd07468bee6950cda9a2c4ab4982

9. Cachin, C., Tessaro, S.: Asynchronous verifiable information dispersal. In: 24th
IEEE Symposium on Reliable Distributed Systems (SRDS’05). pp. 191–201. IEEE
(2005)

10. Chaum, D.L.: Untraceable electronic mail, return addresses, and
digital pseudonyms. Commun. ACM 24(2), 84–90 (Feb 1981).
https://doi.org/10.1145/358549.358563, http://doi.acm.org/10.1145/358549.

358563

11. Dahlberg, R., Pulls, T., Peeters, R.: Efficient sparse merkle trees. In: Brumley,
B.B., Röning, J. (eds.) Secure IT Systems. pp. 199–215. Springer International
Publishing, Cham (2016)

12. Dudáček, L., Veřtát, I.: Multidimensional parity check codes with short block
lengths. In: Telecommunications Forum (TELFOR), 2016 24th. pp. 1–4. IEEE
(2016)

13. Elias, P.: Error-free coding. Transactions of the IRE Professional Group on Infor-
mation Theory 4(4), 29–37 (1954)

14. Euler, L.: Solutio quarundam quaestionum difficiliorum in calculo probabilium.
Opuscula Analytic 2, 331–346 (1785)

15. Ferrante, M., Saltalamacchia, M.: The coupon collector’s problem. Materials
matemàtics pp. 0001–35 (2014)

16. Fischer, M.J., Lynch, N.A., Paterson, M.S.: Impossibility of distributed consensus
with one faulty process. Journal of the ACM (JACM) 32(2), 374–382 (1985)

17. Heilman, E., Kendler, A., Zohar, A., Goldberg, S.: Eclipse attacks on
Bitcoin’s peer-to-peer network. In: 24th USENIX Security Symposium
(USENIX Security 15). pp. 129–144. USENIX Association, Washington, D.C.
(2015), https://www.usenix.org/conference/usenixsecurity15/technical-

sessions/presentation/heilman

18. Karlo, T.: Ending Bitcoin support (2018), https://stripe.com/blog/ending-

Bitcoin-support

19. Kiayias, A., Russell, A., David, B., Oliynykov, R.: Ouroboros: A provably secure
proof-of-stake blockchain protocol. In: Annual International Cryptology Confer-
ence. pp. 357–388. Springer (2017)

20. Kokoris-Kogias, E., Jovanovic, P., Gasser, L., Gailly, N., Syta, E., Ford, B.: Om-
niLedger: A secure, scale-out, decentralized ledger via sharding. In: Proceedings of
IEEE Symposium on Security & Privacy. IEEE (2018)

21. Laurie, B., Kasper, E.: Revocation transparency (2012), https://www.links.org/
files/RevocationTransparency.pdf

22. Lin, S.J., Chung, W.H., Han, Y.S.: Novel polynomial basis and its ap-
plication to Reed-Solomon erasure codes. In: Proceedings of the 2014
IEEE 55th Annual Symposium on Foundations of Computer Science.
pp. 316–325. FOCS ’14, IEEE Computer Society, Washington, DC, USA
(2014). https://doi.org/10.1109/FOCS.2014.41, http://dx.doi.org/10.1109/

FOCS.2014.41

23. Luu, L., Narayanan, V., Zheng, C., Baweja, K., Gilbert, S., Saxena, P.: A secure
sharding protocol for open blockchains. In: Proceedings of the 2016 ACM SIGSAC
Conference on Computer and Communications Security. pp. 17–30. CCS ’16, ACM,

http://web.archive.org/web/20131228111141/http://vbuterin.com/ethereum.html
http://web.archive.org/web/20131228111141/http://vbuterin.com/ethereum.html
https://github.com/ethereum/wiki/wiki/Sharding-FAQs/c54cf1b520b0bd07468bee6950cda9a2c4ab4982
https://github.com/ethereum/wiki/wiki/Sharding-FAQs/c54cf1b520b0bd07468bee6950cda9a2c4ab4982
https://doi.org/10.1145/358549.358563
http://doi.acm.org/10.1145/358549.358563
http://doi.acm.org/10.1145/358549.358563
https://www.usenix.org/conference/usenixsecurity15/technical-sessions/presentation/heilman
https://www.usenix.org/conference/usenixsecurity15/technical-sessions/presentation/heilman
https://stripe.com/blog/ending-Bitcoin-support
https://stripe.com/blog/ending-Bitcoin-support
https://www.links.org/files/RevocationTransparency.pdf
https://www.links.org/files/RevocationTransparency.pdf
https://doi.org/10.1109/FOCS.2014.41
http://dx.doi.org/10.1109/FOCS.2014.41
http://dx.doi.org/10.1109/FOCS.2014.41

Fraud Proofs 19

New York, NY, USA (2016). https://doi.org/10.1145/2976749.2978389, http://

doi.acm.org/10.1145/2976749.2978389

24. Marshall, A.: Bitcoin scaling problem, explained (2017), https://cointelegraph.
com/explained/Bitcoin-scaling-problem-explained

25. Maxwell, G.: (2017), https://botbot.me/freenode/bitcoin-wizards/2017-02-
01/?msg=80297226&page=2

26. Nakamoto, S.: Bitcoin: A peer-to-peer electronic cash system (2008), http://

bitcoin.org/bitcoin.pdf

27. Orland, K.: Your Bitcoin is no good here—Steam stops accepting cryp-
tocurrency (2017), https://arstechnica.com/gaming/2017/12/steam-drops-

Bitcoin-payment-option-citing-fees-and-volatility/

28. Pass, R., Seeman, L., Shelat, A.: Analysis of the blockchain protocol in asyn-
chronous networks. In: Annual International Conference on the Theory and Appli-
cations of Cryptographic Techniques. pp. 643–673. Springer (2017)

29. Perard, D., Lacan, J., Bachy, Y., Detchart, J.: Erasure code-based low storage
blockchain node. In: IEEE International Conference on Blockchain (2018)

30. Peterson, W.W., Wesley, W., Weldon Jr Peterson, E., Weldon, E., Weldon, E.:
Error-correcting codes. MIT press (1972)

31. Ranvier, J.: Improving the ability of SPV clients to detect invalid chains (2017),
https://gist.github.com/justusranvier/451616fa4697b5f25f60

32. Reed, I., Scholtz, R., Truong, T.K., Welch, L.: The fast decoding of Reed-
Solomon codes using Fermat theoretic transforms and continued fractions.
IEEE Transactions on Information Theory 24(1), 100–106 (January 1978).
https://doi.org/10.1109/TIT.1978.1055816

33. Saints, K., Heegard, C.: Algebraic-geometric codes and multidimensional cyclic
codes: a unified theory and algorithms for decoding using Grobner bases. IEEE
Transactions on Information Theory 41(6), 1733–1751 (1995)

34. Shea, J.M., Wong, T.F.: Multidimensional codes. Encyclopedia of Telecommuni-
cations (2003)

35. Shen, B.Z., Tzeng, K.: Multidimensional extension of Reed-Solomon codes. In:
Information Theory, 1998. Proceedings. 1998 IEEE International Symposium on.
p. 54. IEEE (1998)

36. Todd, P.: Fraud proofs (2016), https://diyhpl.us/wiki/transcripts/mit-

bitcoin-expo-2016/fraud-proofs-petertodd/

37. Wicker, S.B.: Reed-Solomon Codes and Their Applications. IEEE Press, Piscat-
away, NJ, USA (1994)

38. Wong, J.I.: CryptoKitties is causing Ethereum network congestion (2017),
https://qz.com/1145833/cryptokitties-is-causing-ethereum-network-

congestion/

39. Wood, G.: Ethereum: A secure decentralised generalised transaction ledger -
Byzantium version, e94ebda (yellow paper) (2018), https://ethereum.github.

io/yellowpaper/paper.pdf

40. Wu, J., Costello, D.: New multilevel codes over GF(q). IEEE transactions on in-
formation theory 38(3), 933–939 (1992)

41. Yu, M., Sahraei, S., Li, S., Avestimehr, S., Kannan, S., Viswanath, P.: Coded
merkle tree: Solving data availability attacks in blockchains. In: Financial Cryp-
tography and Data Security (2020)

42. Zamani, M., Movahedi, M., Raykova, M.: Rapidchain: Scaling blockchain via full
sharding. In: Proceedings of the 2018 ACM SIGSAC Conference on Computer and
Communications Security. pp. 931–948 (2018)

https://doi.org/10.1145/2976749.2978389
http://doi.acm.org/10.1145/2976749.2978389
http://doi.acm.org/10.1145/2976749.2978389
https://cointelegraph.com/explained/Bitcoin-scaling-problem-explained
https://cointelegraph.com/explained/Bitcoin-scaling-problem-explained
https://botbot.me/freenode/bitcoin-wizards/2017-02-01/?msg=80297226&page=2
https://botbot.me/freenode/bitcoin-wizards/2017-02-01/?msg=80297226&page=2
http://bitcoin.org/bitcoin.pdf
http://bitcoin.org/bitcoin.pdf
https://arstechnica.com/gaming/2017/12/steam-drops-Bitcoin-payment-option-citing-fees-and-volatility/
https://arstechnica.com/gaming/2017/12/steam-drops-Bitcoin-payment-option-citing-fees-and-volatility/
https://gist.github.com/justusranvier/451616fa4697b5f25f60
https://doi.org/10.1109/TIT.1978.1055816
https://diyhpl.us/wiki/transcripts/mit-bitcoin-expo-2016/fraud-proofs-petertodd/
https://diyhpl.us/wiki/transcripts/mit-bitcoin-expo-2016/fraud-proofs-petertodd/
https://qz.com/1145833/cryptokitties-is-causing-ethereum-network-congestion/
https://qz.com/1145833/cryptokitties-is-causing-ethereum-network-congestion/
https://ethereum.github.io/yellowpaper/paper.pdf
https://ethereum.github.io/yellowpaper/paper.pdf

20 Mustafa Al-Bassam, Alberto Sonnino, Vitalik Buterin, and Ismail Khoffi

A Security Theorems and Proofs

A.1 Sampling Security Analysis

We present the security theorems backing Section 5.4.

Theorem 1. Given a 2k × 2k matrix E as show in Figure 1, data is unrecov-
erable if at least k + 1 columns or rows have each at least k + 1 unavailable
shares. In that case, the minimum number of shares that must be unrecoverable
is (k + 1)2.

Proof. Suppose a malicious block producer wants to make unrecoverable a share
Ei,j of the 2k×2k matrix E. Recall that Reed-Solomon encoding allow to recover
all 2k shares from any k shares; the block producer will have to (i) make unre-
coverable at least k + 1 shares from the row Ei,∗, and (ii) make unrecoverable
at least k + 1 shares from the column E∗,j .

Let us start from (i); the block producer withholds at least k+ 1 shares from
row Ei,∗. However, each of these k+ 1 withheld shares (Ei,c1 , . . . , Ei,ck+1

) ∈ Ei,∗
can be recovered from the available shares of their respective columns E∗,c1 ,
E∗,c2 . . . , E∗,ck+1

. Therefore, the block producer will also have to withhold at
least k + 1 shares from each of these columns. This gives a total of (k + 1) ∗
(k + 1) = (k + 1)2 shares to withhold. Note that at this point, there are not
enough shares left in the matrix to recover any of the (k+ 1)2 shares of columns
(E∗,c1 , . . . E∗,ck+1

).

Let us now consider (ii); the block producer withholds at least k + 1 shares
from the column E∗,j to make unrecoverable the share Ei,j . As before, each
shares (Er1,j , . . . , Erk+1,j) ∈ E∗,j can be recovered from the available shares of
their respective row Er1,∗, Er2,∗, . . . , Erk+1,∗. Therefore, the block producer will
also have to withhold at least at least k + 1 shares from each of these rows. As
before, this also gives a total of (k + 1) ∗ (k + 1) = (k + 1)2 shares to withhold.

However, (i) is equivalent to (ii) by the symmetry of the matrix, and are
actually operating on the same shares; executing (i) on matrix E is equivalent
to execute (ii) on the transposed of the matrix E.

Corollary 1. Light clients need to collect at least γ = k(3k − 2) distinct shares
to have the certainty to be able to recover the 2k × 2k matrix.

Proof. Corollary 1 follows directly from Theorem 1:

γ = (2k)2 − (k + 1)2 + 1 = k(3k − 2) (1)

Theorem 2. Given a 2k × 2k matrix E as shown in Figure 1, where (k + 1)2

shares are unavailable. If one player randomly samples 0 < s < (k + 1)2 shares
from E, the probability of sampling at least one unavailable share is:

p1(X ≥ 1) = 1−
s−1∏
i=0

(
1− (k + 1)2

4k2 − i

)
(2)

Fraud Proofs 21

Proof. We start by assuming that the 2k × 2k matrix E contains q unavailable
shares; If the player performs m trials (0 < s < (k + 1)2), the probability of
finding exactly zero unavailable share is:

p1(X = 0) =

(
4k2−q

s

)(
4k2

s

) (3)

The numerator of Equation (3) computes the number of ways to pick s chunks

among the set of unavailable shares 4k2 − q (i.e.,
(
4k2−q

s

)
). The denominator

computes the total number of ways to pick any s samples out of the total number

of samples (i.e.,
(
4k2

s

)
).

Then, the probability p1(X ≥ 1) of finding at least one unavailable share can
be easily computed from Equation (3):

p1(X ≥ 1) = 1− p1(X = 0) (4)

= 1−
(
4k2−q

s

)(
4k2

s

) (5)

= 1−
s−1∏
i=0

(
1− q

4k2 − i

)
(6)

which can be re-written as Equation (2) by setting q = (k + 1)2.

Corollary 2. The probability p1(X ≥ 1) is independent of k for large values of
k (and only depends on s).

Proof.

lim
k→∞

p1(X ≥ 1) = lim
k→∞

(
1−

s−1∏
i=0

(
1− (k + 1)2

4k2 − i

))
(7)

= 1− (3/4)
s

(8)

Therefore p1(X ≥ 1) is independent of k.

Theorem 3. Given a 2k × 2k matrix E as shown in Figure 1, where (k + 1)2

shares are unavailable. If c players randomly sample 0 < s < (k + 1)2 shares
from E, the probability that more than ĉ players sample at least one unavailable
share is:

pc(Y > ĉ) = 1−
ĉ∑

j=1

(
c

j

)(
p1(X ≥ 1)

)j(
1− p1(X ≥ 1)

)c−j
(9)

where p1(X ≥ 1) is given by Equation (2).

22 Mustafa Al-Bassam, Alberto Sonnino, Vitalik Buterin, and Ismail Khoffi

Proof. We start computing the probability that exactly ĉ players sample at least
one unavailable share; this probability is given by the binomial probability mass
function:

ps,ĉ(Y = ĉ) =

(
c

ĉ

)(
p1(X ≥ 1)

)ĉ(
1− p1(X ≥ 1)

)c−ĉ
(10)

where p1(X ≥ 1) is given by Equation (2). Equation (10) describes the proba-
bility that ĉ players succeed to sample at least one unavailable share. This can
be viewed as the probability of observing ĉ successes each happening with prob-
ability p1, and (c− ĉ) failures each happening with probability 1− p1; there are(
c
ĉ

)
possible ways of sequencing these successes and failures.
Equation (10) easily generalises to the binomial cumulative distribution func-

tion expressed in Equation (11)—the probability of observing at most ĉ successes
is the sum of the probabilities of observing j successes for j = 1, . . . , ĉ.

pc(Y ≤ ĉ) =

ĉ∑
j=1

(
c

j

)(
p1(X ≥ 1)

)j(
1− p1(X ≥ 1)

)c−j
(11)

Therefore the probability of observing more than ĉ successes is given by Equa-
tion (12) below, which expands as Equation (9).

pc(Y > ĉ) = 1− pc(Y ≤ ĉ) (12)

Theorem 4. (Euler [14]) the probability that the number of distinct elements
sampled from a set of n elements, after c drawings with replacement of s distinct
elements each, is at least all but λ elements5:

pe(Z ≥ n− λ) = 1−
∞∑
i=1

(−1)i
(
λ+ i− 1

λ

)(
n

λ+ i

)(
Wi

)c
(13)

where Wi =

(
n− λ− i

s

)/(
n

s

)
Corollary 3. Given a 2k × 2k matrix E as shown in Figure 1, where each of
c players randomly samples s distinct shares from E. The probability that the
players collectively sample at least γ = k(3k − 2) distinct shares is pe(Z ≥ γ)

Proof. Corollary 3 can be easily proven by substituting λ = n−γ and n = (2k)2

into Theorem 4, where γ is computed by Corollary 1.

A.2 Properties Analysis

We define below soundness and agreement and discuss them.

Definition 1 (Soundness). If an honest light client accepts a block as avail-
able, then at least one honest full node has the full block data or will have the
full block data within some known maximum delay k ∗ δ where δ is the maximum
network delay.

5 This problem is also known as the coupon collector’s problem with group drawing [15].

Fraud Proofs 23

Definition 2 (Agreement). If an honest light client accepts a block as avail-
able, then all other honest light clients will accept that block as available within
some known maximum delay k ∗ δ where δ is the maximum network delay.

We assume two network connection models that sample requests can be made
under, which we will analyse:

– Standard model. Sample requests are linkable to the clients that made
them, and the order that they are received is predictable (e.g., they are
received in the order that they were sent).

– Enhanced model. Different sample requests cannot be linked to the same
client, and the order that they are received by the network is uniformly
random with respect to other requests.

Corollary 4. Under the standard model, a block producer cannot cause sound-
ness (Definition 1) and agreement (Definition 2) to fail for more than c honest
clients with a probability lower than p1(X ≥ 1) per client, where c is determined
by the probability distribution pe(Z ≥ γ).

Proof. Corollary 3 shows that with probability pe(Z ≥ γ), c honest clients will
sample enough shares to collectively recover the full block. Honest clients will
gossip these shares to full nodes which then gossip them to each other, and within
k× δ at least one honest full node will then recover the full block data, thus sat-
isfying soundness with a probability of 1− p1(X ≥ 1) per client (the probability
of the block producer not passing the client’s random sampling challenge when
all the block data is available).

If the data is available and no fraud proofs of incorrectly generated extended
data was received by the client, then no other client will receive a fraud proof
either, due to our assumption that there is at least one honest full node in the
network and honest light clients are not under an eclipse attack, thus satisfying
agreement with a probability of 1− p1(X ≥ 1) per client.

Due to the selective share disclosure attack described in Section 5.2, this
means that the block producer can violate soundness and agreement of the first
c clients that make sample requests, as the block producer can stop releasing
shares just before it is about to release the final shares to allow the block to be
recoverable.

Corollary 5. Under the enhanced model, a block producer cannot cause sound-
ness (Definition 1) and agreement (Definition 2) to fail with a probability lower
than px(X ≥ 1) per client,

px(X ≥ 1) =

d∑
i=1

(
s
i

)(
s(c−1)
d−i

)(
c·s
d

) (14)

where c is the number of clients and d is the number of requests that the block
producer must deny to prevent full nodes from recovering the data.

24 Mustafa Al-Bassam, Alberto Sonnino, Vitalik Buterin, and Ismail Khoffi

Proof. The proof of Corollary 5 starts as the proof of Corollary 4; honest light
clients collectively samples enough shares to recover the full block data by gossip-
ing these shares to full nodes; soundness is satisfied with probability 1−p1(X ≥
1) per client. None of the light clients receive fraud proofs if the full data is avail-
able and no valid fraud proofs are sent over the network, and all light clients
eventually receive a valid fraud proof if one is sent, satisfying agreement with
the same probability.

However, the enhanced model assumes that all sample requests come through
a perfect mix network (i.e., requests are unlinkable between each other), and de-
feats the selective shares disclosure attack presented in Section 5.2. The enhanced
model removes the notion of ‘first’ clients described in Corollary 4 as block pro-
ducers cannot distinguish which requests comes from which client (since requests
are unlikable). Furthermore, if block producers randomly deny some requests,
light clients would uniformly see some of their sample requests denied, and each
light client would therefore consider the block invalid with equal probability.

Particularly, if c light clients each sample 0 < s < (k + 1)2 shares, block
producers observe a total of (c ·s) indistinguishable requests. Let us assume that
a malicious block producer must deny at least d request to prevent full nodes
from recovering the block data. The probability that a light client observes at
least one of its requests denied (and thus rejects the block) is given by px(X ≥ 1)
in Equation (14). The numerator of Equation (14) computes the number of ways
of picking i of the denied requests among the s requests sent by the light client
(i.e.,

(
s
i

)
), multiplied by the number of ways to pick the remaining d− i requests

among the set of requests sent by other light clients: c · s − s = s(c − 1) (i.e.,(
s(c−1)
d−i

)
). The denominator computes the total number of ways to pick any d

requests out of the total number of requests (i.e.,
(
c·s
d

)
). The probability that at

least one of the denied requests comes from a particular client is the sum of the
probabilities for i = 1, . . . , d.

Like Equation (2), Equation (14) rapidly grows and shows that light clients
reject the block if invalid (for appropriate values of d). The value of d can be
approximated using Corollary 3, and depends on s and c. To provide a quick
intuition, if we assume that the light clients collectively sample at least once
every share of the block, a malicious block producer must deny at least (k+ 1)2

requests on different shares to prevent full nodes from recovering the block data;
since multiple requests can sample the same shares, d ≥ (k + 1)2.

Note that a malicious block producer could statistically link light clients
based on the shares they query; i.e., assuming that a light client would never
request twice the same share, a block producer can deduce that any request for
the same share comes from a different client. To mitigate this problem, light
clients could sample without replacement by performing the procedure for sam-
pling with replacement multiple times, and only stop when they have sampled
s unique values.

Fraud Proofs 25

B Computation of index in Step 4 of
VerifyCodecFraudProof

In Step 4 of VerifyCodecFraudProof in Section 5.3, index can be computed as
follows:

– If axis = 0 and axx = 0, index = j ∗matrixWidthi + posx.
– If axis = 1 and axx = 0, index = posx ∗matrixWidthi + j.
– If axis = 1 and axx = 1, index = 1

2dataLength+ j ∗matrixWidthi + posx.
– If axis = 0 and axx = 1, index = 1

2dataLength+ posx ∗matrixWidthi + j.

C Comparison with SPAR
The graphs below compare the overall header and sampling bandwidth costs

between SPAR and our 2D-RS data availability scheme. They were generated
using the same analysis code6 used in the SPAR paper [41].

0 10 20 30 40 50 60
block size (MB)

102

he
ad

er
 +

 sa
m

pl
in

g
(K

B)

header + sampling costs (256 byte shares)

2D-RS
SPAR (strong adv.)
SPAR (weak adv.)

Fig. 4: Comparison of overall header
and sampling bandwidth costs be-
tween 2D-RS costs, for 256-byte
shares with a target data availability
guarantee (p1(X ≥ 1)) of 99%.

0 10 20 30 40 50 60
block size (MB)

102

he
ad

er
 +

 sa
m

pl
in

g
(K

B)
header + sampling costs (32 byte shares)

2D-RS
SPAR (strong adv.)
SPAR (weak adv.)

Fig. 5: Comparison of overall header
and sampling bandwidth costs be-
tween 2D-RS costs, for 32-byte
shares with a target data availability
guarantee (p1(X ≥ 1)) of 99%.

6 https://github.com/songzLi/SPAR_fraud_proof

https://github.com/songzLi/SPAR_fraud_proof

	Fraud and Data Availability Proofs:Detecting Invalid Blocks in Light Clients

