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A. Approximate Euclidean Embedding
Given pairwise dissimilarities between N = |P| pixels in an image, and an integer p ≤ N , we compute the p-dimensional

feature space as an Euclidean embedding of the input dissimilarities. Let D be the input N × N dissimilarity matrix, such
that

Dij = d (i, j, I, T ) , (A.1)

and F be the N × p output configuration matrix. A p-dimensional Euclidean embedding of between N points in an unknown
input space, is a canonical configuration ofN points inRp such that the Euclidean distance matrix of the points ideally equals
D. Algorithms to discover such embeddings formulate the problem as optimizations and typically produce approximately
Euclidean embeddings.

Classical Multidimensional Scaling (cMDS) cMDS [5] is an algebraic approach to solving the embedding problem. cMDS
implicitly minimizes the Frobenius norm ‖Kref − K‖F , where K = FFT is the kernel (Gram) matrix of the reported
(approximate) configuration, and Kref is the Gram matrix of the ideal (exact) Euclidean embedding, when it exists.

For approximate, p-dimensional embeddings, p < N ,

FN×p ≈ VN×p
√

Λp×p, (A.2)

where Λp×p has the p largest positive Eigenvalues ofK along its diagonal and VN×p contains the corresponding Eigenvectors.
The presence of any negative Eigenvalues indicates that an exact Euclidean embedding does not exist. Classical MDS is
equivelent to principal component analysis (PCA) when the input distances are Euclidean.

Landmark Multidimensional Scaling (LMDS) The O(N2) memory complexity of cMDS makes it an impractical choice
when N is the number of pixels. Randomized approaches sample rows of the distance matrix to build approximate represen-
tatives of the entire matrix [4]. Depending on the coherence of the right singular vectors of D, it has been shown [2] that the
Nyström approximation is the original matrix, under reasonable sampling conditions.

We use a Nyström approach called Landmark-multidimensional-scaling (LMDS) [1] which first embeds only p + 1 of
the points (known as landmark points), for a p-dimensional embedding, using classical MDS. In practice, due to potential
degeneracies, the number of landmark points needs to be c > p + 1 to ensure that they span the p-D space. The remaining
points are triangulated from the embedded points using

fi = −1

2
Yp×c (Ai − Ā), c < i ≤ N. (A.3)

Yp×c is the pseudo-inverse of Fc×p andAi is a c-vector containing distances of fi from c landmark points. Ai is the ith column

of A (see Fig. A.1) and Ā is the average of the columns of A. Using (A.2), we can directly compute Yp×c = V T
c×p

√
Λ−1c×c

where the p columns of Vc×p are Eigenvectors of K and
√

Λ−1c×c is a diagonal matrix containing the reciprocals of the
square-roots of the Eigenvalues.
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Figure A.1: We use LMDS [1] to compute feature vectors fi from the stochastically sampled input pixel dissimilarity matrices C
and A. First, the mutual dissimilarities between a few landmark points (block C) are embedded using classical MDS [5] to obtain Fc×p.

The remaining fi are then computed using (A.3).
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(a) Target C matrix
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(b) Estimated Ĉ matrix under the embedding
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(c) Std. dev. of the resulting full dissimilarity
matrix under random sampling

Figure B.1: Estimation of the feature space for an example in the KAIST Hanja2 database. (a) The target distances between randomly
sampled landmarks in the test image. (b) The corresponding distances evaluated in the resulting embedded space. (c) The standard deviation
of the complete distance matrix (for all N pixels) under embeddings generated by different random samples of the landmarks. Here c = 80

landmarks were used to generate an embedded space of dimension p = 10.

The time complexity of LMDS is O(N(c + p2) + c3): O(Nc) distance measurements in the first phase; O(c3) for
the Eigendecomposition in the cMDS computation; and finally O(Np2) for embedding non-landmark points. The space
complexity is O(Nc). This is a key property to render the embedding feasible.

In summary, given the C and A matrices encoding the dissimilarity measures between a set of randomly chosen landmark
points and the rest of the pixels in a test image, the embedding computes a set of feature vectors {fi} whose mutual distances
approximate the input dissimilarities. These feature vectors are used in the feature spaces for the Gaussian kernels that
represent the pairwise potentials for each label. The embedding is agnostic of the source of the dissimilarities.

B. The KAIST Hanja2 Database Embedding
We also investigate the effect of changing the number of sampled landmarks c and limiting the dimensionality of the

embedded space p. We note that it is a requirement that c > p; see § A. In Fig. 6(b) we find that increasing the number
of landmarks provides a slight increase in performance whereas there is a dramatic decrease in performance if we limit the
embedded space to a low number of dimensions. We note again that the number of dimensions may be found automatically
by the embedding process, however, limiting the number of dimensions reduces the time requirements during inference and
may therefore be advantageous. We also look at the estimated matrices directly in Fig. B.1.

The LMDS method is easily extensible to approximate Isomap [3] which is known to be a powerful non-linear dimension-
ality reduction technique. Given a sparse matrix D′ that encodes each pixel’s dissimilarities with its nearest neighbors, the C
and A matrices that approximate Isomap are obtained by performing c single-source-shortest-path computations (from each
of the c landmark points).



C. Further Details on Shape Completion Application Algorithm
In this section we provide a more formal definition of the algorithm we used to perform binary shape completion on the

KAIST Hanja2 and Weizmann Horse datasets.

Objective

• Perform binary image completion in a masked region of a test image using a set of binary training images.

Input

• A set of R training images, T = {Tr}Rr=1

• A test image I containing a masked regionM

• Query patch size q (for q × q pixel patches used to condition the pairwise potentials)

• Gaussian window std. deviation σw

• Trained dictionary patch size Q > 3σw (for Q×Q pixel patches storing the non-parametric pairwise potentials)

Output

• The completed image Î with the masked regionM filled with a binary output

Algorithm

• Perform training for each class l ∈ L = ( foreground, background )

– Extract all unique q × q patches from the training images T as {sb} where

sb := Patch(b, T , q × q) (C.1)

is the q × q patch, centered at b in training images T , with a uniqueness constraint such that

sb 6= sb′ ∀ b′ 6= b.

– Generate a training dictionary Dl(sb)→ S
(l)
b where

S
(l)
b =

1

|V|
∑
v∈V

Window
[

Patch(v, T (l), Q×Q), σw

]
(C.2)

with

V =
{
v | Patch(v, T (l), q × q) = sb

}
, (C.3)

Window [·, σw] as a Gaussian window (std. deviation σw), and T (l) as the indicator image of class l in the

training images T . Thus S(l)
b is an estimate for the density of class l in the neighborhood of sb.



• Test with image I

– For each class l ∈ L = ( foreground, background )

1. Take c samples Γ = {γ} at random from the unmasked region γ ∈ {I/M}.

2. Construct the C(l) and A(l) matrices from § 5 as

C
(l)
ij = D

(l)
ij , (i, j) ∈ Γ (C.4)

A
(l)
ij = D

(l)
ij , i ∈ Γ , j ∈ {I/Γ} (C.5)

using

D
(l)
ij = − log

[
exp

(
−‖ui − uj‖2

2σ2
w

)
P (xj = l | xi = l, I, T )

]
(C.6)

= − log

[
exp

(
−‖ui − uj‖2

2σ2
w

)
S
(l)
i

(
uj − ui

)]
(C.7)

as the dissimilarity between i and j, where ui and uj are the pixel coordinates, making use of the training

dictionary to find S
(l)
i = Dl(si)

1. Here we use S
(l)
i

(
uj − ui

)
to denote a patch lookup.

3. Use the LMDS algorithm (§ 5) to find F(l), the matrix whose rows are the embedded vectors f (l)i , from the

matrices C(l) and A(l).

– Run the mean-field inference algorithm (§ 3) using the feature spaces F(l) in the model of

E
(
x | I, T

)
=

∑
i∈P

ψ(xi) +
∑
i,j∈P
i6=j

[
xi 6= xj

]
w exp

(
−
‖f (xi)

i − f
(xi)
j ‖2

2σ2
f

)
, (C.8)

with
[
xi 6= xj

]
indicating a Potts model, to find the maximum posterior marginal solution for x.
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1If the test patch si is not in the database of training patches {sb} we use the nearest sb, under the Hamming distance function, to perform the lookup.


