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Abstract. We present a technique that achieves local contrast enhance-
ment by representing it as an optimization problem. For this, we first
introduce a scalar objective function that estimates the average local
contrast of the image; to achieve the contrast enhancement, we seek to
maximize this objective function subject to strict constraints on the lo-
cal gradients and the color range of the image. The former constraint
controls the amount of contrast enhancement achieved while the latter
prevents over or under saturation of the colors as a result of the en-
hancement. We propose a greedy iterative algorithm, controlled by a
single parameter, to solve this optimization problem. Thus, our contrast
enhancement is achieved without explicitly segmenting the image either
in the spatial (multi-scale) or frequency (multi-resolution) domain. We
demonstrate our method on both gray and color images and compare it
with other existing global and local contrast enhancement techniques.

1 Introduction
The problem of contrast enhancement of images enjoys much attention; its appli-
cations span a wide gamut, ranging from improving visual quality of photographs
acquired with poor illumination [1] to medical imaging [2].

Common techniques for global contrast enhancements like global stretching
and histogram equalization do not always produce good results, especially for
images with large spatial variation in contrast. A number of local contrast en-
hancement methods have been proposed to address exactly this issue. Most of
them explicitly perform image segmentation either in the spatial(multi-scale) or
frequency(multi-resolution) domain followed by a contrast enhancement oper-
ation on each segment. The approaches differ mainly in the way they choose
to generate the multi-scale or multi-resolution image representation (anisotropic
diffusion [2], non-linear pyramidal techniques[3], multi-scale morphological tech-
niques [4, 5], multi-resolution splines [6], mountain clustering [7], retinex theory
[8, 9]) or in the way they enhance contrast after segmentation (morphological op-
erators [5], wavelet transformations [10], curvelet transformations [11], k-sigma
clipping [8, 9], fuzzy logic [12, 7], genetic algorithms [13]).

In this paper we present a local contrast enhancement method driven by a
scalar objective function that estimates the local average contrast of an image.
Our goal is to enhance the local gradients, which are directly related to the local
contrast of an image. Methods that manipulate the local gradients[14, 15] need
to integrate the manipulated gradient field to construct the enhanced image.
This is an approximately invertible problem that requires solving the poisson
equation dealing with differential equations of potentially millions of variables.

Instead, we achieve gradient enhancement by trying to maximize a simple
objective function. The main contributions of this paper are:



– a simple, scalar objective function to estimate and evaluate the average local
contrast of an images,

– an efficient greedy algorithm to enhance contrast by seeking to maximize the
above objective function.
We present our contrast enhancement algorithm for gray image in Section 2.

In Section 3 the extension of this method to color images is described, followed
by the results in Section 4. Finally, we conclude with future work in Section 5.

2 Contrast Enhancement of Gray Images

2.1 The Optimization Problem
The perception of contrast is directly related to the local gradient of an image
[16]. Our objective is to enhance the local gradients of an image subject to strict
constraints that prevent both over/under-saturation and unbounded enhance-
ment of the gray values. Thus, we propose to maximize the objective function

f(Ω) =
1

4|Ω|
∑
p∈Ω

∑
q∈N4(p)

I ′(p)− I ′(q)
I(p)− I(q)

(1)

subject to the constraints,

1 ≤ I ′(p)− I ′(q)
I(p)− I(q)

≤ (1 + δ) (2)

L ≤ I ′(p) ≤ U (3)
where scalar functions I(p) and I ′(p) represent the gray values at pixel p of
the input and output images respectively, Ω denotes set of pixels that makes
up the image, |Ω| denotes the cardinality of Ω, N4(p) denotes the set of four
neighbors of p, L and U are the lower and upper bounds on the gray values (eg.
L = 0 and U = 255 for 8 bit gray values between 0 and 255), and δ > 0 is the
single parameter that controls the amount of enhancement achieved. We seek
to maximize our objective function by pronouncing the local gradient around a
pixel in the input image to the maximum possible degree. The constraint defined
by Equation 2 assures a bounded enhancement of gradients. The lower bound
ensures that the signs of the gradients are preserved and that the gradients are
never shrunk. The upper bound ensures a bounded enhancement of contrast
controlled by the parameter δ. The constraint defined by Equation 3 ensures
that the output image does not have saturated intensity values.

2.2 The Algorithm
We design a greedy algorithm to solve the optimization problem in 2.1. Our
algorithm is based on the fundamental observation that given two neighboring
pixels with gray values r and s, s 6= r, scaling them both by a factor of (1 + δ)
results in r′ and s′ such that

r′ − s′

r − s
= (1 + δ) (4)

Thus if we simply scale the values I(p),∀p ∈ Ω, by a factor of (1 + δ), we
obtain the maximum possible value for f(Ω). However, this could cause violation



 
 

 

Fig. 1. Graphs showing key steps in our algorithm when applied to a 1D signal. Hillocks
formed at each stage are numbered. Their extent is shown with green arrows and en-
hancement with red arrows. Top Row(left to right): Input signal; sweep plane through
first minima. Note that hillock 1 is pushed up as much as possible so that the δ con-
straint is not violated while hillock 2 cannot be enhanced at all since it will violate the
saturation constraint; sweep plane through second minima. Note that hillocks 1 and
2 cannot be enhanced. However hillock 2 from the previous step has split into 2 and
3 of which the latter can be enhanced. Bottom Row(left to right): Invert Signal from
previous step; sweep plane through first minima in the inverted signal; output signal
obtained by re-inverting.

of Equation 3 at p, leading to saturation of intensity at that point. To avoid this,
we adopt an iterative strategy, employing a greedy approach at each iteration.

Let us visualize the image I as a height-field sampled at the grid points of a
m × n uniform grid. This set of samples represents Ω for a m × n rectangular
image. Thus, the height at every pixel p ∈ Ω, I(p), is within L and U . A one
dimensional example of the algorithm is shown in Figure 1.

For each iteration, we consider b, L ≤ b ≤ U . Next, we generate an m × n
matrix R by marking the regions of I which are above the plane b as

R(i, j) =
{

1 if I(i, j) > b
0 if I(i, j) ≤ b

(5)

In the example in Figure 1 these are the points above the green line. Next, we
find the non-zero connected components in R, and label them uniquely. Let us
call each such component, hb

i , a hillock ; i denotes the component number and
b denotes the thresholding value used to define the hillocks. In Figure 1, the
hillocks are shown numbered. Next, these hillocks are pushed up such that no
pixel belonging to the hillock has the gradient around it enhanced by a factor
more than (1 + δ) and no pixel is pushed up beyond U .

Our method involves iteratively sweeping threshold planes from L through
U and greedily scaling the hillocks respecting the constraints at each sweep.
Note that as we sweep successive planes, a hillock hb

i can split into hb+1
j and

hb+1
k or remain unchanged. But, two hillocks hb

i and hb
j can never merge to

form hb+1
k . This results from the fact that our threshold value increases from



(a) (b) (c)

Fig. 2. The original gray image (a), enhanced gray image using δ of 0.3 (b) and 2 (c).
Note that parts of the image that have achieved saturation for δ = 0.3 do not undergo
anymore enhancement or show any saturation artifact for higher delta of 2. Yet, note
further enhancement of areas like the steel band on the oxygen cylinder, the driver’s
thigh and the pipes in the background. The same method applied to the red, green and
blue channel of a color image - the original image (d), enhanced image using δ of 0.4
(e) and 2 (f) - note the differences in the yellow regions of the white flower and the
venation on the leaves are further enhanced.

one sweep to the next and hence the pixels examined in an iteration are the
subset of the pixels examined in the previous iterations. This observation helps
us to perform two important optimizations. First, we obtain the new hillocks by
only searching amongst hillocks from the immediately preceding sweep. Second,
we store information about how much a hillock has been scaled as one floating
point value per hillock. By ensuring that this value never exceeds (1 + δ) we
avoid explicitly checking for gradient constraints at each pixel in each iteration.
We omit these optimizations in the pseudo-code shown in Figure 3 for simplicity.

For low values of b, enhancement achieved on hillocks might not be (1 + δ)
because of the increased chances of a peak close to U for large sized hillocks.
As b increases, the large connected components are divided so that the smaller
hillocks can now be enhanced more than before(see top row of Fig 1). This
constitutes the upward sweep in our algorithm which enhances only the local
hillocks of I and the image thus generated is denoted by I1.

Further enhancement can be achieved by enhancing the local valleys also. So,
the second stage of the our method applies the same technique to the complement
of I1 = U−I1(p) to generate the output I2. I2 is complemented again to generate
the enhanced output image I ′ = U − I2(p)(see bottom row of Fig 1).Appendix

Algorithm Enhance(δ, I, L, U)
Input: Control parameter δ

Input Image I
Lower and upper bounds L and U

Output: Enhanced Image I ′

Begin
Find P = {b|b = I(p)},∀p at minimas/saddle points
Sort P into list P ′

I ′ ← I
I ′ ← SweepAndPush(I ′, P ′, δ)
I ′ ← U − I ′

Find Q = {b|b = I ′(p)},∀p at minimas/saddle points
Sort Q into List Q′

I ′ ← SweepAndPush(I ′, Q′, δ)
I ′ ← U − I ′

Return I ′

End

Algorithm SweepAndPush(I, S, δ)
Input: Input image I

List of gray values S
Control parameter δ

Output: Output image I ′

Begin
I ′ = I
for each s ∈ S

obtain boolean matrix B 3 Bij = 1 iff Iij ≥ s
Identify set of hillocks H in B
for each Hi ∈ H

find pmax 3 I(pmax) ≥ I(p) ∀ p, pmax ∈ Hi

δmax = min(δ, (U − s)/(I(pmax)− s)− 1.0))
for each p ∈ Hi

δapply = δmax

lookup δh(p), the net scaling factor in the history for p
if (δapply + δh > δ)

δapply = δ − δh

I ′(p) = (1 + δapply) ∗ (I(p)− s) + s
update δh = δh + δapply

End
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Fig. 3. The Algorithm



We perform U − L sweeps to generate each of I1 and I2. In each sweep we
identify connected components in a m×n matrix. Thus, the time-complexity of
our algorithm is theoretically O((U − L)(mn + log(U − L))). The logarithmic
term arises from the need to sort lists P and Q (see Fig.3) and is typically
dominated by the mn term. However, we observe that hillocks split at local
points of minima or saddle points. So, we sweep planes only at specific values
of b where some points in the height field attain a local minima or saddle point.
This helps us to achieve an improved time complexity of O(s(mn + log(s))))
where s is the number of planes swept (number of local maximas, local minimas
and saddle points in the input image). These optimizations are incorporated in
the pseudocode of the algorithm in the Figure 3.

3 Extension to Color Images
One obvious way to extend the algorithm presented in Section 2.2 to color images
is to apply the method independently to three different color channels. However,
doing this does not assure hue preservation and results in hue shift, especially
with higher values of δ, as illustrated in Figure 4. To overcome this problem we
apply our method to the luminance component of the image only. We first lin-
early transform the RGB values to CIE XYZ space [17] to obtain the luminance
(Y ) and the chromaticity coordinate (x = X

X+Y +Z and y = Y
X+Y +Z ), and then

apply our method only to Y keeping x and y constant, and finally convert the
image back to the RGB space. However, in this case, the constraint in Equation
3 needs to be modified so that the resulting enhanced color lies within the color
gamut of the display device. Here we describe the formulation for color images.

The primaries of the display device are defined by three vectors in the XYZ
color space

−→
R = (XR, YR, ZR),

−→
G = (XG, YG, ZG) and

−→
B = (XB , YB , ZB). The

transformation from RGB to XYZ space is defined by a 3×3 matrix whose rows
correspond to

−→
R ,

−→
G and

−→
B . Any color in the XYZ space that can be expressed

as a convex combination of
−→
R ,

−→
G and

−→
B is within the color gamut of the display

device. Note that scaling a vector in the XYZ spaces changes its luminance only,
keeping the chrominance unchanged. This is achieved by scaling Y while keeping
(x, y) of a color constant. In addition, to satisfy the saturation constraint, we
assure that the enhanced color lies within the parallelopiped defined by the
convex combination of

−→
R ,

−→
G and

−→
B .

Thus, the color at pixel p, given by C(p) = (X, Y, Z) is to be enhanced to
C ′(p) = (X ′, Y ′, Z ′) by enhancing Y to Y ′ such that the objective function

f(Ω) =
1

4|Ω|
∑
p∈Ω

∑
q∈N4(p)

Y ′(p)− Y ′(q)
Y (p)− Y (q)

(6)

is maximized subject to a perceptual constraint

1 ≤ Y ′(p)− Y ′(q)
Y (p)− Y (q)

≤ (1 + δ) (7)

and a saturation constraint

(X ′, Y ′, Z ′) = cR
−→
R + cG

−→
G + cB

−→
B, 0.0 ≤ cR, cG, cB ≤ 1.0 (8)

Thus by changing just the saturation constraint, we achieve contrast en-
hancement of color images without saturation artifacts (Figure 5).



(a) (b) (c)

Fig. 4. Results of applying the algorithm from Section 2.2 on the red, green and blue
channels separately. (a) Original image (b) Channels enhanced with a δ of 0.4 (c)
Channels enhanced with a δ of 2. Note the artifacts on the petals of the yellow flower
and on the leaf venation.

(a) (b) (c)

Fig. 5. (a) Original image, (b) algorithm from Sec. 2.2 applied with δ = 2 on the red,
green and blue channels separately. Note the significant hue shift towards purple in
the stairs, arch and wall and towards green on the ledge above the stairs, (c) Using
the method described in Sec.3 with δ = 2 (separating the image into luminance and
chrominance and applying the method to the former). Note that hue is preserved.

(a) (b) (c) (d)

Fig. 6. This figure compares our method with existing methods. (a) The original image,
(b) our greedy-based method(δ = 2), (c) curvelet transformation [11], (d) method based
on multi-scale retinex theory [9]. Note that (c) leads to a noisy image while (d) changes
the hue of the image significantly



(a) (b) (c)

(d) (e) (f)

Fig. 7. (a) The original image, (b) our method, (c) multi-scale morphology method
[5] - note the saturation artifacts that gives the image an unrealistic look, (d) Toet’s
method of multi-scale non-linear pyramid recombination [3] - note the halo artifacts at
regions of large change in gradients, (e) global contrast stretching, (f) global histogram
equalization - both (e) and (f) suffer from saturation artifacts and color blotches.

4 Results
We show the effect of our algorithm on gray images, with varying values of the
input parameter δ (Figure 2). We also show the difference between directly ap-
plying the algorithm to the three color channels (Figure 4) and our adaptation in
Section 3 to ensure color gamut constraints (Figure 5). Figures 6 and 7 compare
our method with other local and global contrast enhancement methods.

Note that the objective function
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Fig. 8. Plot of α
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vs. 1 + δ. The former
is the average local contrast achieved while
the latter is the average local contrast that
would be achieved by scaling the image by
1 + δ without respecting constraints.

defined in Equation 1 or Equation 6
can also be used as an estimate of the
average local contrast of an image,
and hence, to evaluate the degree of
enhancement achieved. According to
the function, the maximum average
local contrast that can be achieved
without any constraints is given by
1+δ. However, imposing the constraints
leads to a more practical average con-
trast value α < (1+δ); as δ increases,
the gap between 1 + δ and α widens
since more pixels reach saturation and
thus cannot achieve values close to 1+ δ. Figure 8 plots the ratio α

1+δ with 1+ δ.

5 Conclusion and Future Work
We design a scalar objective function to describe the average local contrast
of an image that has the potential to be used for estimating and evaluating
the contrast of the image. We formulate the contrast enhancement problem as
an optimization problem that tries to maximize the average local contrast of
the image in a controlled fashion without saturation of colors. We present an
efficient greedy algorithm controlled by a single input parameter δ to solve this
optimization. Currently we are exploring adaptation of the same algorithm for



tone mapping of high dynamic range images by changing δ spatially. Using the
same concept, we can achieve seamless contrast enhancement of a selective region
of interest in an image by varying the parameter δ smoothly over that region.
Since our method works without explicitly segmenting the image either in the
spatial or the frequency domain, it is very efficient. We are trying to exploit
this efficiency to extend this method to video sequences, for which maintaining
temporal continuity is of great importance.
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