
Changes to Code Clones in Evolving Software

Jens Krinke
FernUniversität in Hagen, Germany

krinke@acm.org

1 Introduction
Although cut-copy-paste (-and-adapt) techniques are con-
sidered bad practice, every programmer is using them. Be-
cause such practices not only involve duplication but also
modification, they are called code cloning and the dupli-
cated code is called code clone. A clone group consists
of the code clones that are clones of each other. Code
cloning is easy and cheap during software development,
but it makes software maintenance more complicated, be-
cause errors may have been duplicated together with the
cloned code and modifications of the original code often
must also be applied to the cloned code.

There has been little empirical work that checks
whether the above mentioned problems are relevant in
practice. Kim et al. [2] investigated the evolution of code
clones and provided a classification for evolving code
clones. Their work already showed that during the evo-
lution of the code clones, common changes to the code
clones of a group are fewer than anticipated. Geiger et
al. [1] studied the relation of code clone groups and change
couplings (files which are committed at the same time, by
the same author, and with the same modification descrip-
tion), but could not find a (strong) relation. Therefore, this
work will present a study that (in)validates the following
hypothesis:

During the evolution of a system, code clones of
a clone group are changed commonly.

Of course, a system may contain bugs like that a change
has been applied to some code clones, but has been for-
gotten for other code clones of the clone group. For stable
systems it can be assumed that such bugs will be resolved
at a later time. This results in a second hypothesis:

During the evolution of a system, if code clones
of a clone group are not changed commonly, the
missing changes will appear in a later version.

This work will validate the two hypotheses by studying the
changes that are applied to code clones during 200 weeks
of evolution of two open source software systems.

2 Experiment Setup
For the study the version histories of two open source sys-
tems have been retrieved: The first system is jhotdraw.
It is a drawing application and framework written in Java.
Its goal is the demonstration of good use of design pat-
terns. Its version archive is available via CVS and for

the study, the jhotdraw6 CVS-module has been used.
The second system is a subsystem of eclipse. Its ver-
sion archive is also available via CVS and for the study,
the org.eclipse.jdt.core CVS-module has been
used.

For both systems, the sources have been retrieved based
on their status on 200 different dates, such that each ver-
sion is exactly one week later or earlier than the next or
previous version. For both systems, only the Java source
files have been analyzed. Also, the source files have been
transformed to eliminate spurious changes between ver-
sions: Comments have been removed from the sources and
afterward, the source files have been reformatted with the
pretty printer Artistic Style. The transformed sources are
saved to a repository.

The changes between the versions of the system have
been identified by the standard diff tool. For each version v
of the analyzed system, the changes between version v and
v + 1 (the version of the next week) have been identifed.
Also, the changes between a version in week v and and
in five weeks later (v + 5) have been identified. For each
of the 200 versions, the clone groups have been identified
by the use of the clone detection tool Simian from RedHill
Consulting Pty. Ltd.

The analysis has been done on 195 version because the
versions of the last five weeks were used only for the gen-
eration of the changes between the versions. For each
week w, 0 ≤ w < 195, the tool has generated the list
of clone groups with common and non common changes,
based on the clone groups of the analyzed system in week
w and the changes from week w to week w + 1 (and to
week w + 5).

3 Results
This section will present the results of the study as de-
scribed in the previous section. It will first describe the
results for eclipse and jhotdraw independently and
will then present common results together with the effects
of comment removal. Also, the part of the study that vali-
dates the second hypothesis is presented.

3.1 Results for eclipse
Most of the times when changes occur to clone groups,
only one or two clone groups have non common changes.
It is also rarely the case that during one week more than
three clone groups are affected by any kind of change. Ta-
ble 1 shows the accumulated numbers for all 198 weeks.

1



eclipse jhotdraw
1 week 5 weeks 1 week 5 weeks

clone groups with non common changes 105 188 30 41
clone groups with common changes 79 135 19 20

Table 1: Comparison for non common changes during one and five weeks

This reveals that in the org.eclipse.jdt.core sys-
tem, clone groups have more often non common changes
than common changes. This suggests that if a code clone
is changed, it is more often adapted in the environment it is
used in, than it is modified in the same way like the other
code clones in its group.

3.2 Results for jhotdraw
The development of jhotdraw was much less active and
happened in bursts. For only 21 versions occur changes to
the clone groups, half of them due to irrelevant changes.
The three bursts occur in week 76, 141, and 182. The
burst in week 76 shows an interesting behavior: Although
16 clone groups are affected by changes, only two are af-
fected by non common changes. A manual inspection of
the changes revealed that during that week, a massive code
cleanup has been applied to the source code with a lot of
small refactorings. Again, non common changes to more
than two clone groups are rare.

The numbers in Table 1 are similar to the numbers from
eclipse. Again, clone groups have more often non com-
mon changes than common changes. This supports the as-
sumption that if a code clone is changed, it is more often
adapted in the environment it is used in, than it is modified
in the same way like the other code clones in its group.

3.3 Evolution of Changed Clone Groups
Up to now, the presented results only gave evidence for the
validation of the first hypothesis. The second hypothesis
“During the evolution of a system, if code clones of a clone
group are not changed commonly, the missing changes will
appear in a later version” has also been validated within
this study. If this hypothesis is true, changes to a clone
group that are not applied to all code clones of a group
will appear in a later version. The study only considered
the changes to a system that appear within one week. If the
hypothesis is true, there have to be more common changes
if a longer time period is considered. To validate this, the
study has been repeated with a time distance of five weeks
instead of one as it is assumed that missed changes to a
clone will be detected and fixed within four weeks.

The study generated the changes that appear within the
next five weeks for the state of the software system at
195 weeks (0 to 194). Table 1 shows the numbers of
changed clone groups within one week and the number of
changed clone groups within five weeks. However, for the
five weeks comparison, only the weeks were non common
changes occurred have been used, i.e. the weeks where
no (relevant) changes or common changes occurred within
one week were ignored for the five week comparison.

The numbers show that during the five week period
much more changes occur than within only the first week.
Moreover, the non common changes increase much more
than the common changes. This indicates that the second
hypothesis is not valid. If it would be valid, the common
changes would increase much more. However, there are
exceptions to this general observation as manual inspec-
tion revealed: For example, in week 125 in eclipse six
clone groups are changed in a non common way within the
following week. Within the next four weeks, four of the of
the six clone groups receive additional changes such that
they are now changed in a common way during the five
week period. In weeks 19, 59, 118, and 144 the changes
are similar: two (for week 144, three) clone groups that
have non common changes within one week have only
common changes within five weeks. For jhotdraw,
manual inspection did not reveal such behavior.

These observations suggest that the second hypothesis
occurs in practice, but not very often. Moreover, during
a longer period of observed time, many more non com-
mon changes to clone groups appear, such that occurrences
of changes that change non common changes to common
changes are hard to identify.

4 Conclusions
The study showed that the hypotheses are not valid gener-
ally. The study showed that clone groups more often have
non common changes than common changes, invalidating
the first hypothesis. The study also showed that the second
hypothesis is only valid partially, because the non com-
mon changes appear much more often. However, a small
amount of such changes that turn non common changes to
a clone group to common changes in a later version has
been observed.

References
[1] Reto Geiger, Beat Fluri, Harald C. Gall, and Martin

Pinzger. Relation of code clones and change cou-
plings. In Proceedings of the 9th International Con-
ference of Funtamental Approaches to Software Engi-
neering (FASE), pages 411–425, March 2006.

[2] M. Kim, V. Sazawal, and D. Notkin. An empirical
study of code clone genealogies. In Proceedings of
the 10th European software engineering conference
held jointly with 13th ACM SIGSOFT international
symposium on Foundations of software engineering
(ESEC/FSE), pages 187–196, 2005.


