
Object Based Dynamic Model Extraction

Philipp Bouillon
FernUniversität in Hagen

April 1, 2005

Abstract

We describe the outline of a method to retrieve a
model from various program runs of object-oriented
software which can then be used to find bugs in the
program, re-design or refactor it, test the program
against the model, perform regression testing and
check if new code violates the model. When com-
pleted, the model extraction and testing will be im-
plemented as an Eclipse plug-in and the programmer
is informed of deviations from the model.

1 Introduction

Today’s computer programs are tremendously com-
plex. Still, a common task is to further improve and
extend those programs and to add new features or to
adapt the program to match new regulations. Most of
the time, many people are involved in the implemen-
tation process of the software, so it is imperative to
aid the programmers in understanding and extending
existing program code.

Usually, design documents lead programmers to
relevant parts of the code where they can then im-
plement their changes. More often than never, how-
ever, those design documents are out of date and do
no longer reflect the actual state of the software. Thus
it becomes necessary to provide an automatic means
to infer needed information from a program.

In this paper, we are going to present the outline
of a method to retrieve information on a program by
the means of dynamic analysis. The process is fully
automated and, when finished, will provide the pro-
grammer not only with a better understanding of the
program at hand but with a formal model of that pro-
gram which use is not limited to program understand-
ing but can be applied to re-designing, refactoring,
reverse engineering, debugging, and more.

It should be noted that our approach is tailor-made
for object-oriented programs since we relate calling
events happening during the program execution to
specific objects. Thus, it is also clear that our ap-
proach is a dynamic analysis of various program runs.

To obtain our model, we use different approaches
which we then combine into one consistent description
of a program. The first approach we use is already de-
scribed by Ammons in [1] who uses machine learning
on dynamic traces to create Probabilistic Finite State
Automatons (PFSAs) that can represent the control-

flow graph of a program.
A second approach can be found in the work of

Dallmeier et al. [2] where sequences of calls are ex-
tracted from Java programs. Those sequences are col-
lected for several program runs and then compared.
Differences between the sequences are considered as a
possible bug in the program.

Combining and comparing these two approaches is
one of our first goals to create a model which is a
formal representation of the program in question.

The remainder of the paper is organized as follows:
Section 2 gives an overview of the proposed system
and the steps that are necessary to obtain and use
a model. Section 3 describes the current state of the
project while Section 4 ends the paper with references
to related work and a conclusion.

2 The Big Picture

Before we can think about creating a model of some
sort, we first have to create a pool of data from which
to extract that model. We have decided to dynam-
ically analyze object-oriented programs and extract
their event-traces. From the recorded data, we can
then build our model.

Informally, an event-trace is a sequence of method-
calls and return statements which are all attributed
to a specific object (as opposed to the general class of
that object).

It would now be great if we could just take an event-
trace and analyze all data stored in it with respect to a
certain class C (by combining all the information we
have for objects of C). Unfortunately, event-traces
become immensely large even for short programs, be-
cause thousands of objects from hundreds of classes
may call thousands of methods...

Thus, the event-traces must be broken down into
smaller sets from which we can then start our anal-
ysis. One way of breaking down the traces is again
described by Ammons who picks out scenarios, where
a scenario is a (short) sequence of calls that perform a
certain task (like locking, modifying and unlocking a
file). For a complete definition of scenarios and their
extraction from event-traces—which is not a trivial
task—see [1].

In [2], the event-traces are split into smaller se-
quences by sliding a variable window over the com-
plete trace and comparing only the sequences of length

1



n.
Both approaches can be used effectively to break

down the huge event-trace of a program run, but we
are of course not limited to those two. Other ap-
proaches will be considered and tested.

After breaking down the event-traces into smaller
sets, those sets can be grouped and normalized. We
might, for example, have various sets that all describe
the modification of a file, only for different files. On
the other hand, we might have a certain call-sequence
in a number of sets and a slightly different sequence in
one other set, which might be an indication of a bug
in the program.

In the next step, we can finally begin to analyze the
obtained data and derive a model from it. Ammons
now used Machine Learning on his scenarios to pro-
duce so called Probabilistic Finite State Automatons
which can tell, how probable a call to method A is af-
ter a call to method B. Thus, assuming for a moment
that the analyzed program is correct, the PFSA gives
us a first model of a certain part of the program: The
most probable sequence in which methods have to be
called. In addition, with the PFSAs, a programmer
has a testing profile, giving her an estimate on how
much of the program has been tested, since the prob-
ability for each path in a program execution is stored
in the PFSAs.

To refine our model and to make it more general,
we are currently researching various analysis models,
different from the PFSAs used by Ammons. Our hope
is to have a set of different, yet similar, views of a
program which can be combined to one single model
which gives the programmer valuable insights of the
structure and the calling concepts used in the pro-
gram.

Once the model is in place, it can help the program-
mer in several ways. Besides program-understanding,
the model can be used for testing as a newly writ-
ten part of the program can be checked against the
model where violations indicate possible bugs in the
program. Furthermore, the programmer gets hints
for the architecture of his program. If, for example,
a class is used either for writing data, or for reading
data, i.e. two objects exist: One for reading, one for
writing, the programmer could consider refactoring
the class into two separate classes. So, the model can
help re-design an existing program. Another possibil-
ity for the use of the model might be to incorporate
the model into the program and use run-time checks
to verify the program against the model. Thereby, the
developers can gain hints if something in the program
does not work according to their plan and thus the
debugging becomes easier.

Instead of relying solely on the dynamically created
model, the programmer can be guided even more by
comparing the dynamic model with statically created
model. Thus, we can even give guidance while the
programmer is typing the program, assuming that the

model is precise enough.
Ultimately, the model-extraction, the check of the

model against currently entered code, and the visual-
ization of any deviations from the model will be im-
plemented as an Eclipse plug-in. The vision being a
programming aid which automatically tells the pro-
grammer when she is about to make a mistake and
informing her of a possible correction. Of course, de-
pending on the model, the plug-in is not restricted
to bug prevention or fixing, but can also be used to
refactor or re-design existing code if it turns out that
a class is used in a number of different ways.

3 Current State of the Project

At the time of this writing we can extract event traces
from Java programs and analyze those traces with the
Strauss specification miner [1]. The results need to be
verified, interpreted and incorporated into an Eclipse
plug-in, but first, other means of specifying a model
will be evaluated.

So far, we have been testing our program with toy
projects written in Java to prove the concept. The
results gained with those toy programs only show that
the work done by Ammons is applicable to object-
oriented programs. To actually put the PFSAs into
a model interpretable by an Eclipse plug-in, we will
have to integrate Ammons work into Eclipse and then
combine it with our algorithms.

The next steps will involve a combination of the two
approaches by Dallmeier et al. and Ammons, as well
as the search for new alternatives in breaking down
event-traces into useful chunks of information.

Next to machine learning, other approaches of in-
terpreting the data obtained by the trace-analysis will
be discussed, evaluated and integrated into our algo-
rithm.

4 Conclusion and Related Work

Although for now, we are only extending the work by
Ammons and Dallmeier, we hope that an integration
of the two sketched methods will provide any pro-
grammer in an object-oriented language with a pre-
cise model which will allow for an easier extension of
existing programs as well as a simplification of debug-
ging. First results of toy programs show that our idea
is realizable although we do not know yet, what the
model will look like.

References
[1] Glenn Schatzman Ammons. Strauss: a specification miner.

PhD thesis, University of Wisconsin, 2003. Supervisor-
Rastislav Bodik.

[2] Valentin Dallmeier, Christian Lindig, and Andreas Zeller.
Lightweight defect localization for java. In Proc. ECOOP
2005 – 19th European Conference on Object-Oriented Pro-
gramming, Glasgow, Scotland, July 2005.


