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Abstract

Aspect mining tries to identify crosscutting con-
cerns in existing systems and thus supports the adaption
to an aspect-oriented design. This paper describes an au-
tomatic static aspect mining approach, where the control
flow graphs of a program are investigated for recur-
ring execution patterns based on different constraints,
such as the requirement that the patterns have to ex-
ist in different calling contexts. A case study done with the
implemented tool shows that most discovered crosscut-
ting candidates are most often perfectly good style.

1. Introduction

The notion oftangled coderefers to code that exists sev-
eral times in a software system but cannot be encapsulated
by separate modules using traditional module systems be-
cause it crosscuts the whole system. This makes software
more difficult to maintain, to understand, and to extend.
Aspect-Oriented Programming[4] provides new separation
mechanisms for such complexcrosscutting concerns[7].

A major problem in re-engineering legacy code based
on aspect-oriented principles is to find and to isolate these
crosscutting concerns. This task is also calledaspect min-
ing. The detected concerns can be re-implemented as sep-
arate aspects, thereby improving maintainability and exten-
sibility as well as reducing complexity. Aspect mining can
also provide insights that enable us to classify common as-
pects which occur in different software systems, such as
logging, timing, and communication.

Several approaches based on static program analysis
techniques have been proposed for aspect mining [3, 5, 6,
10, 8, 2]. We have developed a dynamic program analysis
approach [1] that mines aspects based on program traces.
During program execution, program traces are generated,
which reflect the run-time behavior of a software system.
These traces are then investigated for recurring execution
patterns. Different constraints specify when an execution
pattern is “recurring”. These include the requirement that

the patterns have to exist in different calling contexts in the
program trace. The dynamic analysis approach monitors ac-
tual (i.e., run-time) program behavior instead of potential
behavior, as static program analysis does. To explore the
differences between static and dynamic analyses in aspect
mining, we have started to develop a static analysis vari-
ant of our approach. From early results we experienced two
things:

• The results of the static and dynamic analysis are dif-
ferent due to various reasons.

• Crosscutting concerns are often perfectly good style,
because they result from delegation and coding style
guides.

The first point is obvious and thus, only the second point
will be discussed in the following. The next section contains
an introduction to our dynamic aspect mining approach. A
static aspect mining approach based on the dynamic variant
is presented in Section 3. Section 4 contains a case study,
Section 5 discusses the results and concludes, before Sec-
tion 6 discusses related work.

2. Dynamic Aspect Mining

The basic idea behind dynamic analysis algorithms is to
observe run-time behavior of software systems and to ex-
tract information from the execution of the programs. The
dynamic aspect mining approach introduced here is based
on the analysis of program traces which mirror a system’s
behavior in certain program runs. Within these program
traces we identify recurring execution patterns which de-
scribe certain behavioral aspects of the software system. We
expect that recurring execution patterns are potential cross-
cutting concerns which describe recurring functionality in
the program and thus are possible aspects.

In order to detect these recurring patterns in the program
traces, a classification of possible pattern forms is required.
Therefore, we introduce so-calledexecution relations. They
describe in which relation two method executions are in the
program trace.
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2.1. Classification of Execution Relations

The definition of execution relations in our analysis ap-
proach is based on program traces. Intuitively, a program
trace is a sequence of method invocations and exits. We only
consider entries into and exits from method executions be-
cause we can then easily keep track of the relative order in
which method executions are started and finished. We focus
on method executions because we want to analyze object-
oriented systems where logically related functionality is en-
capsulated in methods. Formally, aprogram traceTP of a
programP with method signaturesNP is defined as a list
[t1, . . . , tn] of pairs ti ∈ (NP × {ent, ext}), whereent
marks entering a method execution, andext marks exiting
a method execution.

To make the program traces easier to read, theent- and
ext-points are represented by{ and} respectively, and the
redundantname-information is discarded from theext-
points as the trace structure implies to whichname theext
belongs. Figure 1 shows an example trace.

1 B() {
2 C() {
3 G() {}
4 H() {}
5 }
6 }
7 A() {}
8 B() {
9 C() {}

10 }
11 A() {}
12 B() {
13 C() {
14 G() {}
15 H() {}
16 }

17 J() {}
18 }
19 F() {
20 K() {}
21 I() {}
22 }
23 J() {}
24 G() {}
25 H() {}
26 A() {}
27 B() {
28 C() {}
29 G() {}
30 F() {
31 K() {}
32 I() {}

33 }
34 }
35 D() {
36 C() {}
37 A() {}
38 B() {
39 C() {}
40 }
41 K() {}
42 I() {
43 J() {}
44 }
45 G() {}
46 E() {}
47 }

Figure 1. Example trace

Crosscutting concerns are now reflected by the two dif-
ferent execution relationsthat can be found in program
traces: A method can be executed either after the preced-
ing method execution is terminated (e.g.,H() in line 4 is
executed afterG() in line 3), or inside the execution of the
preceding method call (e.g.,C() in line 2 is executed in-
sideB() in line 1). We distinguish between these two cases
and say that there are outside- and inside-execution rela-
tions in program traces. However, this distinction alone is
not yet sufficient for aspect mining. For example, the exe-
cution ofB() in line 27 has three methods executed inside
its execution,C() , G() , andF() in lines28 ff., but the in-
formation which of those methods comes first is lost. We
thus define formally:

u ⇀ v, u, v ∈ NP , is called anoutside-before-execution
relation if [(u, ext), (v, ent)] is a sublist ofTP . S⇀(TP ) is

the set of all outside-before-execution relations in a program
traceTP . This relation can also be reversed, i.e.,v ↼ u is
an outside-after-execution relationif u ⇀ v ∈ S⇀(TP ).
The set of all outside-after-execution relations in a program
traceTP is then denoted withS↼(TP ).

u ∈> v, u, v ∈ NP is called aninside-first-execution
relation if [(v, ent), (u, ent)] is a sublist ofTP . u ∈⊥ v is
called aninside-last-execution relationif [(u, ext), (v, ext)]
is a sublist ofTP . S∈>(TP ) is the set of all inside-first-
execution relations in a program traceTP , S∈⊥(TP ) is the
set of all inside-last-execution relations. In the following,
we dropTP when it is clear from the context.

For the example trace shown in Figure 1 we thus get the
following setS⇀ of outside-before-execution relations:

S⇀ = {B() ⇀ A() , G() ⇀ H() , A() ⇀ B() , C() ⇀ J() ,

B() ⇀ F() , K() ⇀ I() , F() ⇀ J() , J() ⇀ G() ,

H() ⇀ A() , B() ⇀ D() , C() ⇀ G() , G() ⇀ F() ,

C() ⇀ A() , B() ⇀ K() , I() ⇀ G() , G() ⇀ E() }

The setS↼ of outside-after-execution relations can be
found directly in the trace or simply by reversingS⇀.
The setsS∈> of inside-first-execution relations andS∈⊥

of inside-last-execution relations are as follows:

S∈> = {C() ∈>B() , G() ∈>C() , K() ∈>F() , C() ∈>D() ,

J() ∈>I() }
S∈⊥ = {H() ∈⊥C() , C() ∈⊥B() , J() ∈⊥B() , I() ∈⊥F() ,

F() ∈⊥B() , J() ∈⊥I() , E() ∈⊥D() }

2.2. Execution Relation Constraints

Recurringexecution relations in the program traces can
be seen as indicators for more general execution patterns.
To decide under which circumstances certain execution re-
lations are recurring patterns in traces and thus potential
crosscutting concerns in a system, constraints have to be
defined. The constraints will implicitly also formalize what
crosscutting means.

However, for technical reasons we have to encode that
there is no further method execution between nested method
executions or between method invocation and method exit.
This absence of method executions is represented by the
designated empty method signatureε. Therefore, the defini-
tion of execution relations is extended such that each sub-
list of a program traceTP induces not only relations defined
above but also additional relations involvingε. Table 1 sum-
marizes this conservative extension. It shows for each two-
element sublist of the trace (on the left side) the execution
relations that follow from that sublist (on the right side). The
execution relations added by the introduction ofε are anno-
tated with an asterisk (∗).

The program trace remains as defined before with
method signatures fromNP whereas the execution rela-
tions now can consist of method signatures fromNP ∪ {ε}.
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Trace-sublist (NP ) Relation s (NP ∪ {ε})
(u, ext) (v, ent) u ⇀ v, v ↼ u
(v, ent) (u, ent) ε ⇀ u∗, u ↼ ε∗, u ∈> v
BOL (u, ent) ε ⇀ u∗, u ↼ ε∗, u ∈> ε∗

(u, ext) (v, ext) u ⇀ ε∗, ε ↼ u∗, u ∈⊥ v
(u, ext) EOL u ⇀ ε∗, ε ↼ u∗, u ∈⊥ ε∗

(w, ent) (w, ext) ε ∈> w∗, ε ∈⊥ w∗

BOL/EOL denote begin/end of list

Table 1. Extended execution relations

Thus, the setsS⇀, S↼, S∈> , andS∈⊥ also include exe-
cution relations involvingε. Now, we can define the con-
straints for the dynamic analysis.

Formally, an execution relations = u ◦ v ∈ S◦,
◦ ∈ {⇀,↼,∈>,∈⊥}, is calleduniform if ∀w ◦ v ∈ S◦ :
u = w, u, v, w ∈ NP ∪{ε} holds, i.e., it exists in always the
same composition.̂U◦ is the set of execution relationss ∈
S◦ which satisfy this requirement. This constraint is easy
to explain. Consider an outside-before-execution relation
u ⇀ v. This is defined as recurring pattern if each execu-
tion of v is preceded by an execution ofu. The argumenta-
tion for outside-after-execution relations is analogous. The
uniformity-constraint also applies to inside-execution rela-
tions. An inside-execution relationu ∈> v (or u ∈⊥ v)
can only be a recurring pattern in the given program trace
if v never executes another method thanu as first (or last)
method inside its body.

We now drop theε-relations and define a further analy-
sis constraint: An execution relations = u ◦ v ∈ U◦ =
Û◦\{u ◦ v | u = ε ∨ v = ε} is calledcrosscuttingif
∃s′ = u ◦ w ∈ U◦ : w 6= v, u, v, w ∈ NP holds, i.e.,
it occurs in more than a single calling context in the pro-
gram traceTP . For inside-execution relationsu ∈> v (or
u ∈⊥ v) the calling context is the surrounding method exe-
cutionv. For outside-execution relationsu ⇀ v (or u ↼ v)
the calling context is the methodv invoked before (or after)
which always methodu is executed.R◦ is the set of execu-
tion relationss ∈ U◦ which satisfy this requirement. Exe-
cution relationss ∈ R◦ are also calledaspect candidatesas
they represent the potential crosscutting concerns of the an-
alyzed software system.

2.3. Aspect Mining Algorithm

The constraints described above can be implemented by
a relatively straightforward algorithm to actually compute
the setsR◦ of uniform, crosscutting execution relations that
represent the aspect candidates. In our running example,
uniformity narrows down the potential aspect candidates to

the following sets of execution relations:

U⇀ = {B() ⇀ D() , G() ⇀ E() , G() ⇀ H() , K() ⇀ I() }
U↼ = {B() ↼ A() , I() ↼ K() }

U∈> = {C() ∈>B() , C() ∈>D() , K() ∈>F() }
U∈⊥ = {E() ∈⊥D() , I() ∈⊥F() }

After we enforce the crosscutting constraint, we obtain the
final setsR◦ of aspect candidates which comply with uni-
formity andcrosscutting.

R⇀ = {G() ⇀ H() , G() ⇀ E() }, R↼ = ∅
R∈> = {C() ∈>B() , C() ∈>D() }, R∈⊥ = ∅

3. Static Aspect Mining

Based on the experience with the dynamic approach, we
implemented a similar static analysis. This analysis extracts
the execution relations from a control flow graph of the an-
alyzed program. In particular, we immediately extract uni-
form and crosscutting execution relations without a previ-
ous step to extract unconstrained execution relations. How-
ever, the extraction is different for outside and inside execu-
tion relations. Here, we will only present inside-first (R∈> )
and outside-before (R⇀) execution relations.

Inside-First Execution Relations.For these kind of exe-
cution relations, we extract the method invocations im-
mediately following the entry of (invoked) methods from
the control flow graph. Such a relation is uniform, if ev-
ery path through the method starts with the same method
call. Moreover, a possible simplification just considers the
single-entry-single-exit regions starting at the methods’ en-
try nodes. Such a relationu ∈> v means now that methodu
is the first method invocation inside the single-entry-single-
exit region starting at the entry node of methodv. The def-
inition of crosscutting stays the same, thusu is a crosscut-
ting method invocation if there are at least two uniform ex-
ecution relationsu ∈> v andu ∈> w (v 6= w).

Outside-Before Execution Relations.Here we extract all
pairs of method invocationsu, v if there exists a path from
an invocation of methodu to an invocation of methodv
without any method invocation in between. Such a pair is
a uniform outside-before execution relationu ⇀ v, if all
paths from an invocation of methodu contain an invocation
of v as the next invocation. The first possible simplifications
is to require that an invocation ofu is post-dominated by an
invocation ofv without another invocation in between. The
second simplifications is to require that any invocation of
methodu is followed by an invocation ofv in all single-
entry-single-exit regions containing an invocation ofu.

4. Experiences

We have implemented the presented static mining on top
of the Soot framework [9], which is used to compute the
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size relations size relations
2 127 13 4
3 55 15 2
4 30 16 1
5 12 17 2
6 9 18 1
7 7 19 1
8 7 20 1
9 3 22 1
10 3 24 2
11 3 32 1
12 4 49 1

1236 relations (R∈> ) in 277 candidates

Table 2. Inside-First Execution Relations

size relations size relations
2 53 8 1
3 19 9 1
4 4 11 1
5 6 12 1
6 3 13 1
7 2

294 relations (R⇀) in 92 candidates

Table 3. Outside-Before Execution Relations

control flow graph of the analyzed program. Our tool tra-
verses these control flow graphs and extracts the uniform
and crosscutting inside-first and outside-before execution
relations. As a first test case we have analyzed JHotDraw,
version 5.4b1. Tables 2 and 3 show the results. For inside-
first execution relations, the tool has identified 277 candi-
dates with 1236 uniform and crosscutting relations, and for
outside-before relations, 92 candidates with 294 relations.

It is interesting, that there are many more candidates for
inside-first than for outside-before. Furthermore, there are a
lot of candidates with just a small amount of crosscutting,
e.g., 127 candidates that just crosscut two methods.

We will next discuss some of the identified candidates in
detail. However, due to the large amount of identified can-
didates, we will only present the six largest candidates of
each category.

4.1. Inside-First Relations

The largest candidate consists of 49 uniform and cross-
cutting execution relations. The invoked method is “...Col-
lectionsFactory.current”. It is obvious that this is a method

to access the current factory object, needed in many other
methods of the system. This is clearly crosscutting, how-
ever, not a refactorable aspect.

The second largest candidate consists of 32 relations for
the method “...DrawingView.view”. This is again an acces-
sor method that returns the currently active view. Thus, it is
crosscutting but not refactorable.

The same holds for the third and fourth candidate,
which both consist of 24 relations. The relevant meth-
ods are “...DecoratorFigure.getDecoratedFigure” and
“...AbstractHandle.owner” which are once again acces-
sor methods.

For the fifth candidate, things are not different: It
consists of 22 relations for the method “...Undoad-
ableAdapter.undo” that checks whether the current object
represents an undo-able action.

Things change for the sixth candidate consisting of
20 candidates for method “...AbstractFigure.willChange”.
That method informs a figure that an operation will change
the displayed content. This is the first candidate that is a
crosscutting concern which could be refactored into an as-
pect.

4.2. Outside-Before Relations

The largest discovered candidate consists of 13 uniform
and crosscutting execution relations for the method “...Iter-
ator.next”. A closer look to the 13 invocations reveals that
this crosscutting is more or less incidental: An operation is
performed on the next element of a container.

The second largest candidate is somewhat interest-
ing: It consists of 12 invocations before a call to “...Ab-
stractCommand.execute”, from which 11 are invocations
of method “createUndoActivity”. The other is an in-
vocation of “...ZoomDrawingView.zoomView”, which
seems to be ananomaly. However, the other 12 invoca-
tions are of classes representing operations that change the
figure andzoomView(probably) does not change it.

The next three largest candidates (consisting of 11, 9, and
8 relations) are again more or less incidental crosscutting
concerns related to methods “...DrawingView.drawing”,
“...List.add”, and “...DrawingView.view”. However, it is in-
teresting to see thatDrawingView.viewwas also part of a
large inside-first candidate.

Again, only the sixth largest candidate can be seen as
crosscutting concern that can be refactored into an aspect.
It consists of seven relations for method “...AbstractFig-
ure.willChange”. It is immediately called before methods
that will change the displayed figure. However, it is interest-
ing to see that this method has also appeared as an inside-
first candidate, where the candidate is larger (20 relations).
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5. Discussion, Conclusions, and Future Work

This initial evaluation of the static aspect mining tool
has shown that most of the identified crosscutting candi-
dates are not concerns refactorable into aspects. This is not
much different from results in our previous dynamic aspect
mining [1]. However, both approaches give interesting in-
sights into the crosscutting behavior of the analyzed pro-
gram. Moreover, as seen in the example for methodAb-
stractCommand.execute, they can probably be used to dis-
covercrosscutting anomalies, an anomaly in the discovered
execution relation pattern.

These results are preliminary because of the small
amount of analyzed candidates (12) in a single test pro-
gram. However, based on the previous results from the dy-
namic approach, our hypothesis is that the results will
not change and are general. This would mean that as-
pect mining will have hard times to identify candidates
that are really refactorable into aspects. Therefore, fu-
ture work will continue in three directions:

1. A large-scale analysis of discovered candidates for a
large set of programs with static and dynamic analy-
sis.

2. Development of a filter which extracts the refactorable
candidates from the discovered candidates.

3. A comparison with other aspect mining approaches.

6. Related Work

There only exists a small set of automatic aspect mining
approaches. In most approaches one has to specify a pattern
that can be searched for in the source code [3, 10].

Tourwe [8] uses concept analysis to identify aspectual
views in programs. The extraction of elements and attributes
from the names of classes, methods, and variables, formal
concept analysis is used to group those elements into con-
cepts that can be seen as aspect candidates.

Some other approaches rely on clone detection tech-
niques to detect tangled code in the form of crosscutting
concerns:

Bruntink [2] evaluated the use of those clone detection
techniques to identify crosscutting concerns. Their evalua-
tion has shown that some of the typical aspects are discov-
ered very well while some are not.

Ophir [6] identifies initial re-factoring candidates using
a control-based comparison. The initial identification phase
builds upon code clone detection using program depen-
dence graphs. The next step filters undesirable re-factoring
candidates. It looks for similar data dependencies in sub-
graphs representing code clones. The last phase identifies
similar candidates and coalesces them into sets of similar
candidates, which are the re-factoring candidate classes.
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