Control-Flow-Graph-Based Aspect Mining

Jens Krinke Silvia Breu
FernUniversiat in Hagen, Germany NASA Ames Research Center, USA
krinke@acm.org silvia.breu@gmail.com
Abstract the patterns have to exist in different calling contexts in the

program trace. The dynamic analysis approach monitors ac-

Aspect mining tries to identify crosscutting con- tual (i.e., run-time) program behavior instead of potential
cerns in existing systems and thus supports the adaptionbehavior, as static program analysis does. To explore the
to an aspect-oriented design. This paper describes an au-differences between static and dynamic analyses in aspect
tomatic static aspect mining approach, where the control mining, we have started to develop a static analysis vari-
flow graphs of a program are investigated for recur- antof our approach. From early results we experienced two
ring execution patterns based on different constraints, things:
such as the requirement that the patterns have to ex-
ist in different calling contexts. A case study done with the ~® The results of the static and dynamic analysis are dif-
implemented tool shows that most discovered crosscut- ferentdue to various reasons.

ting candidates are most often perfectly good style. e Crosscutting concerns are often perfectly good style,

because they result from delegation and coding style
guides.

1. Introduction The first point is obvious and thus, only the second point

will be discussed in the following. The next section contains

The notion oftangled codeefers to code that exists sev- 5n introduction to our dynamic aspect mining approach. A
eral times in a software system but cannot be encapsulatedtatic aspect mining approach based on the dynamic variant
by separate modules using traditional module systems bejs presented in Section 3. Section 4 contains a case study,

cause it crosscuts the whole system. This makes softwaresection 5 discusses the results and concludes, before Sec-
more difficult to maintain, to understand, and to extend. {jon 6 discusses related work.

Aspect-Oriented Programmirig] provides new separation
mechanisms for such complexrosscutting concerng].) o

A major problem in re-engineering legacy code based 2. Dynamic Aspect Mining
on aspect-oriented principles is to find and to isolate these
crosscutting concerns. This task is also calsgect min- The basic idea behind dynamic analysis algorithms is to
ing. The detected concerns can be re-implemented as sepebserve run-time behavior of software systems and to ex-
arate aspects, thereby improving maintainability and exten-tract information from the execution of the programs. The
sibility as well as reducing complexity. Aspect mining can dynamic aspect mining approach introduced here is based
also provide insights that enable us to classify common as-on the analysis of program traces which mirror a system’s
pects which occur in different software systems, such asbehavior in certain program runs. Within these program
logging, timing, and communication. traces we identify recurring execution patterns which de-

Several approaches based on static program analysiscribe certain behavioral aspects of the software system. We
techniques have been proposed for aspect mining [3, 5, 6expect that recurring execution patterns are potential cross-
10, 8, 2]. We have developed a dynamic program analysiscutting concerns which describe recurring functionality in
approach [1] that mines aspects based on program traceghe program and thus are possible aspects.
During program execution, program traces are generated, Inorder to detect these recurring patterns in the program
which reflect the run-time behavior of a software system. traces, a classification of possible pattern forms is required.
These traces are then investigated for recurring executionTherefore, we introduce so-callegdecution relationsThey
patterns. Different constraints specify when an execution describe in which relation two method executions are in the
pattern is “recurring”. These include the requirement that program trace.

2.1. Classification of Execution Relations

The definition of execution relations in our analysis ap-

the set of all outside-before-execution relations in a program
traceT'». This relation can also be reversed, ie4— u is
an outside-after-execution relatiofi v — v € S~ (Tp).

proach is based on program traces. Intuitively, a programThe set of all outside-after-execution relations in a program
trace is a sequence of method invocations and exits. We onlytraceT is then denoted witls (Tp).

consider entries into and exits from method executions be-

u €T v, u,v € Np is called aninside-first-execution

cause we can then easily keep track of the relative order inrelation if [(v, ent), (u, ent)] is a sublist ofTp. u €, v is
which method executions are started and finished. We focuscalled arinside-last-execution relatidif [(u, ext), (v, ext)]
on method executions because we want to analyze objectis a sublist ofTp. S€T(Tp) is the set of all inside-first-

oriented systems where logically related functionality is en-
capsulated in methods. Formallypeogram traceT’» of a
programP with method signatured/» is defined as a list
[t1,...,t,] Of pairst; € (Np x {ent,ext}), whereent
marks entering a method execution, and marks exiting

a method execution.

To make the program traces easier to readgtfte and
ext-points are represented Byand } respectively, and the
redundantname-information is discarded from thext-
points as the trace structure implies to whighme the ext
belongs. Figure 1 shows an example trace.

execution relations in a program tra€g, S€+(7p) is the
set of all inside-last-execution relations. In the following,
we dropT’p when it is clear from the context.

For the example trace shown in Figure 1 we thus get the
following setS— of outside-before-execution relations:

S™ ={B0) ~AQ,G0) —H) ,A) - B0 ,CO ~J0 ,
BO) -~ FO .KO =10 ,FO —30 ,30 =G0,
HO - AQ ,B(O) - D0 ,CO) -~ G(),GO) —~F0 ,
CO) —~AQ ,BO) ~KO,I0 -~G(0,G()—~E(Q }
The setS“ of outside-after-execution relations can be
found directly in the trace or simply by reversing .

1 B() | 17 30 {3 33 The setsS<T of inside-first-execution relations anf+
2 ¢ { 18 } 34 1} inside-last- i i :
2 (HE(()) H ;g FOKO{ | 3 by { 0f|€n3|de last-execution relations are as follows
36 C() T = C TB ,G TC ,K TF ,C TD 5
5) 2 10 0 2 o8 S {Jo <! 0G0 €rC0 , KO erF() ,C(erD()
6 } 22 } 38 BO) { 0 10 }
g 38 %} 2431 35% g 39 , co {3 S€L = {H(€.C(),CO €.BO ,I0 €.BO ,10 .FQ ,
40
9 cO {} 25 H) {} 41 KO {3 FO €.B() ,J0) €10 ,EQ €.D(}
10 26 A0 {} 42 10 | . . .
11 AQ) {} 27 B) { 43 0 { 2.2. Execution Relation Constraints
12 B() { 28 CO {} 44}
s COGO{ 0 . ,(:3(()) ?’ P CE;(()) H Recurringexecution refations in the program traces can
15 HO {} 31 KO {} 47 } be seen as indicators for more general execution patterns.
16 32 0 {3 To decide under which circumstances certain execution re-

Figure 1. Example trace

Crosscutting concerns are now reflected by the two dif-
ferent execution relationghat can be found in program

lations are recurring patterns in traces and thus potential
crosscutting concerns in a system, constraints have to be
defined. The constraints will implicitly also formalize what
crosscutting means.

However, for technical reasons we have to encode that
there is no further method execution between nested method

traces: A method can be executed either after the precedexecutions or between method invocation and method exit.

ing method execution is terminated (e.d() in line 4is
executed afte&() in line 3), or inside the execution of the
preceding method call (e.g5() in line 2 is executed in-
sideB() inline 1). We distinguish between these two cases

This absence of method executions is represented by the
designated empty method signatar@herefore, the defini-
tion of execution relations is extended such that each sub-
list of a program trac&'p induces not only relations defined

and say that there are outside- and inside-execution relaabove but also additional relations involviagrable 1 sum-

tions in program traces. However, this distinction alone is marizes this conservative extension. It shows for each two-
not yet sufficient for aspect mining. For example, the exe- element sublist of the trace (on the left side) the execution
cution of B() in line 27 has three methods executed inside relations that follow from that sublist (on the right side). The

its executionC() , G() , andF() in lines28ff., but the in-
formation which of those methods comes first is lost. We
thus define formally:

u— v, u,v € Np, is called aroutside-before-execution
relationif [(u, ext), (v, ent)] is a sublist ofT’p. S~ (Tp) is

execution relations added by the introductiors efe anno-
tated with an asterisk{.

The program trace remains as defined before with
method signatures fro\p whereas the execution rela-
tions now can consist of method signatures fobfm U {c}.

’ Trace-sublist (V7)) | Refation s (Vy U{c]) ‘ the following sets of execution relations:

(u,ext) (vient) [u—wv,v—u U: ={B() - D(,G0 ~E(Q ,G0 = H(O ,KO =10 }
(v,ent) (u,ent) | e—u*,u—€e u€Tv U™ ={B0 —=A0,I0 =K0 }

BOL (u,ent) | e—uu—c,ucre UST ={C() e+B() ,C() e+D(,K(e-F(}

(u,ext) (v,ext) |u—€,e—u*ue, v US+ ={EQ €.D(,10 .F(}

(u,ext) EOL u—¢€c"e—u*,ue, € After we enforce the crosscutting constraint, we obtain the
(w,ent) (w,ext) | eeT w*, el w* final setsR° of aspect candidates which comply with uni-
BOL/EOL denote begin/end of list formity and crosscutting.

R™={G() ~H),G0~EQ }, R =0

Table 1. Extended execution relations RET ={C() exB() ,C() €:D() }, RE* = @

e _ 3. Static Aspect Mining
Thus, the set§—, S, S€7, and S+ also include exe-

cution relations involving:. Now, we can define the con- Based on the experience with the dynamic approach, we
straints for the dynamic analysis. implemented a similar static analysis. This analysis extracts
Formally, an execution relation = wowv € S°, the execution relations from a control flow graph of the an-
o € {—,~—,e1,€.}, is calleduniformif Yw o v € S° : alyzed program. In particular, we immediately extract uni-
u=w,u,v,w € NpU{e} holds, i.e., it exists in always the form and crosscutting execution relations without a previ-
same compositiorff ° is the set of execution relationse ous step to extract unconstrained execution relations. How-

S° which satisfy this requirement. This constraint is easy ever, the extraction is different for outside and inside execu-
to explain. Consider an outside-before-execution relationtion relations. Here, we will only present inside-fir&q™)

u — v. This is defined as recurring pattern if each execu- and outside-before/{™") execution relations.

tion of v is preceded by an execution @f The argumenta- |nside-First Execution Relationgzor these kind of exe-
tion for outside-after-execution relations is analogous. The cytion relations, we extract the method invocations im-
uniformity-constraint also applies to inside-execution rela- mediately following the entry of (invoked) methods from
tions. An inside-execution relatiom €t v (oru €1 v) the control flow graph. Such a relation is uniform, if ev-
can only be a recurring pattern in the given program trace ery path through the method starts with the same method
if v never executes another method thaas first (or last) call. Moreover, a possible simplification just considers the

method inside its body. single-entry-single-exit regions starting at the methods’ en-
We now drop thes-relations and define a further analy- try nodes. Such a relatiane+ v means now that methad

sis constraint: An execution relation= v ov € U° = is the first method invocation inside the single-entry-single-

UN{uov | u =¢€Vv = €} is called crosscuttingif exit region starting at the entry node of methadrhe def-

Js’ =uow € U° : w # v, u,v,w € Np holds, i.e., inition of crosscutting stays the same, thug a crosscut-

it occurs in more than a single calling context in the pro- ting method invocation if there are at least two uniform ex-
gram tracel’p. For inside-execution relations €+ v (or ecution relations, €t v andu €1 w (v # w).

u < v) the calling context is the surrounding method exe- oytside-Before Execution Relationidere we extract all

cutionw. For outside-execution relations— v (or u « v) pairs of method invocations, v if there exists a path from

the calling context is the methadinvoked before (or after) 5 invocation of method: to an invocation of methoa

which always method is executedRz” is the set of execu- ithout any method invocation in between. Such a pair is

tion relationss € U° which satisfy this requirement. Exe- 5 yniform outside-before execution relatian— v, if all

cution relationss € R° are also calledspect candidatéss paths from an invocation of methadcontain an invocation

they represent the potential crosscutting concerns of the anqt ;, a5 the next invocation. The first possible simplifications

alyzed software system. is to require that an invocation afis post-dominated by an
invocation ofv without another invocation in between. The
second simplifications is to require that any invocation of

2.3. Aspect Mining Algorithm methodu is followed by an invocation of in all single-
entry-single-exit regions containing an invocation.of

The constraints described above can be implemented by

a relatively straightforward algorithm to actually compute 4, Experiences

the setsk® of uniform, crosscutting execution relations that

represent the aspect candidates. In our running example, We have implemented the presented static mining on top

uniformity narrows down the potential aspect candidates to of the Soot framework [9], which is used to compute the

to access the current factory object, needed in many other

S|Zze rella2t|7o ns Sllée relTons methods of the system. This is clearly crosscutting, how-
3 55 15 N ever, not a refactorable aspect.
4 30 16 1 The second largest candidate consists of 32 relations for
5 12 17 2 the method “.DrawingView.view. This is again an acces-
6 9 18 1 sor method that returns the currently active view. Thus, itis
7 7 19 1 crosscutting but not refactorable.
8 7 20 1 The same holds for the third and fourth candidate,
9 3 22 1 which both consist of 24 relations. The relevant meth-
10 3 24 2 ods are “.DecoratorFigure.getDecoratedFigure and
11 3 32 1 “...AbstractHandle.ownérwhich are once again acces-
12 4 49 1 sor methods.
For the fifth candidate, things are not different: It
1236 relations R< ™) in 277 candidates consists of 22 relations for the method Undoad-
ableAdapter.undothat checks whether the current object
Table 2. Inside-First Execution Relations represents an undo-able action.
Things change for the sixth candidate consisting of
20 candidates for method ‘AbstractFigure.willChange
size relations| size relations That method informs a figure that an operation will change
2 53 8 1 the displayed content. This is the first candidate that is a
3 19 9 1 crosscutting concern which could be refactored into an as-
4 4 11 1 pect.
5 6 12 1
6 3 13 1
7 2 4.2. Outside-Before Relations

294 relations ™) in 92 candidates The largest discovered candidate consists of 13 uniform

and crosscutting execution relations for the methottér-.
ator.next. A closer look to the 13 invocations reveals that
this crosscutting is more or less incidental: An operation is
control flow graph of the analyzed program. Our tool tra- performed on the next element of a container.

verses these control flow graphs and extracts the uniform The second largest candidate is somewhat interest-
and crosscutting inside-first and outside-before executioning: It consists of 12 invocations before a call to Ab-
relations. As a first test case we have analyzed JHotDraw,stractCommand.exectitefrom which 11 are invocations
version 5.4b1. Tables 2 and 3 show the results. For inside-of method ‘treateUndoActivity The other is an in-
first execution relations, the tool has identified 277 candi- vocation of “.ZoomDrawingView.zoomViéw which
dates with 1236 uniform and crosscutting relations, and for seems to be amnomaly However, the other 12 invoca-
outside-before relations, 92 candidates with 294 relations. tions are of classes representing operations that change the

It is interesting, that there are many more candidates forfigure andzoomView(probably) does not change it.
inside-first than for outside-before. Furthermore, there are a The next three largest candidates (consisting of 11, 9, and
lot of candidates with just a small amount of crosscutting, g relations) are again more or less incidental crosscutting
e.g., 127 candidates that just crosscut two methods. concerns related to methods RrawingView.drawing,

We will next discuss some of the identified candidates in «_ | ist.add, and « . DrawingView.view. However, it is in-
detail. However, due to the large amount of identified can- teresting to see thddrawingView.viewwas also part of a
didates, we will only present the six largest candidates of |arge inside-first candidate.
each category.

Table 3. Outside-Before Execution Relations

Again, only the sixth largest candidate can be seen as
crosscutting concern that can be refactored into an aspect.
4.1. Inside-First Relations It consists of seven relations for method AbstractFig-

ure.willChangé. It is immediately called before methods

The largest candidate consists of 49 uniform and cross-that will change the displayed figure. However, it is interest-
cutting execution relations. The invoked method iCol- ing to see that this method has also appeared as an inside-
lectionsFactory.currerit It is obvious that this is a method first candidate, where the candidate is larger (20 relations).

5. Discussion, Conclusions, and Future Work

This initial evaluation of the static aspect mining tool
has shown that most of the identified crosscutting candi-
dates are not concerns refactorable into aspects. This is not

much different from results in our previous dynamic aspect [2

mining [1]. However, both approaches give interesting in-
sights into the crosscutting behavior of the analyzed pro-
gram. Moreover, as seen in the example for metiAbd
stractCommand.execytihey can probably be used to dis-
covercrosscutting anomaliegn anomaly in the discovered
execution relation pattern.

These results are preliminary because of the small
amount of analyzed candidates (12) in a single test pro-
gram. However, based on the previous results from the dy-
namic approach, our hypothesis is that the results will
not change and are general. This would mean that as-
pect mining will have hard times to identify candidates
that are really refactorable into aspects. Therefore, fu-
ture work will continue in three directions:

1. A large-scale analysis of discovered candidates for a
large set of programs with static and dynamic analy-
Sis.

2. Development of a filter which extracts the refactorable
candidates from the discovered candidates.

3. A comparison with other aspect mining approaches.

6. Related Work

There only exists a small set of automatic aspect mining

. 10
approaches. In most approaches one has to specify a pattelln]

that can be searched for in the source code [3, 10].

Tourwe [8] uses concept analysis to identify aspectual
views in programs. The extraction of elements and attributes
from the names of classes, methods, and variables, formal
concept analysis is used to group those elements into con-
cepts that can be seen as aspect candidates.

Some other approaches rely on clone detection tech-
nigues to detect tangled code in the form of crosscutting
concerns:

Bruntink [2] evaluated the use of those clone detection
techniques to identify crosscutting concerns. Their evalua-
tion has shown that some of the typical aspects are discov-
ered very well while some are not.

Ophir [6] identifies initial re-factoring candidates using
a control-based comparison. The initial identification phase
builds upon code clone detection using program depen-
dence graphs. The next step filters undesirable re-factoring
candidates. It looks for similar data dependencies in sub-
graphs representing code clones. The last phase identifies
similar candidates and coalesces them into sets of similar
candidates, which are the re-factoring candidate classes.

(1]

(3]

(4]

(5]

(6]

(7]

(8]

(9]

References

S. Breu and J. Krinke. Aspect mining using event traces. In
Proc. International Conference on Automated Software En-
gineering pages 310-315, 2004.

] M. Bruntink, A. van Deursen, R. van Engelen, and

T. Tourwe. An evaluation of clone detection techniques for
identifying cross-cutting concerns. FRroc. International
Conference on Software Maintenan2604.

W. G. Griswold, Y. Kato, and J. J. Yuan. Aspect Browser:
Tool Support for Managing Dispersed Aspects. Technical
Report CS99-0640, Department of Computer Science and
Engineering, UC, San Diego, 1999.

G. Kiczales, J. Lamping, A. Mendhekar, C. Maeda, C. Lopes,
J.-M. Loingtier, and J. Irwin. Aspect-Oriented Program-
ming. InEuropean Conf. on Object-Oriented Programming
(ECOOP) 1997.

N. Loughran and A. Rashid. Mining Aspects. \Workshop

on Early Aspects: Aspect-Oriented Requirements Engineer-
ing and Architecture Design (AOSD Sat. worksh@t)02.

D. Shepherd and L. Pollock. Ophir: A Framework for Auto-
matic Mining and Refactoring of Aspects. Technical Report
2004-03, University of Delaware, 2003.

P. Tarr, H. Ossher, W. Harrison, and S. M. Sutton, Jr. N De-
grees of Separation: Multi-Dimensional Separation of Con-
cerns. In21st Intl. Conf. on Software Engineering (ICSE)
pages 107-119, 1999.

T. Tourwe and K. Mens. Mining aspectual views using for-
mal concept analysis. IRroc. IEEE International Workshop
on Source Code Analysis and Manipulati@®04.

R. Vallee-Rai, P. Co, E. Gagnon, L. Hendren, P. Lam, and
V. Sundaresan. Soot — a java bytecode optimization frame-
work. InProc. CASCON1999.

C. Zhang and H.-A. Jacobsen. Quantifying Aspects in Mid-
dleware Platforms. Ir2nd Intl. Conf. on Aspect-Oriented
Software Development (AOSpages 130-139, 2003.

