
Python Coding Style Compliance on Stack Overflow
Nikolaos Bafatakis, Niels Boecker,Wenjie Boon,Martin Cabello Salazar, Jens Krinke, Gazi Oznacar, Robert White

University College London, UK

Abstract—Software developers all over the world use Stack
Overflow (SO) to interact and exchange code snippets. Research
also uses SO to harvest code snippets for use with recommenda-
tion systems. However, previous work has shown that code on SO
may have quality issues, such as security or license problems.

We analyse Python code on SO to determine its coding style
compliance. From 1,962,535 code snippets tagged with ‘python’,
we extracted 407,097 snippets of at least 6 statements of Python
code. Surprisingly, 93.87% of the extracted snippets contain style
violations, with an average of 0.7 violations per statement and
a huge number of snippets with a considerably higher ratio.
Researchers and developers should, therefore, be aware that code
snippets on SO may not representative of good coding style.

Furthermore, while user reputation seems to be unrelated to
coding style compliance, for posts with vote scores in the range
between -10 and 20, we found a strong correlation (r = −0.87, p <
10−7) between the vote score a post received and the average
number of violations per statement for snippets in such posts.

Index Terms—Stack Overflow, Style Guides, Code Style, Cod-
ing Style, Coding Conventions, SOTorrent, Python

I. Introduction
Stack Overflow (SO) is a community-based question an-

swering (CQA) website where programmers seek help from
their peers. Content therein is regulated via a community
voting mechanism, where good content gets voted up and bad
content gets voted down, giving posts a vote score. Through
such interactions, users are given reputation scores, which are
constantly changing based on their behaviour. Code-related
discussions are the most common, as 64% of posts contain
code snippets [1]. However, such snippets may have quality
issues, such as security problems [2] or potential software
licensing problems [3], [4].
It is commonly said that code is read more often than it

is written [5], [6], [7]. This is especially true for a site like
SO, where code within questions and answers is constantly
referenced by other users. But code can be written in many ways,
leading to confusion or ambiguity. To mitigate this, coding
style guides have been established and are commonly used to
ensure code is represented consistently and clearly. However,
their compliance and effectiveness in CQA sites are scarcely
investigated. Though there have been previous studies involving
SO code snippets [8], [9], [10], [11], there have not been any
studies focusing primarily on coding style compliance and its
correlation with the popularity of users and posts.

In this study, we assess SOTorrent [12], a dataset containing
historical data from SO, to fill this research gap. Our results
show that 93.87% of analysed Python code snippets contain
coding style violations, and while there is a correlation between
coding style compliance and post score, reputation and coding
style compliance seem to be uncorrelated.

II. Background
Code snippets in questions and answers on SO need to be

readable and understandable to serve their purpose. However,
a study [11] showed that, over a sample of Java snippets, less
than half of the snippets were considered to be self-explanatory.
Another study for Java showed that the most important code
metrics related to question quality are those most important
for general code readability [10].
Style guides are guidelines that dictate how code should

be represented. From syntax elements to naming conventions,
they ensure that code is as readable as possible for program-
mers [13], [14], eventually facilitating maintenance [15], [6].
While code convention adherence is perceived as important by
practitioners [16], it is difficult for developers to comply [15],
[17]. To simplify and automate the process, many coding style
checkers have been created to validate the compliance of a
codebase with a language’s style guide [18], [19], [20].
There is no universal set of rules that can be applied to

all programming languages and different languages have their
own coding style definitions [21], [22], [23]. Certain languages
even induced multiple guides created by different companies
or groups; JavaScript has at least 5 different style guides [24].
Others, such as Python, have a general widely accepted coding
style that is typically adopted with only slight variations [25].

III. Research Questions
In order to determine if coding style guides are followed on

SO and if compliance and popularity are correlated, we analysed
Python code snippets to answer the following questions:
RQ1 Do code snippets generally tend to comply with

coding style guides?
RQ2 Which coding style rules are broken most frequently?
RQ3 Do posts complying with coding style guides receive

more favourable votes?
RQ4 Do high reputation users tend to comply with coding

style guides more than low reputation users?

IV. Experimental Design
A. Selection of Programming Languages
We selected Python to be the focus of this study as it is

one of the most popular languages on SO and was the highest
trending language at the time of writing [26]. Python’s flexible
language structure allows style check tools to work with partial
and incomplete code, which is commonly seen on SO [9]. Much
previous work investigating code snippets on SO focussed on
parseable Java snippets, however, only 3.89% of Java snippets
have been found to be parseable while 76% of Python snippets
were parseable [27].

©2019 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including
reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or
reuse of any copyrighted component of this work in other works.
To be published in the Proceedings International Conference on Mining Software Repositories (MSR), 2019 in Montreal, Canada.



B. The SOTorrent Dataset
SOTorrent [12] is an open dataset based on data from the

official SO data dump. The dataset covers all SO posts and user
information since the first post in July 2008. Unlike in the raw
data dump, posts are broken down to individual paragraphs
(“blocks”), which are classified as either code or text. The
dataset also contains a complete version history of posts and
blocks as well as other information like user reputation and
links to GitHub repositories with links to SO.

C. Style Checking
We evaluated two style checking tools that are commonly

used for Python: Pylint and Flake8. Both cover the widely ac-
cepted PEP8 style guide [23] and flag violations for fragmented
code snippets. We selected Pylint because it is highly config-
urable and widely accepted by the Python community [18]. We
configured the tool to exclude the following rules as they are
not important in the context of partial code snippets:

• import-error (imports are not important)
• unused-wildcard-import (many incomplete snippets)
• missing-docstring (docstrings are not necessary)
• undefined-variable (fake variables are commonly used)
• missing-final-newline (are often skipped in short snippets)
Also, we allowed any naming style for constants, as snippets

are usually in global scope and all variables in global scope
are regarded as constants. Additionally, we allowed any naming
style for modules as the snippets do not have a file name.

D. Measuring Coding Style Compliance
We extracted all code snippets from posts tagged with

‘python’ in the most recent version of the SOTorrent dataset,
version 2018-12-09, yielding 1,962,535 rows, each one repre-
senting a supposed Python code snippet. Next, we ran each
snippet through several processing steps, eventually either
filtering it out or obtaining the number of each type of coding
style violation within the snippet. Given that the snippets
include artefacts of the SOTorrent extraction (e.g., escaped
newline characters), we first cleansed them to reconstruct the
exact code the user wrote. Then, we filtered all snippets that
have fewer than 6 lines (a size commonly used [28]) or do not
contain any of four basic tokens usually found in Python syntax
(‘print’, ‘import’, ‘(’, ‘=’). Afterwards, we ran the snippets
through Pylint to check for violations in both Python 2 and
Python 3 runtime environments and the result containing fewer
violations was selected. Python 2 and 3 differ significantly,
e.g., print arguments must be in parentheses in Python 3 but
such parentheses generate a style violation in Python 2. Finally,
code snippets that could not be processed in either environment
were assumed to be plain text or non-Python code. For all
remaining snippets, a report of violated rules was generated
and is made publicly available [29]. Also, the metadata provided
by Pylint allowed us to then filter out snippets with fewer than
6 statements. Table I shows the breakdown of the number of
processed results and filtered data. In the end, 407,097 (21%)
of the extracted snippets fulfil the above constraints and were
used as the data set for further analysis.

Table I
Overview of the number of code snippets in the various processing steps

Filter Snippets
None 1,962,535

≥ 6 lines & contains ‘print’, ‘import’, ‘(’ or ‘=’ 863,122
Processable by pylint 462,393

≥ 6 statements 407,097

V. Results
A. RQ1: General Compliance
After filtering and processing the data as described above,

407,097 snippets remained. Of these, we were surprised to
find only 6.91% (24,972) do not violate any coding style rules,
while a majority (93.87% – 382,125) of snippets contain one
or more violations. On average, there are 0.7 violations per
statement. This result shows that the Python code on SO does
not tend to comply with coding style conventions. In fact, there
even is a huge number of snippets with a considerably higher
ratio. Researchers and developers should, therefore, be aware
that Python code snippets on SO are not representative of good
coding style and may not be suitable for learning approaches
like Naturalize [17] or Butler et al.’s work on mining Java class
name conventions [30].

B. RQ2: Top Violations
In all code snippets for which Pylint was able to determine

the coding style violations, we found 5,076,647 rule violations
in total. The rule most commonly broken (33.4% of all
violations) is bad-whitespace: “used when a wrong number
of spaces is used around an operator, bracket, or comma, or
before a block opener colon” [31]. The 10 most commonly
violated rules make up for 85.1% of all detected violations.

We classified the 5,076,647 detected violations according to
the four categories defined in the Pylint documentation [31].
This indicated that most violations fall into the Convention
category (3,378,361), followed by Warning (1,443,576) and
Refactor (201,006), with Error being the least common
(53,677). Table II shows, for each category, the 5 most detected
violations. The ‘R’ column shows the overall rank of the
violation.

C. RQ3: Compliance and Votes
This RQ aims at analysing whether the post score, i.e. the

aggregated upvotes and downvotes a post received from the
SO community, is correlated with the number of coding style
violations per statement, referred to as the violation ratio.

Figure 1 shows the relationship between post score and
violation ratio when grouped by discrete post score values.
Essentially this shows a Zipfian distribution: There are many
posts with low scores and a low violation ratio, a small number
of posts with high scores and low violation ratio, a small
number of posts with high violation ratio and low score, but
no posts with both a high violation ratio and high score.
When considering the post score values closer to zero and

disregarding the rare higher ones, the outliers with extreme
violation ratios strongly distort the mean. E.g., the post with



Table II
Overview of the top-5 violations for each category

Error Number R Warning Number R Refactor Number R Convention Number R
no-member 15,381 24 bad-indentation 446,575 4 too-few-public-methods 112,555 9 bad-whitespace 1,697,550 1
used-before-assignment 8,363 36 mixed-indentation 419,225 5 no-self-use 30,608 15 invalid-name 636,406 2
return-outside-function 4,745 44 unused-import 139,810 8 no-else-return 15,203 25 trailing-whitespace 506,414 3
relative-beyond-top-level 4,205 47 redefined-outer-name 70,571 11 inconsistent-return-statements 9524 33 bad-continuation 145,572 6
no-value-for-parameter 2,656 53 unused-variable 59,926 12 too-many-arguments 5846 40 line-too-long 144,638 7

Figure 1. Scatter plot showing violations per statement over post score

ID 27762547 yields 1,150 bad-whitespace errors because of
an inline array with repeated whitespace violations. As there
are only 15 posts with a post score of 48, the single post leads
to a significant spike of the violation ratio for this post score
value. Hence, when the correlation is examined over the whole
dataset, it is dominated by noise and close to non-existent.

Consequently, in order to make meaningful observations, the
complete set of values must be filtered and smoothed. We focus
on the range of posts that have received a post score within
the range of -10 and +20, as the vast majority of posts (99.3%)
fall into this range, making a correlation most meaningful here.
Additionally, we discard any posts that fall into a post score
group with fewer than 50 posts, as we found this threshold to
minimise the distortion through outliers considerably, while not
discarding too much relevant data. Consequently, the effective
range becomes [-8, +20]. With these restrictions applied, we
then analyse the mean and median values of violations per
statement for each group of posts sharing the same post score.
As Figure 2 illustrates, both the mean and median values

indeed exhibit a strong correlation with the post score: The
mean values of the violation ratio have a Pearson correlation
coefficient of r = −0.87, p < 10−7. Considering the median
values instead, the result is very similar: r = −0.82, p < 10−7.
This result is highly significant, as it implies that posts
containing coding style compliant snippets get more favourable
votes from the SO community, and vice versa, code snippets
with higher violation ratios are voted worse.

When the upper border is extended beyond post score values
of 20, the correlation decreases, as can be seen in Table III.
Shifting the lower border is not helpful, as most values would
be filtered out due to low numbers of posts per post score.
Given that the original range comprises the bulk of the posts,
the modified ranges are less relevant. Seeing the correlation

Figure 2. Mean and median of violations per statement grouped by post score

decrease therefore even enhances our confidence in the finding
that the community-voted scores of SO posts and the posts’
compliance with coding style rules are correlated.

Table III
Mean and median Pearson correlation values for posts in different

ranges of post scores

Range Mean Median
r p r p

[-10, +20] -0.870 8.591e-10 -0.821 5.025e-08
[-10, +25] -0.755 2.503e-07 -0.732 8.634e-07
[-10, +30] -0.731 1.256e-07 -0.651 7.127e-06
[-10, +35] -0.748 1.221e-08 -0.630 7.969e-06
[-10, +40] -0.600 2.129e-05 -0.631 5.83e-06

D. RQ4: Compliance and Reputation

To investigate if SO users’ reputation correlates with their
coding style compliance, we filtered out collaboratively written
code snippets by only considering the posts last edited by
their original author. Additionally, we only considered users
who have written more than 5 posts to get more reasonable
average values. We obtained the average number of violations
per statement by grouping the snippets by their author and
computing the average over them.
In contrast to RQ3, we found that there seems to be no

correlation between coding style compliance and user reputation
(r = -0.0532680, p = 0.007529). As Figure 3 illustrates, the
values are seemingly arbitrarily distributed. Interestingly, we
discovered a noticeable sparseness of data points for users with
a reputation around 500. This phenomenon, however, stems
from the original dataset and is not related to our research
focus.



Figure 3. Scatter plot of average violations per statement over user reputation

VI. Discussion
The goal of this study was to analyse the patterns and effects

of coding style compliance on SO. We found that Python code
on SO generally does not comply with coding style guides, but
there is a striking correlation between coding style compliance
and post popularity: On average, posts with fewer violations per
statement are favoured by the community. However, somewhat
counterintuitively, there is no correlation between coding style
compliance and user reputation.

The low coding style compliance did not come as a complete
surprise to us. Users generally intend to convey solutions
quickly and straightforwardly. Additionally, the SO editor lacks
the formatting support offered by advanced IDEs. Moreover,
snippets on SO are usually not complete Python scripts, just
fragments, often containing placeholders for code or identifiers.
In general, one could challenge the applicability of coding

style guides in the context of SO. Good coding style might
help to deliver messages effectively and decrease cognitive
load, probably a cause of highly voted posts having better
coding style compliances. However, many style rules might
not be reasonable, and the relevance of compliance debatable.
Snippets are often made concise by leaving out unnecessary
details [9] which causes compliance violations – conciseness
may be more important than compliance.
Because Python snippets on SO do usually not adhere

to coding style conventions, they may not be considered
representative of good coding style. Therefore, applying mining
or learning approaches [30], [17] to code snippets on SO would
not necessarily produce the desired results.

VII. Threats to Validity
A. Internal Validity
Identification of Python Code Snippets: We only processed

posts containing the substring ‘python’ in any of their tags.
However, some posts are not correctly tagged or contain mixed
programming languages, so we may have included snippets that
are not actually Python code and excluded snippets that are.
Therefore we processed all supposed Python code snippets with
Pylint, discarding the ones that could not be processed. While
we manually verified many results, there may be non-Python
code that it incorrectly accepts.

Extreme Values, Noise and Distortion: The dataset is
dominated by extremes. The outliers tend to distort the general
result, which is why filtering was needed in order to obtain
meaningful results. Most importantly, we discarded snippets
that are shorter in length than 6 lines or 6 statements (a size
commonly used [28]), as we found a lot of the problematic
results that distort the general values in very short snippets.
However, this again introduces a threat to validity, as a great
amount of the original data gets filtered out along the way.

Violations in Incomplete Snippets: The majority of snippets
on SO are incomplete Python scripts. While this might be
enough to convey the key ideas to human readers, it causes
many coding convention violations, e.g., usage of undeclared
variables. Such rules, when discovered, were disabled in Pylint.
However, the Pylint configuration was manually decided based
on our best knowledge. Potentially, other researchers would
have chosen different violations to ignore.

Allocation of Code Authorship: After a post owner originally
created a post, any user can edit it. Therefore, as we use only
the most recent version of the code snippets, it is possible that
other users have modified the code in the meantime. We only
consider posts where the last editor is also the original author
to mitigate the problem of wrongly allocated authorship. It is
possible that changes were made by other users in-between the
creation and the last edit that changed the code.
B. External Validity

Our study is limited to Python snippets on SO and may not
be generalised to other languages. Moreover, snippets found on
other platforms similar to SO may exhibit a different pattern
of coding style compliance.

VIII. Conclusion and Future Work
We fetched over 1.9 million Python-tagged code snippets

with their relevant metadata. From them, we extracted 407,097
Python snippets of a least 6 lines and at least 6 statements
for which we obtained coding style compliance data via Pylint.
Our data set is available online [29].
Our results show that 93.87% of the code snippets contain

coding style violations, with an average of 0.7 violations per
statement. We also found that the 10 most common style
violations make up 85.1% of the total, where bad-whitespace
dominates with 33.4% of all violations.
Furthermore, we found that compliance with coding style

guides does affect users’ perceptions of posts, as we discovered
a strong correlation between the vote score a post receives and
the average number of coding style violations per statement
of its contained snippets. For posts with vote scores between
-10 and +20, the correlation coefficient r is -0.87 (p < 10−7),
implying high significance. Finally, we saw that the author’s
reputation is not an indicator of a post’s compliance with coding
conventions since they do not exhibit correlation.
Our findings suggest that Python code snippets on Stack

Overflow do not represent good coding style and may not
be suitable for mining or learning tasks. Future work should
investigate whether the same can be observed for other
languages.



References

[1] S. Baltes, L. Dumani, C. Treude, and S. Diehl, “SOTorrent: Reconstruct-
ing and analyzing the evolution of Stack Overflow posts,” in Proceedings
of the 15th International Conference on Mining Software Repositories,
2018, pp. 319–330.

[2] F. Fischer, K. Böttinger, H. Xiao, C. Stransky, Y. Acar, M. Backes, and
S. Fahl, “Stack Overflow considered harmful? the impact of copy&paste
on Android application security,” in IEEE Symposium on Security and
Privacy (SP). IEEE, 2017, pp. 121–136.

[3] L. An, O. Mlouki, F. Khomh, and G. Antoniol, “Stack Overflow: a
code laundering platform?” in 24th International Conference on Software
Analysis, Evolution and Reengineering (SANER). IEEE, 2017, pp.
283–293.

[4] S. Baltes and S. Diehl, “Usage and attribution of Stack Overflow code
snippets in GitHub projects,” Empirical Software Engineering, Oct 2018.

[5] R. C. Martin, Clean code: a handbook of agile software craftsmanship.
Upper Saddle River, NJ: Prentice Hall, 2008.

[6] D. Spinellis, “Elyts edoc,” IEEE Software, vol. 28, no. 2, pp. 104–104,
2011.

[7] PEP 20 – The Zen of Python. [Online]. Available: https://www.python.
org/dev/peps/pep-0020/

[8] K. Hart and A. Sarma, “Perceptions of answer quality in an online
technical question and answer forum,” in Proceedings of the 7th
International Workshop on Cooperative and Human Aspects of Software
Engineering (CHASE), 2014, pp. 103–106.

[9] S. M. Nasehi, J. Sillito, F. Maurer, and C. Burns, “What makes a good
code example? A study of programming Q&A in StackOverflow,” in
28th IEEE International Conference on Software Maintenance (ICSM),
2012, pp. 25–34.

[10] M. Duijn, A. Kučera, and A. Bacchelli, “Quality questions need quality
code: classifying code fragments on stack overflow,” in Proceedings of
the 12th Working Conference on Mining Software Repositories. IEEE
Press, 2015, pp. 410–413.

[11] C. Treude and M. P. Robillard, “Understanding stack overflow code
fragments,” in International Conference on Software Maintenance and
Evolution (ICSME). IEEE, 2017, pp. 509–513.

[12] S. Baltes, C. Treude, and S. Diehl, “SOTorrent: Studying the origin,
evolution, and usage of Stack Overflow code snippets,” in Proceedings
of the 16th International Conference on Mining Software Repositories
(MSR), 2019.

[13] T. Lee, J. B. Lee, and H. P. In, “A study of different coding styles affecting
code readability,” International Journal of Software Engineering and Its
Applications, vol. 7, no. 5, pp. 413–422, 2013.

[14] N. C. Zakas. (2012) Why coding style matters. [Online]. Available:
https://www.smashingmagazine.com/2012/10/why-coding-style-matters/

[15] M. O. Elish and J. Offutt, “The adherence of open source Java
programmers to standard coding practices,” in 6th IASTED International
Conference on Software Engineering and Applications (SEA), 2002, pp.
pp. 193–198.

[16] M. Smit, B. Gergel, H. J. Hoover, and E. Stroulia, “Code convention
adherence in evolving software,” in International Conference on Software
Maintenance (ICSM), 2011.

[17] M. Allamanis, E. T. Barr, C. Bird, and C. Sutton, “Learning natural coding
conventions,” in Proceedings of the 22nd ACM SIGSOFT International
Symposium on Foundations of Software Engineering (FSE), 2014, pp.
281–293.

[18] S. Dasgupta and S. Hooshangi, “Code quality: Examining the efficacy of
automated tools,” in 23rd Americas Conference on Information Systems
(AMCIS). AIS, 2017.

[19] L. Gong, M. Pradel, M. Sridharan, and K. Sen, “DLint: dynamically
checking bad coding practices in JavaScript,” in Proceedings of the 2015
International Symposium on Software Testing and Analysis (ISSTA), 2015,
pp. 94–105.

[20] K. Daimi, S. Banitaan, and K. Liszka, “Examining the performance of
Java static analyzers,” in Proceedings of the International Conference
on Software Engineering Research and Practice (SERP), 2013.

[21] Airbnb JavaScript style guide. [Online]. Available: http://airbnb.io/
javascript/

[22] Google C++ style guide. [Online]. Available: https://google.github.io/
styleguide/cppguide.html

[23] PEP 8: The style guide for Python code. [Online]. Available:
https://pep8.org/

[24] B. Morelli. (2017) 5 JavaScript style guides – including
AirBnB, GitHub, & Google. [Online]. Available: https://codeburst.io/
5-javascript-style-guides-including-airbnb-github-google-88cbc6b2b7aa

[25] Google Python style guide. Original-date: 2015-05-20T19:18:59Z.
[Online]. Available: http://google.github.io/styleguide/pyguide.html

[26] Stack Overflow trends – most popular languages. [Online]. Available:
https://insights.stackoverflow.com/trends?tags=java%2Cc%2Cc%2B%
2B%2Cpython%2Cc%23%2Cvb.net%2Cjavascript%2Cassembly%
2Cphp%2Cperl%2Cruby%2Cswift%2Cr%2Cobjective-c

[27] D. Yang, A. Hussain, and C. V. Lopes, “From query to usable code: an
analysis of stack overflow code snippets,” in Proceedings of the 13th
International Conference on Mining Software Repositories. ACM, 2016,
pp. 391–402.

[28] M. Gabel and Z. Su, “A study of the uniqueness of source code,” in
Proceedings of the 18th ACM SIGSOFT International Symposium on
Foundations of Software Engineering (FSE), 2010, pp. 147–156.

[29] Pylint results for Python code snippets on Stack Overflow. [Online].
Available: https://zenodo.org/record/2558544

[30] S. Butler, M. Wermelinger, Y. Yu, and H. Sharp, “Mining Java class
naming conventions,” in 27th IEEE International Conference on Software
Maintenance (ICSM). IEEE, 2011, pp. 93–102.

[31] Pylint 1.9.3 documentation – pylint user manual. [Online]. Available:
http://pylint.pycqa.org/en/1.9/

https://www.python.org/dev/peps/pep-0020/
https://www.python.org/dev/peps/pep-0020/
https://www.smashingmagazine.com/2012/10/why-coding-style-matters/
http://airbnb.io/javascript/
http://airbnb.io/javascript/
https://google.github.io/styleguide/cppguide.html
https://google.github.io/styleguide/cppguide.html
https://pep8.org/
https://codeburst.io/5-javascript-style-guides-including-airbnb-github-google-88cbc6b2b7aa
https://codeburst.io/5-javascript-style-guides-including-airbnb-github-google-88cbc6b2b7aa
http://google.github.io/styleguide/pyguide.html
https://insights.stackoverflow.com/trends?tags=java%2Cc%2Cc%2B%2B%2Cpython%2Cc%23%2Cvb.net%2Cjavascript%2Cassembly%2Cphp%2Cperl%2Cruby%2Cswift%2Cr%2Cobjective-c
https://insights.stackoverflow.com/trends?tags=java%2Cc%2Cc%2B%2B%2Cpython%2Cc%23%2Cvb.net%2Cjavascript%2Cassembly%2Cphp%2Cperl%2Cruby%2Cswift%2Cr%2Cobjective-c
https://insights.stackoverflow.com/trends?tags=java%2Cc%2Cc%2B%2B%2Cpython%2Cc%23%2Cvb.net%2Cjavascript%2Cassembly%2Cphp%2Cperl%2Cruby%2Cswift%2Cr%2Cobjective-c
https://zenodo.org/record/2558544
http://pylint.pycqa.org/en/1.9/

