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ABSTRACT

Test-to-code traceability links model the relationships between test
artefacts and code artefacts. When utilised during the development
process, these links help developers to keep test code in sync with
tested code, reducing the rate of test failures and missed faults.
Test-to-code traceability links can also help developers to maintain
an accurate mental model of the system, reducing the risk of archi-
tectural degradation when making changes. However, establishing
and maintaining these links manually places an extra burden on
developers and is error-prone. This paper presents TCtracer, an
approach and implementation for the automatic establishment of
test-to-code traceability links. Unlike existing work, TCtracer op-
erates at both the method level and the class level, allowing us to
establish links between tests and functions, as well as between test
classes and tested classes. We improve over existing techniques
by combining an ensemble of new and existing techniques and
exploiting a synergistic flow of information between the method
and class levels. An evaluation of TCtracer using four large, well-
studied open source systems demonstrates that, on average, we
can establish test-to-function links with a mean average precision
(MAP) of 78% and test-class-to-class links with an MAP of 93%.
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1 INTRODUCTION

Unit testing is an integral part of software development, however,
to fully realise the benefits of unit testing, it is necessary to main-
tain an accurate picture of the relationships between the tests and
the tested code. Traceability links provide an intuitive mechanism
for modelling these relationships. Once established, test-to-code
traceability links can improve the software engineering process
in several ways, including making changes to the system safer,
facilitating the reuse of artefacts, and aiding program comprehen-
sion [2, 9, 34]. Changes to the system become safer as, when a
developer makes a change to a piece of tested code, they can use
the traceability links to easily discover which tests also need to
be changed, and vice-versa. This reduces the risk of desynchroni-
sation between the tests and code, an issue which can cause test
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failures and prevent the discovery of new faults. While developers
can use fault localisation techniques to discover which functions
may be causing test failures, traceability links have the benefit of
being bidirectional, so developers can start from a function and
find the corresponding tests. Industrial need for the automated
establishment of test-to-code traceability links is demonstrated by
Ståhl et al. [31] through case studies and developer interviews. The
developer interviews were focused on themes and the theme that
encompasses this work, ’Test Results and Fault Tracing’, attracted
the most number of relevant statements, with interviewees stating,
for example, that it was ’particularly important’ and ’super crucial’.
Using trace links to ’drill down’ when troubleshooting failed tests
was specifically mentioned. The developers also made clear that
automation is crucial as manual traceability handling is a major
blocker for more frequent deliveries of software.

While there has been an effort on some projects to have de-
velopers manually maintain traceability links, this practice is not
common as it creates extra work for developers. Instead, developers
often employ naming conventions, e.g., matching the names of test
classes with the names of tested classes, with ‘Test’ appended. In
most instances, where projects have attempted to manually main-
tain traceability links, these have been at the class level where the
number of links is more manageable and the relationships between
test artefacts and tested artefacts are usually simple. Therefore,
to avoid creating extra work for the developers and the errors as-
sociated with the manual maintenance of traceability links, the
research community has focused on developing approaches for the
automatic establishment of traceability links.

Most previous work on test-to-code traceability (see Parizi et
al. [27] for an overview) has focused on the class level, where test
classes are linked to their tested classes [6, 7, 15, 20, 29, 32]. Not
much work has been done on the method level [3, 16, 17], where
individual unit tests are linked to their tested functions, despite
being shown to be helpful for developers [17]. Our work is the first
to address both the class level and the method level simultaneously.
This allows us to construct both types of links and utilise a cross-
level flow of information to improve overall performance. This
gives our approach a more accurate and fine-grained view of the
relationships between the artefacts. Our work also distinguishes
itself from previous work by utilising dynamic information and
ranking potential links, instead of the static information that has
typically been used before to generate sets of (unranked) links.

The difficulty in establishing test-to-code links lies in the fact
that not all code executed by a test is part of the code that is being
tested. This is because many tests will call functions which are not
considered to be amongst the functions under test, such as helper
functions, getters and setters, or functions that initialise the state
of an object before the functions under test are invoked. Therefore,
simply considering all executed code as tested code [17] is not an
accurate technique of establishing test-to-code traceability links.
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In this paper, we present TCtracer, an approach and implemen-
tation which aims to overcome the weaknesses of existing test-to-
code traceability link establishment approaches by employing a
wide range of techniques that utilise information from dynamic
call traces, including two new call-based statistical techniques.

TCtracer also combines these techniques to produce a single
score that performs better overall than any individual technique. In
addition, TCtracer is applied to both the method level and the class
level which allows us to establish links between individual tests
and their tested functions as well as whole test classes and their
tested classes. TCtracer uses its multilevel aspect to create a flow
of information between the levels that can improve effectiveness.

Our approach is evaluated using a manually curated ground
truth [33], at both the method and class levels, from four non-
trivial andwell-studied subject projects1. Our findings show that, on
average, using our combined technique, we can achieve an increase
in effectiveness over existing techniques at both the method level
and class level. The main contributions of this paper are:

• An approach to test-to-code traceability that utilises an en-
semble of techniques and a multilevel flow of information.

• A comparative evaluation of each technique at both the
method and class levels.

• An evaluation of the benefit gained by utilising multilevel
information.

• A manually curated ground truth dataset [33] of test-to-
function and test-class-to-class links.

2 MOTIVATION

The development of a new approach to test-to-code traceability
establishment is motivated primarily by the fact that all existing
techniques have some weaknesses that make them unsuitable for
use as a general solution. One of the most common techniques
for establishing traceability links, naming conventions (NC), is a
good example of this. This approach relies on using the naming
conventions for test artefacts (unit tests or test classes) to identify
their links to tested artefacts (functions or classes). The specific con-
ventions used may vary between projects, however, the standard
convention is that a test artefact should share the same name as the
artefact that it is testing, with test prepended or appended [23, 32].
For example, a function named unionwill be considered to be tested
by a test named testUnion. However, this technique is not effective
if the project does not adhere to the naming conventions and can
have poor recall even for projects that do. This is because it as-
sumes a one-to-one relationship between test artefacts and tested
artefacts when this is not always the case. The Commons Collec-
tions project [11] provides a real-world example of this, where the
function disjunction is tested by the tests testDisjunctionAsUnionMi-
nusIntersection and testDisjunctionAsSymmetricDifference. As this
is a one-to-two relationship, the names do not match the naming
convention and NC would not be able to recover these links.

Last Call Before Assert (LCBA) is another existing technique
that has severe limitations. LCBA operates on the assumption that
the function which returned last before an assert is called is the
function that the assert is testing. However, this assumption is often
incorrect. One common example of this is when the purpose of

1Evaluation artefacts available at github.com/RRGWhite/icse20-main-1069-data.

a tested function is to change the state of an object. In this case,
to check that the function has performed the correct operation,
a getter must be called to get the changed state so that it can be
compared to an oracle. This causes LCBA to incorrectly identify
the getter as the tested function. Even if the tested function does
directly return the value that needs to be checked, this value will
often not be checked by an assert immediately after being returned.
This could be because the test needs to call helper functions before
the assert, possibly to establish the oracle.

Finally, textual similarity measures based on information re-
trieval techniques have also been used in an attempt to recover
test-to-code traceability links, with varying degrees of success [2, 6].
However, none of them have been shown to be sufficient on their
own as techniques designed for natural language do not directly
translate to code. This is due to the bimodality of code which leads
to the possibility that two code snippets may be closely related
semantically but completely different lexically, or vice-versa [1].

Given these inherent weaknesses in the individual existing tech-
niques, there is a strong motivation to design a new approach that,
while exploiting the strengths of the individual techniques, collec-
tively overcomes their weaknesses. This is the approach utilised in
TCtracer and presented in this paper.

A secondary motivation for the development of a new approach
to test-to-code traceability stems from the fact that existing work
has only focused on either the method level or the class level. As
both levels can provide useful information to a developer, we were
motivated to develop a single approach that worked at both levels
simultaneously. This resulted in the multilevel aspect of TCtracer,
which in turn facilitated the use of multilevel information flow to
further increase the effectiveness of the approach.

3 APPROACH

Our approach observes which artefacts are executed while a test
runs, creating candidate links between test artefacts and tested
artefacts. It then assigns scores to the candidate links. These scores
are used to rank the candidates and predict which of them are true
test-to-code traceability links. The predicted links can then be used,
e.g., in an IDE, to navigate between test and the tested artefacts.

As we are establishing links on the method- as well as on the
class-level, we use the terms function or method-under-test when
referring to a tested method and the terms tested class or class-
under-test for the class-level. Moreover, on the class-level, a class-
under-test is tested by one or more test classes, and on the method-
level, a method-under-test is tested by one or more test methods.

Our multilevel approach starts by dynamically collecting infor-
mation about each function call made by each test, specifically,
which function was called and the depth in the call stack of the
function call relative to the calling test. For each test, this informa-
tion is stored in an object, henceforth referred to as a hit spectrum.
We then apply an ensemble of traceability techniques to the method
level, using the information in the collected hit spectra. This re-
sults in a set of test-to-function scores for each technique, each of
which encodes the likelihood that a given function is the tested
function for a given test that calls it. We refer to these scores col-
lectively as the method level information. The same process is then
applied at the class level, where sets of test-class-to-class scores

github.com/RRGWhite/icse20-main-1069-data
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are established using the same techniques, providing us with the
class level information. At this stage, we create a cross-level flow
of information by utilising the method level information for class
level predictions and the class level information to augment the
method level predictions.

To compute our scores we selected two existing test-to-code
traceability techniques and formulated six new techniques. Six
of the techniques produce a score in the interval [0, 1] for every
possible link, indicating the likelihood that the link is correct, while
the other two produce binary scores. A ninth score is also computed
that combines the scores for all the individual techniques. These
scores are used to rank the candidate links so that those ranked
highest are most likely to be true traceability links. Thresholds are
then applied to construct the sets of predicted links.

We describe our techniques in the following section where, for
simplicity, we will present them at the method level. To apply them
on the class level, test classes are used instead of test methods and
tested classes instead of tested functions.

3.1 Techniques

As discussed in Section 2, existing test-to-code traceability tech-
niques have weaknesses which we try to overcome with new tech-
niques. Despite their weaknesses, we selected two established tech-
niques, Naming Conventions (NC) [32] and Last Call Before Assert
(LCBA) [32] because they perform well in certain situations. The
new techniques formulated for TCtracer include four string-based
techniques: a variant of Naming Conventions (NCC), two variants
of Longest Common Subsequence (LCS-B and LCS-U), and using
the Levenshtein edit distance [21], which all utilise name similarity.
Two statistical call-based techniques (SCTs) based on Tarantula
fault localisation [19] and Term Frequency–Inverse Document Fre-
quency (TFIDF) [24] are also included in the new techniques.

The original NC was selected for our technique ensemble as it
should have high precision, especially in projects where the nam-
ing conventions are strictly followed and is a common method
by which developers identify tests for a given method during de-
velopment [17, 23]. LCBA was selected as it can perform well in
certain circumstances, specifically when the tests conform to the
style of using an assert to test the returned value from a function
immediately after the function is called. As both NC and LCBA
are well-established techniques for test-to-code traceability recov-
ery [6, 23, 28, 29], they also make good candidates to serve as
comparison points for our other techniques.

NCC requires that the name of the test contains the name of
the tested artefact. It was included in the technique ensemble as
it utilises the strengths of NC but should achieve higher recall as
it can establish many-to-one relationships between functions and
tests, as opposed to the solely one-to-one relationships that are
discoverable with traditional NC. This helps to alleviate some of the
problems with traditional NC, as discussed in Section 2. LCS-B and
LCS-U compute the ratio of the name lengths and the length of the
longest common subsequence of the names of the test and the tested
artefact. They were used as they utilise the same intuitions as NC
and NCC respectively but instead of producing a binary score, they
produce a real-valued score that indicates how close to satisfying
NC/NCC the potential link is. This is useful as there are instances

where NC/NCC are not satisfied but are very close to being satisfied,
for example, in the case of NC, if there are extra words before or
after the name of the function or, in the case of NCC, if the name
of the function is abbreviated or has grammatical differences in the
name of the test case. In these instances, the real-valued scores of
LCS-B and LCS-U are more useful than the binary scores of NC
and NCC as we can still determine if a test and a function are likely
related. We include the normalised Levenshtein distance between
the names as a technique as it provides a different view of name
similarity to the longest common subsequence which is used in the
LCS-B and LCS-U techniques.

We include the Tarantula technique as, intuitively, the task of
recovering test-to-code traceability links is similar to the task of
fault localisation as, if a function is causing a test to fail, it is likely
that function and test should be linked. Therefore, our intuition is
that by adapting a well-known fault localisation technique to trace-
ability we may find an effective method of recovering test-to-code
trace links. The inclusion of the TFIDF technique is motivated in a
similar fashion to Tarantula in that we view the task of determining
the relevance of terms to a document as being analogous to the
task of determining which functions are most relevant to a test case
and therefore which functions are most likely to be the targets of
that test. As TFIDF is a standard, well-tested method of establishing
term relevance, we adapted this method to test-to-code traceability.

All of the above eight techniques will be evaluated to identify in-
dividual strengths and weaknesses and compared to the established
techniques NC and LCBA to establish if their known weaknesses
can be overcome. We also include all techniques in a combined
score as we believe that each technique has the potential to provide
at least some information that cannot be wholly obtained using
any other technique. However, this is currently merely an intuition
and will be tested in future work by measuring the contribution of
each technique to the effectiveness of the combined score.

All of our techniques utilise dynamic trace information which
allows us to avoid common problems associated with static tech-
niques, such as over-approximation and the inability to reason
about references and dependencies that are resolved at run-time.

We have discarded a series of other techniques. Fixture Ele-
ment Types (FET) [32] and SCOTCH+ [29] cannot be applied on
method-level and Static Call Graph (SCG), Lexical Analysis (LA),
and Co-Evolution (Co-Ev) have been discarded because of their low
precision and recall [20, 27, 32].

3.1.1 Naming Conventions. As naming conventions can change
between projects [32], we have selected two techniques for trace-
ability recovery using naming conventions: traditional and contains.

Traditional Naming Conventions (NC). NC establishes links by
considering a function to be linked to a test if the name of the test
is the same as the function after the word test has been removed
from the test name. For example, a function named union will be
considered to be tested by a test named testUnion.

score(t, f ) =
{
1, if nt equals nf
0, otherwise

(1)

Where nt and nf are the names of t and f respectively, after the
word test has been removed from the name of test t .
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Naming Conventions – Contains (NCC). NCC is a derivative of
traditional NC which replaces the requirement that the test name
must match the function name exactly, with the more relaxed re-
quirement that the test name only needs to contain the function
name. Therefore, NCC considers a function to be linked to a test
if the name of the test contains the name of the function, after
removing test from the test name. A positive NCC result is counted
as a score of 1 while a negative NCC result is counted as 0:

score(t, f ) =
{
1, if nf substring of nt
0, otherwise

(2)

3.1.2 Last Call Before Assert (LCBA). LCBA attempts to establish
traceability links by working on the assumption that the function
returned last before an assert is called is the function that the assert
is testing. Therefore, LCBA will establish links between a test and
every function that is returned last before an assert that appears in
that test. In TCtracer, if an LCBA link is established between a
test and a function it is counted as a traceability score of 1 while
no LCBA link is counted as a score of 0:

score(t, f ) =
{
1, if f is last return before an assert in t

0, otherwise
(3)

3.1.3 Name Similarity. Name similarity is a variation of the Nam-
ing Conventions approach and is based on the premise that devel-
opers, following established naming conventions, give unit tests
names that are similar to or match the name of the function. Our
hypothesis is that name similarity measures have the potential
to perform better than the existing NC approach as they are less
strict on exact matches and allow for slight variations in name,
for example, due to grammatical reasons. For instance, a method
named clone would not be identified under NC for a test named
testCloning, whereas it would be possible under name similarity
measures for clone to be assigned a high traceability score with
testCloning. We consider the name for a method to be simply the
name of the method in lower case without the class name and
with the string test removed from test names when performing
comparisons. For example, for the fully qualified method name
com.example.ExampleClass.testComputeScore(boolean), we perform
name similarity comparisons on computescore. To compute the
name similarity, we use two well-established techniques, Longest
Common Subsequence (LCS) and Levenshtein Distance.

To establish the LCS similarity, we compare the length of the
longest common subsequence to the length of the function and test
name. The longest common subsequence techniques give function
names that have more characters in common with (and in the same
order as) a test name a higher score.

Longest Common Subsequence – Both (LCS-B). In the first LCS
variant, we maximise the score at 1 when the method and function
names coincide exactly (aligned with the behaviour of the NC
approach), that is, when nt = nf and LCS(nt ,nf ) = nt . We divide
the length of the LCS by the greater of the length of the two strings
as follows:

score(t, f ) =
|LCS(nt ,nf )|
max(|nt |, |nf |)

(4)

Longest Common Subsequence – Unit (LCS-U). In the second vari-
ant, we divide the length of the LCS by the length of the function
name only. This variant is more closely aligned with the behaviour
of the NCC approach, with the score maximised at 1 when the
function name is contained in the test name.

score(t, f ) =
|LCS(nt ,nf )|

|nf |
(5)

Levenshtein Distance. The Levenshtein distance [21], often known
as edit distance, measures the distance between two strings by mea-
suring the minimum number of edits it takes to transform one
string into the other. Under this technique, the distances between
the function names and test names are computed and links with
the lowest Levenshtein distance are awarded the highest scores.
We first normalise the Levenshtein distance by dividing it by the
length of the longest string and then take the compliment so that
higher scores are given to closer strings:

score(t, f ) = 1 −
(
Levenshtein(nt ,nf )

max(|nt |, |nf |)

)
(6)

3.1.4 Tarantula. Tarantula [19] is an automatic fault localisation
technique that assigns a suspiciousness value to code, with higher
suspiciousness values indicating a higher probability of the code in
question being responsible for the fault. The use of automatic fault
localisation is based on the idea that it would point to the most
relevant entity if the current test fails. The suspiciousness of a code
entity e is defined as follows:

suspiciousness(e) =
failed(e )
totalfailed

passed(e )
totalpassed + failed(e )

totalfailed

(7)

Where failed(e) is the number of tests that executed e and failed,
totalfailed is the number of tests that failed in total, passed(e) is the
number of tests that executed e and passed, and totalpassed is the
number of tests that passed in total.

To obtain the traceability score for a given test-to-function pair,
where the test executes the function, we compute the suspiciousness
of the function with respect to the test, assuming that the test under
consideration fails and all others pass2. Using this assumption we
can derive our traceability score equation from Equation 8:

score(t, f ) = 1
| {t ′∈T :f ∈t ′ } |−1

|T |−1 + 1 (8)

Where T is the set of all tests in the test suite and f ∈ t ′ indicates
that function f is executed by test t ′. For pairs where the test t
does not execute the function f , a score of 0 is assigned.

3.1.5 Term Frequency–Inverse Document Frequency (TFIDF). Term
frequency–inverse document frequency (TFIDF) is a measure tradi-
tionally used in information retrieval to determine how significant
a term is to a document. TFIDF takes into account the prevalence
of the term in the document and in the corpus as a whole, with the
intuition being that if a term is frequent in a particular document
but not frequent in the rest of the corpus, that term must carry a
high significance to the document and carries useful information

2A model under which all tests executing the function fail is not suitable as the
Tarantula suspiciousness would then be 100%.
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about the semantics of the document. We apply this to the domain
of test-to-code traceability by having tests take the role of the doc-
uments and functions take the role of the terms. This expresses the
intuition that if a function is executed frequently by a particular
test and infrequently by other tests, it is likely that the test is testing
the function. We define our traceability score using TFIDF as:

score(t, f ) = tf(t, f ) · idf(f ) (9)

The usual definition of the term frequency (tf) function does not
match the test/function scenario. Thus, tf and idf are defined as:

tf(t, f ) = ln
(
1 + 1

|{ f ′ ∈ F : f ′ ∈ t}|

)
(10)

idf(f ) = ln
(
1 + |T |

|{t ′ ∈ T : f ∈ t ′}|

)
(11)

Where T is the set of all tests in the test suite and F is the set
of all functions in the system. The tf function measures how the
information of a test is spread over the called functions and the idf
function measures how common the function is over all tests.

3.2 Score Scaling

Our approach utilises two techniques for scaling traceability scores
which can be applied independently as well as composed together.

3.2.1 Call Depth Discounting. Tests often do not invoke the tested
functions directly, for example when a public method delegates
the actual implementation to a private method. The TCtracer
approach utilises the intuition that the relative depth between a test
and a function in the call stack can serve as an indicator of if the
function is tested by the test. We hypothesise that functions that
are closer to a test in the call stack are more likely to be the tested
functions than functions that are far away. Therefore, we utilise a
relative call depth discount factor γ ∈ [0, 1], which discounts the
traceability score for a test-to-function pair in proportion to the
distance between them in the call stack:

scored(t, f ) = score(t, f ) · γ (dist(t ,f )−1) (12)

Where scored is the discounted score, score is the non-discounted
score, and dist(t, f ) is the distance between the test and the function
in the call stack. We subtract one from the distance so as to apply
no discount to functions that are called directly by the test.

3.2.2 Normalisation. The computed scores can be used to rank
the possible links to called functions within a test directly, using
the top-ranked link as the most likely link. However, the actual
distribution of scores can vary between techniques and the different
tests. Therefore, we normalise the scores so that the largest score
within a test is 1:

scoren(t, f ) =
scored(t, f )

max({scored(t, f ′) | f ′ ∈ t}) (13)

Where scoren is the normalised score. Normalisation allows us to
define a threshold around the top-ranked link.

In the end, we focus on nine individual techniques, shown in
Table 1. NC, NCC and LCBA are binary, i.e., they produce scores
of either 1 or 0 which are used directly. The six other non-binary
techniques are normalised and use call depth discounting.

Table 1: Traceability techniques, their score range (Score), if

the technique is normalised (N), and the used threshold (τ ).

Technique Score N τ

Naming Conventions (NC) 0 or 1 – –
Naming Conv. – Contains (NCC) 0 or 1 – –
LCS – Unit (LCS-U) [0, 1] Yes 0.80
LCS – Both (LCS-B) [0, 1] Yes 0.45
Levenshtein (Leven) [0, 1] Yes 0.35
Last Call Before Assert (LCBA) 0 or 1 – –
Tarantula [0, 1] Yes 0.95
TFIDF [0, 1] Yes 0.90
Combined [0, 1] Yes 0.80

3.3 Link Prediction

To construct link predictions, we first apply our traceability tech-
niques to the method level and class level individually. The tech-
niques can be directly applied to the class level by using the test
classes instead of test methods and tested classes instead of tested
methods. The information extracted from each level is then propa-
gated between levels to produce another set of links at each level.

3.3.1 Method-Level Prediction. The process starts by executing
each of our nine individual traceability techniques at the method
level, resulting in a matrix of scores for each technique:

M ∈ R |T |× |F | (14)

Where T is the set of all tests in the system and F is the set of all
functions. Each element of M is the traceability score for a given
test-to-function pair (t, f ) ∈ (T × F).

Another matrix is then constructed for the combined technique
by averaging over all the individual technique matrices and nor-
malising the rows, using Equation 13.

Each of these nine matrices is used to build sets of predicted test-
to-function traceability links. To convert the real-valued scores into
boolean link/no-link predictions we introduce a set of thresholds,
one for each technique (shown in Table 1), and consider scores above
the threshold as positive link predictions. Equation 15 defines how
each set of method level traceability links are constructed.

LM = {(t, f ) ∈ T × F | Mt f ≥ τ } (15)

Where Mt f is the score for the given test-to-function pair and τ is
the threshold for the technique.

3.3.2 Class-Level Prediction. We nowmove to the class level where,
in the same way as the method level, we apply our individual trace-
ability techniques and combine them, resulting in nine matrices,
one for each technique:

C ∈ R |TC |× |FC | (16)

Where TC is the set of all test classes in the system and FC is the set
of all non-test classes. Each element of C is the traceability score
for a given test-class-to-class pair (ct , cf ) ∈ (TC × FC).

In a similar fashion to the method level, C is used to compute
sets of class level traceability links using Equation 17.

LC = {(ct , cf ) ∈ TC × FC | Cct cf ≥ τ } (17)
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3.3.3 Method- to Class-Level Propagation. Given the method level
and class level score matrices, we can now propagate information
across levels. First, we elevate the method level information to
the class level by extracting scores from M and organising them
into class level pairs. This allows us to use them for computing
class level traceability scores. To do this, for each test-class-to-class
pair (ct , cf ), we construct a matrix EM(ct , cf ) to hold the relevant
method level information:

EM(ct , cf ) ∈ R |t(ct ) |× |f(cf ) | (18)

Where t(ct ) is the set of tests in test class ct , f(cf ) is the set of
functions in class cf . Each element of EM(ct , cf ) is the method
level traceability score for a given test-to-function pair (t, f ) ∈

(t(ct ) × f(cf )).
To obtain the traceability score for the test-class-to-class pair,

the method-level scores in EM(ct , cf ) are summed along both di-
mensions, resulting in a scalar score.

This process is executed for each test-class-to-class pair in the
system and the produced scores are used to create a symmetric
matrix that holds the scores for all pairs:

EM ∈ R |TC |× |FC | (19)

Therefore, each element of EM is the score for a given test-class-
to-class pair (ct , cf ) ∈ (TC × FC) that is derived from method level
information. All rows in EM are normalised using Equation 13.

The scores in EM are then used to produce a set of class level
predicted links using Equation 20.

LEM = {(ct , cf ) ∈ TC × FC | EMct cf ≥ τ } (20)

3.3.4 Class- to Method-Level Propagation. To propagate informa-
tion from the class level to the method level, we take the method
level information inM and augment it with the class level informa-
tion in C, creating a new matrix AM ∈ R |T |× |F | . For each test-to-
function pair (t, f ), the augmentation is performed by first finding
the test-class-to-class pair (ct , cf ) that corresponds to the test-to-
function pair, i.e., the test class ct that contains the test t and the
tested class cf that contains the function f . We then take the score
for the method level pair fromM and the score for the class level
pair from C and multiply them to produce the augmented method
level score for AM, as shown in Equation 21.

AMt f = Mt f · Cc(t )c(f ) (21)

Where c(m) returns the class containing methodm.
From AM, the set of augmented method level traceability link

predictions are produced using Equation 22.
LAM = {(t, f ) ∈ T × F | AMt f ≥ τ } (22)

4 IMPLEMENTATION

TCtracer is compatible with any Java system that uses the JUnit
3, 4, or 5 test framework and is compatible with Java 8 or newer.
Dynamic trace data is collected from JUnit test suite executions,
which is then used for computing the traceability links by the
techniques described in Section 3.

To collect the dynamic execution traces, TCtracer requires the
system-under-analysis to be instrumented. The Java Agent API was
used for this as it provides access to the bytecode of Java classes

and allows for them to be transformed before being loaded by
the JVM. As shown in Figure 1, the instructions for transforming
the bytecode are provided by a Java program, TCagent, which is
passed to the JVM at runtime through the -javaagent flag. TCagent
utilises the ByteBuddy [35] library and allows us to easily transform
the bytecode of the running system to log the data that is used by
TCtracer to compute the traceability links.

The execution traces are parsed to build the hit spectrum for
each test and record the set of methods that were the last return
before an assert was called, as is needed for LCBA. Methods that
are not defined in the project-under-analysis, such as those from
third-party APIs, are filtered out.

In the final phase, TCtracer computes the sets of predicted links
described in Section 3 using the hit spectra, the LCBA information,
and configuration parameters, such as threshold and call depth
discount factor. If a ground truth is present, TCtracer computes
the evaluation metrics for each set of predicted links.

5 EVALUATION

This section presents our research questions, the design of the
experiments carried out to answer these questions, the results, and
a discussion of the findings.

5.1 Experimental Setup

The experimental setup consists of running TCtracer on a set of
open source subjects and computing a set of evaluation measures
for each subject, using a manually established ground truth.

Subjects. For our subjects, we selected three well known open
source projects that are written in Java and utilise the JUnit testing
framework: Commons IO [12], Commons Lang [13], and JFreeChart
[22]. These subjects were selected as they are well known, widely
used, and sufficiently large to demonstrate the applicability of TC-
tracer to real-world systems. For the evaluation of TCtracer, we
established a ground truth for these projects at both the method
level and the class level. To establish the method level ground truth,
we used a team of three judges, one PhD student and two final-year
undergraduate students, who each independently inspected a set
of tests selected uniformly at random from the subjects and made
determinations about which functions were tested by each test.
After this process, the judges collectively inspected any instances
where there were disagreements and were able to reach a final,
unanimous judgement, resulting in full inter-rater agreement. In
total, the method level ground truth contains 138 oracle links.

The class level ground truth was provided mostly by the devel-
opers as, in all three projects, a subset of the test classes contain a
comment at the start of the class specifying which classes it tests.
These developer provided links were extracted and then verified by
a judge. To boost the number of links for the project with the least
developer links, Commons IO, a random sample was drawn from
the set of all test classes and the tested classes for this sample were
decided by two judges in the same way as the method level sample,
again resulting in full inter-rater agreement. Another class level
ground truth had previously been established by SCOTCH+ [29],
which we also investigated for use. However, due to the age of the
projects, they were all no longer able to be built or were incom-
patible with our tracing agent, TCagent, which requires Java 8 or
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Figure 1: Integration of TCtracer into JUnit.

Table 2: Subject statistics.

Project Version Num. of
Functions

Num.
of Tests

Instruction
Coverage

Apache Ant 1.9.5 10477 1830 50%
Commons IO 2.5 1246 994 89%
Commons Lang 3.7 3111 3061 95%
JFreeChart 1.0.19 9053 2244 52%

newer. The only ground truth links that we were able to use were
for Apache Ant [10] and the results cannot be compared directly
as the oldest version of Apache Ant that was compatible with TCa-
gent was newer than the version used by SCOTCH+. The links that
we used from SCOTCH+ were independently established by three
judges with an average inter-rater agreement of 90%. In total, our
class level ground truth contains 608 links. Other previous work [6]
has used naming conventions to establish a ground truth. However,
as demonstrated by our work, this technique has low recall and
would introduce bias. Ultimately, when creating a new ground truth,
one cannot simply apply an existing traceability technique, as it
causes a bias towards that type of technique. Information about the
subjects is given in Table 2.

Evaluation Measures. The evaluation measures we selected are:
precision, recall, F1 score, mean average precision (MAP), and area
under the precision-recall curve (AUC) [24]. We selected preci-
sion and recall as they are elementary measures for evaluating
the performance of a binary classifier and allow us to measure the
proportion of true positives out of all positive predictions and the
proportion of all positive examples that are retrieved. As precision
and recall generally represent a trade-off between each other, the
F1 score is a useful measure as it evenly weights both precision and
recall, allowing us to determine which techniques best handle the
trade-off. We also use the mean average precision (MAP) as it takes
into account the rank of the true positives in our link prediction
lists. This is useful information as it shows which techniques are
better at ranking true positives higher than false positives and will
also punish techniques that more often return no positives at all.

Finally, we use the area under the precision-recall curve (AUC)
as it gives us a view of the performance of each technique that is
threshold independent. As most of our techniques need a threshold
to make predictions, the performance of these techniques can be

very sensitive to the values used for their thresholds. An incorrectly
chosen threshold can give the incorrect impression of the usefulness
of a technique and, therefore, while we have attempted to select
the best threshold for each technique, AUC gives us a general
measure of the performance of these techniques that is not affected
by threshold values. We selected a precision-recall (PR) curve over
a receiver operating characteristics (ROC) curve because the classes
in our domain are unbalanced, there are many more negative links
than positive links, and PR curves exhibit better characteristics in
this situation [8]. All scores are presented as integer percentages
for the sake of readability.

Rompaey et al. [32] also measure applicability, i.e., the ratio of
tests for which at least one link is retrieved. However, because of
the normalisation that we apply, all non-binary techniques will
always produce at least one link, resulting in 100% applicability.

5.2 RQ1 (Method level):

How effective are our techniques at the method level? This research
question investigates how effective each of the techniques are for
establishing test-to-function links using only method level informa-
tion. To answer this question, we compute the evaluation measures
over the link sets produced using Equation 15.

Findings. From the results for RQ1, shown in Table 3, we see
that, on average, the combined score is the most desirable as it
performs best for MAP and AUC. This means that it is good at
ranking predictions, is consistent when changing thresholds, and
could benefit from a further optimised threshold selection. For
precision alone, NC is the best, while LCS-B is best for recall.

5.3 RQ2 (Class Level):

How effective are our techniques at the class level? This research
question investigates how effective each of the techniques are for
establishing test-class-to-class links, using only class level informa-
tion. To answer this question, we compute the evaluation measures
over the link sets produced using Equation 17.

Findings. From the results for RQ2, shown in Table 4, we see that
the results are similar to RQ1: the combined score again performs
best for MAP and AUC, but this time is also joint best for recall
with LCS-B. For pure precision, NC wins again.
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Table 3: RQ1 – Method level traceability.

Technique Prec. Recall MAP F1 AUC

Co
m
m
on

sI
O

NC 100 5 7 9 –
NCC 86 43 44 57 –
LCS-U 64 81 71 72 63
LCS-B 54 86 69 66 54
Leven 67 57 62 62 59
LCBA 40 33 30 36 –
Tarantula 53 64 64 58 48
TFIDF 55 64 64 59 55
Combined 69 81 75 75 67

Co
m
m
on

sL
an
g

NC 100 10 17 19 –
NCC 90 49 54 63 –
LCS-U 78 69 79 73 76
LCS-B 70 79 79 75 74
Leven 84 53 69 65 73
LCBA 83 68 63 75 –
Tarantula 74 79 82 77 78
TFIDF 82 74 79 78 82
Combined 86 76 85 80 87

JF
re
eC

ha
rt

NC 100 19 21 32 –
NCC 100 30 32 46 –
LCS-U 20 68 73 31 17
LCS-B 33 78 76 47 58
Leven 74 62 71 68 52
LCBA 53 73 74 61 –
Tarantula 33 78 76 47 42
TFIDF 53 76 74 62 54
Combined 23 70 74 35 60

Av
er
ag
e

NC 100 11 15 20 –
NCC 92 40 43 55 –
LCS-U 54 73 74 59 52
LCS-B 53 81 75 63 62
Leven 75 57 67 65 61
LCBA 59 58 55 57 –
Tarantula 53 74 74 60 56
TFIDF 63 71 73 66 64
Combined 59 76 78 63 71

5.4 RQ3 (Elevated Method Level):

What effectiveness is achieved by utilising method level information
for class level traceability? This research question investigates how
each of the techniques perform for establishing test-class-to-class
links when we use method level information that has been ele-
vated to the class level. To answer this question, we compute the
evaluation measures over the link sets produced using Equation 20.

Findings. From the results shown in Table 5 we see that TFIDF
slightly beats the combined score for MAP, F1 score, and AUC. NC
wins again on precision and this time LCS-B is best for recall.

5.5 RQ4 (Augmented Method Level):

Can we improve method level predictions by augmenting with class
level information?

This research question investigates if the method level traceabil-
ity performance can be improved by augmenting the method level
information with class level information. To answer this question,

Table 4: RQ2 – Class level traceability.

Technique Prec. Recall MAP F1 AUC

A
pa
ch
e
A
nt

NC 100 89 92 94 –
NCC 88 88 89 88 –
LCS-U 65 86 86 74 68
LCS-B 51 88 81 65 77
Leven 87 83 87 85 77
LCBA 50 72 62 59 –
Tarantula 49 56 58 52 40
TFIDF 51 56 58 54 42
Combined 83 86 89 85 82

Co
m
m
on

sI
O

NC 100 69 72 81 –
NCC 98 94 96 96 –
LCS-U 70 94 91 80 89
LCS-B 55 96 83 70 92
Leven 100 94 97 97 96
LCBA 51 75 71 61 –
Tarantula 74 81 83 77 67
TFIDF 74 81 83 77 68
Combined 96 96 98 96 96

Co
m
m
on

sL
an
g

NC 100 75 82 86 –
NCC 95 86 93 91 –
LCS-U 77 86 90 81 78
LCS-B 63 88 88 74 76
Leven 95 86 93 91 85

LCBA 51 73 70 60 –
Tarantula 50 63 66 56 41
TFIDF 34 60 59 44 34
Combined 90 86 93 88 84

JF
re
eC

ha
rt

NC 100 85 91 92 –
NCC 73 86 84 79 –
LCS-U 56 86 79 68 62
LCS-B 58 86 81 69 86

Leven 99 86 92 92 86

LCBA 31 82 67 45 –
Tarantula 69 77 77 73 66
TFIDF 67 77 78 72 66
Combined 99 86 92 92 86

Av
er
ag
e

NC 100 80 84 88 –
NCC 88 88 90 88 –
LCS-U 67 88 86 76 74
LCS-B 57 89 83 69 83
Leven 95 87 92 91 86
LCBA 46 75 67 56 –
Tarantula 60 69 71 64 54
TFIDF 57 69 69 62 53
Combined 92 89 93 90 87

we select the best overall technique from the method level, the com-
bined technique, and compare its performance to the augmented
combined technique from the link sets produced using Equation 22.

Findings. The results for RQ4, shown in Table 6, show that, on
average, it is better to use augmented information as precision, F1
score, and AUC are significantly better using augmented informa-
tion, while recall is only slightly worse.
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Table 5: RQ3 – Class level using method level information.

Technique Prec. Recall MAP F1 AUC

A
pa
ch
e
A
nt

NC 71 31 32 43 –
NCC 59 38 37 46 –
LCS-U 53 69 69 60 53
LCS-B 48 73 71 58 52
Leven 64 64 67 64 54
LCBA 70 70 71 70 –
Tarantula 73 70 74 71 59
TFIDF 75 75 77 75 65

Combined 64 73 75 69 62

Co
m
m
on

sI
O

NC 86 38 39 52 –
NCC 90 56 57 69 –
LCS-U 80 83 82 82 79
LCS-B 78 88 86 82 79
Leven 84 79 81 82 79
LCBA 73 63 66 67 –
Tarantula 82 77 79 80 77
TFIDF 81 79 80 80 78
Combined 85 85 86 85 80

Co
m
m
on

sL
an
g

NC 93 58 64 71 –
NCC 93 68 74 79 –
LCS-U 82 79 84 81 75
LCS-B 77 81 84 79 73
Leven 85 78 84 81 75
LCBA 83 71 78 76 –
Tarantula 82 75 81 79 71
TFIDF 87 79 86 83 77

Combined 83 79 84 81 75

JF
re
eC

ha
rt

NC 76 63 69 69 –
NCC 77 65 70 71 –
LCS-U 62 75 74 68 59
LCS-B 47 77 72 58 57
Leven 70 65 69 68 58
LCBA 81 76 79 78 –
Tarantula 73 63 67 68 58
TFIDF 82 76 79 79 72

Combined 70 75 75 72 65

Av
er
ag
e

NC 82 47 51 59 –
NCC 80 57 60 66 –
LCS-U 69 77 77 72 67
LCS-B 62 80 78 69 65
Leven 76 72 75 74 67
LCBA 77 70 73 73 –
Tarantula 77 72 75 74 66
TFIDF 81 77 81 79 73

Combined 76 78 80 77 71

5.6 Parameter Value Selection

Our approach includes tunable parameters; a threshold value for
each technique and the call depth discount factor, all of which are
real numbers. The current values for the thresholds and the call
depth discount have been established in a pre-study with a smaller
ground truth and a smaller set of projects. Based on the pre-study,
we selected thresholds that generalised well. We also observed
that a discount factor <= 0.5 usually gives the highest F-score and
varying the factor between 0 and 0.5 does not change the results.

Table 6: RQ4 – Method level using multilevel information.

Technique Prec. Recall MAP F1 AUC

Commons IO
Unaugmented 69 81 75 75 67
Augmented 72 79 79 75 74

Commons Lang
Unaugmented 86 76 85 80 87
Augmented 85 73 82 79 88

JFreeChart
Unaugmented 23 70 74 35 60
Augmented 65 70 74 68 68

Average
Unaugmented 59 76 78 63 71
Augmented 74 74 78 74 77

Increasing the factor above 0.5 has only a small effect on recall and
a larger negative effect on precision, lowering the F-score overall.
Given these results, we selected a final discount factor of 0.5.

We consider the current thresholds to be sufficiently good and
general. However, one can observe that the results for a technique
can vary a lot between projects and a developer may want to vary
the thresholds specific to a project or rely on the ranking of candi-
date links instead.

5.7 Discussion

The results reveal some insights that allow us to draw conclusions
about the relative effectiveness of the techniques and the differences
between the projects. First, we compare the naming conventions
techniques, NC and NCC. For RQ1 and RQ2, NC has perfect preci-
sion. This is expected as it is unlikely that a test and function will
share the same name, after the word test has been removed, without
being linked. However, this strictness results in low recall for NC in
RQ1 and RQ3, where NCC ends up performing significantly better
for F1 score and MAP, as it trades-off a small amount of precision
for much more recall. For RQ2, NC and NCC end up being even in
F1 score as it is easier for developers to maintain traditional naming
conventions at the class level, explaining the good recall for NC
at this level. However, their low recall on the method level (RQ1)
make them unsuitable for that level – an observation also made
by Madeja et al. [23]. When comparing LCS-U and LCS-B, we see
that LCS-U usually performs better for F1 score and MAP but is
generally equivalent or worse for AUC. This suggests that either
LCS-U is more sensitive to the threshold or that it may be possible
to find a better-optimised threshold value for LCS-B.

LCBA performs poorly in general for RQ1 and RQ2 but is espe-
cially bad for Commons IO in RQ1. This is an artefact of the nature
of Commons IO, where the effect of many function calls is to change
some state, rather than return the value of a computation. Therefore,
the results of method calls are not as frequently testable by simply
comparing the return value to an oracle; instead, a further function
call is required to check that the state was changed correctly. This
causes many false positives for LCBA. Commons Lang is the op-
posite of Commons IO in this regard, as tested functions usually
have their return values checked against oracles immediately after
returning, resulting in a relatively high LCBA score.



ICSE ’20, May 23–29, 2020, Seoul, Republic of Korea Robert White, Jens Krinke, and Raymond Tan

Overall, the two LCS techniques and Levenshtein are the most
consistently well-performing from the set of individual techniques,
but which one performs best is project dependent. The combined
score, however, is consistently strong and is the best on average
for MAP and AUC. Where the combined technique struggles for F1
score, most notably for JFreeChart in RQ1, the poor performance
is due to a difference in optimal thresholds between projects; the
combined threshold is best at approximately 0.95 for JFreeChart
and 0.80 (the selected value) for the other projects. MAP and AUC
confirm this as the differential in those results is much smaller and
they are the least affected by the threshold. This is true for MAP as
it takes into account the rankings of the true positives, which the
combined score consistently ranks highly, even if it also produces
false positives at lower ranks due to a low threshold. AUC is inde-
pendent of the threshold entirely. The results confirm our intuition
that the benefit gained from combining the individual strengths of
the techniques outweighs the negative effects of combining their
weaknesses, thus giving a better result overall. This intuition holds
even in situations where specific techniques are expected to be very
strong, such as naming conventions at the class level.

In terms of multilevel information, RQ4 shows that method level
traceability performance is improved when augmented with class
level information. The AUC results show that this improvement is
significant but may require threshold optimisation to fully realise.

Finally, we gain some additional insights into the differences
between subjects by utilising the two categories of techniques,
naming-based and statistical call-based techniques (SCTs), to pro-
vide a new interpretation of the results: We use the naming-based
techniques as a proxy for how well organised the test suites are,
the SCTs at the method level as a proxy for how coherent the tests
are, and the SCTs at the class level as a proxy for how cohesive the
test classes are. This interpretation of the naming-based techniques
flows from the intuition that the better test suites are organised,
such as by maintaining simple one-to-one relationships between
tests and units-under-test, the better the naming techniques will
perform. For the SCTs, this interpretation comes from the fact that
they are measures of howmany different units-under-test are called
by an individual test unit and, thus, serve as a proxy for method
level coherence and class level cohesiveness. Using this interpre-
tation, we see that Commons Lang is the best organised and most
coherent at the method level, while Commons IO is the best organ-
ised and most cohesive at the class level. Commons Lang scores
poorly for the SCTs at the class level because some of its test classes
are large and contain many tests. Therefore, these test classes have
lots of calls to non-tested classes, introducing noise.

We attempted to compare our results to results from previous
work. However, the only two previous works onmethod level [3, 17]
suggest all called methods in a test, leading to very low precision.
On the class level, we can compare our results as we have (in part)
reimplemented suggested approaches, namely NC and LCBA. Our
results are similar to Rompaey et al.’s [32], but direct comparison is
not possible as their ground truth is not available. Moreover, their
techniques do not provide any ranking over recommended links.
They also evaluate combined techniques, but as their ground truth
has 100% precision and recall for NC, all combinations result in
lower accuracy. In comparison, our results show that a combination
of techniques outperforms individual techniques.

Previous work that is based on similarity between tests and
units-under-test [6, 7, 20] use the NC results as a ground truth
and therefore cannot be directly compared to our study, however,
their precision and recall values are lower than the ones from our
class-level combined approach.

As shown in Figure 1, our approach can be easily integrated
into the software development process. TCagent is injected into
the JUnit framework to collect the necessary data which is then
analysed by TCtracer at the end of a JUnit run to generate the
test-to-code traceability links which are ready to be used. TCagent
and TCtracer can be used inside the IDE via a framework like
EzUnit [3], allowing a developer to navigate between tests and
tested code quickly. TCtracer is also easy to integrate into a stan-
dard continuous integration process [30]. This integration is made
simple by the fact that TCagent instruments the JUnit test suite
and, therefore, the gathering of dynamic trace information happens
automatically during the testing stage. All that remains is to add
an extra step that executes TCtracer. The addition of this step is
easy in most modern continuous integration frameworks such as
Travis CI [4] and Jenkins [18]. The gathered traceability links can
then be used to backtrack from executed tests to the tested code
or vice versa. Moreover, the traceability links are constantly kept
up-to-date as part of the continuous integration pipeline and are
readily available. For example, a developer can change code and
corresponding tests at the same time, ensuring their co-evolution.
In addition, further analysis of the produced links can be performed
as part of the continuous integration process, such as automatically
alerting developers when a function has no tests even if it is covered
(executed) during testing. Therefore, using TCtracer to automate
test-to-code traceability link capture through continuous integra-
tion can provide multiple benefits and could be especially useful
in safety-critical systems that are subject to regulations requiring
that traceability links are maintained [5].

5.8 Threats to Validity

The main threats to validity come from the subjects and the ground
truth. Firstly, the representativeness of the subjects is an external
threat to validity as we have no clear evidence as to how representa-
tive these subjects are of the general population of software projects.
However, the subjects that we have selected are widely used in re-
search and by practitioners and are large enough to demonstrate
the applicability of our approach to non-trivial systems. The sec-
ond threat comes from the method by which the ground truth was
established. The use of manual investigation for establishing the
ground truth poses an internal threat to validity as there is room
for interpretation when determining which functions or classes are
tested by a test. However, all judgements were validated by more
than one judge. For the method level ground truth, three judges
were used and full inter-rater agreement was achieved. At the class
level, the majority of links were provided by the developers and
verified by a judge, and a small number of links (12) were created
by two judges, again with full inter-rater agreement. As we are
using some developer created links, there is potential for a bias to
be introduced due to the selection of classes that were annotated
by the developers. While a manual inspection does not reveal any
obvious bias, the existence of one cannot be ruled out.
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As with any approach using a threshold, the results are based
on the set thresholds. While we attempted to choose good gen-
eral thresholds, different thresholds may lead to different results,
observations, and conclusions.

Finally, there is a threat to generalisability as our experiments
only cover Java projects that use the JUnit framework and we do
not know how representative our chosen projects are. Therefore,
we do not have direct evidence that this approach would apply to
other languages or testing frameworks. However, in our estimation,
there is nothing inherent in our approach that would prevent the
application of the TCtracer approach in other scenarios.

6 RELATEDWORK

Establishing and maintaining traceability links between tests and
their tested functionality has received significant attention as trace-
ability links have multiple applications in the software engineering
process: determining which test cases need to be rerun after a
change has been made, maintaining consistency during refactoring,
and providing a form of documentation. Test-to-code traceability
can, for example, help to locate the fault that causes a test case to
fail. Qusef et al. [29] describe these benefits in detail and Parizi et
al. [27] presents an overview of the achievements and challenges
of test-to-code traceability. Prior research has investigated the use
of gamification to improve manual maintenance of traceability
links [25, 26] but this approach has not seen significant adoption.

At the method level, EzUnit [3] is a framework that allows de-
velopers to annotate tests with links to the method-under-test. To
do so, it performs a static analysis and identifies the methods called
by a test which are suggested for annotation. EzUnit highlights the
linked methods when an error in the test occurs. A similar tool is
TestNForce [17] which links tests to methods-under-test. Like our
approach, tracing is used to identify the methods that are called by a
test. No further filtering is done and their approach will thus include
a large number of utility methods leading to low precision. Ghafari
et al. [16] also work at the method level where they break down
test cases into sub-scenarios for which they attempt to establish the
tested function, termed the focal method. This is done using static
data flow analysis. The results for this technique are promising,
however, two of the four subjects used for the evaluation are very
small (130 and 43 tests), while the other two are still smaller than
our smallest subject. As it is easier to achieve higher precision and
recall on smaller projects, due to fewer candidate links, the results
cannot be directly compared to those presented in this paper.

SCOTCH+ (Source code and Concept based Test to Code trace-
ability Hunter) is a traceability system introduced by Qusef et
al. [29] that achieves better accuracy and provides more benefit to
developers than LCBA or NC [28]. SCOTCH+ applies dynamic slic-
ing to identify a set of candidate tested classes which it then filters
using a textual coupling analysis called Close Coupling between
Classes (CCBC) and name similarity (NS) scores.

Other test-to-code traceability work is based on the assumption
that a test should be similar to a tested unit. Kicsi et al. [20] explore
the usage of Latent Semantic Indexing (LSI) over source code to
establish traceability links between test classes and tested classes.
They extract a ground truth from five open source systems by
extracting only the links between test classes and tested classes

that follow (exact) naming conventions. They report that the ground
truth link is ranked top between 30% and 62% and is present in the
top 5 between 57% and 89%, suggesting a low recall (precision is not
investigated). Csuvik et al. [7] replaced LSI with word embeddings
within the same approach and report better precision when using
word embeddings (no investigation of recall has been done). They
also compare LSI, word embeddings and TF-IDF [6] in the same
way and report that word embeddings perform best in terms of
precision and recall.

While test-to-code traceability based on name similarity has
good accuracy on the class level as developers usually follow nam-
ing conventions for the test classes, on the method level there
exist various guidelines on how to name a test method. Madeja
et al. [23] investigated 5 popular Android projects and found that
only 49% of tests contain the full name of the method-under-test
in the test name and that 76% of tests contain a partial name of a
method-under-test in the test name.

Closest to our work is the work by Rompaey and Demeyer [32]
who investigate six traceability techniques to link test classes to
classes-under-test over three projects from which they extracted a
ground truth of 59 links. They report perfect precision and recall
for the use of naming conventions, but report very low precision
and recall for using similarity (LSI) between test classes and classes-
under-test. Rompaey and Demeyer investigate mostly static tech-
niques and only use tracing to establish LCBA. While they only
investigate on the class level, we investigate dynamic techniques
on the class and the method level over much larger ground truths.

Gergely et al. [14] do not extract links between units directly,
but instead, use clustering. The clustering is done with static (pack-
aging structure) and dynamic (coverage) analysis. The two sets of
traceability clusters are compared and the differences are manually
analysed for produce the final traceability links.

Ståhl et al. [31] focuses on the deployment of traceability into
continuous integration and delivery systems. As part of this work
they present an investigation into existing needs and practices and
propose a unified framework for integrating traceability establish-
ment into continuous integration systems. The investigation into
existing practices showed that there is a strong desire among de-
velopers for the integration of automated traceability handing into
build systems which is, in large part, currently not being fulfilled.
This demonstrates the demand for tools such as TCtracer.

7 CONCLUSION

In this paper, we have presented TCtracer, an approach and im-
plementation for establishing test-to-code traceability links at both
the method level and class level. TCtracer utilises a wide range
of new and existing test-to-code traceability link establishment
techniques and enhances them by combining them and applying
them to both the method level and class level, making TCtracer
the first approach that establishes two types of links and utilises a
cross-level information flow. An empirical evaluation of TCtracer
was conducted, at both the method level and class level, with four
real-world open source projects. The results show that, on average,
TCtracer is more effective at both the method level and the class
level than any single existing technique. This makes TCtracer the
most effective approach for test-to-code traceability to date.
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