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ABSTRACT

Software engineering is plagued by problems associatdd wnit
reliable cost estimates. This paper introduces an apptossnsi-
tivity analysis for requirements engineering. It uses Sedased
Software Engineering to aid the decision maker to explonsitie-
ity of the cost estimates of requirements for the Next Reléasb-
lem (NRP). The paper presents both single- and multi-olvgetdr-
mulation of NRP with empirical sensitivity analysis on dyetic
and real-world data. The results show strong correlatidwéen
the level of inaccuracy and the impact on the selection dfiireg
ments, as well as between the cost of requirements and tteetmp
which is as intuitively expected. However, there also eaiséw
sensitive exceptions to these trends; the paper uses anlagedtyle
visualisation to reveal these exceptions which requirefahcon-
sideration. The paper also shows that such unusually sétysit
patterns occur in real-world data and how the proposed appro
clearly identifies them.

Categories and Subject Descriptors

D.2.1 [SOFTWARE ENGINEERING ]: RequirementsSpecifica-
tions—Methodologies

General Terms
Algorithms, Measurement, Experimentation.

1. INTRODUCTION

One of the common problems in requirements engineering is
caused by the uncertainties that are inherent in the desisiade
by the requirement engineer. Most of the data needed by the re
quirement engineer, such as expected revenue, developostrar
duration, is inherently unknown at the time of requiremelianp
ning stage. The clients of the product also contribute tsghe-
certainties because often they do not possess clear idatvabich
features they want before actually see it. Naturally, thgiement
engineer has to balance many complex criteria based onatetim
data.

It is a well-known fact that cost estimation is dfdiult and de-
manding activity [1, 6]. It is also widely believed that thest
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estimates produced by software engineers tend to includea g
degree of inaccuracy [10, 11]. This is not due to the inetrods
the requirement engineer; it is rather because of the astogly
wide variety in the problems that software engineering $adén-
like other engineering disciplines, there are fewer wellierstood
construction approaches.

This paper does not attempt to resolve the inaccurate cbst es
mate problem; it seems that the problem will remain unsofeed
the foreseeable future of software engineering. Ratherptper
seeks to introduce an approach to provide the requiremeugis e
neer with a decision support system guided by Search-Basid S
ware Engineering (SBSE). The approach assesses the infpact o
accuracies of the cost estimation of each requirement oadhe
tions to the requirements allocation problem, known as thgtN
Release Problem [2]. The Next Release Problem is the problem
selecting the software requirements to be implementedeméxt
release of a product so that benefits such as customer sttiefa
or revenue are maximised while all the constraints such ds bu
get are satisfied. The decision support system aids theresgent
engineer by identifying the sensitive regions in the estadalata
which will lead to relatively higher impact on the selectiofithe
requirements. This information then can be used to focusftbet
on obtaining more accurate estimation of those requiresnent

Each set of estimates and customer choices denotes a separat
and unique optimisation problem. The structure of the datkthe
relationships between estimated data may create unexpiette-
actions between requirement estimates, which can yieldtarfiy
effect; a small inaccuracy in a low cost requirement can haveaan u
expectedly largeféect on the overall decision. Because of the size
of the data sets involved and the inherent complexity of teri
actions between estimates, it is nearly impossible for ajineer
to fully comprehend these hidden relationships withoubeated
decision support.

The intuitive answer to the sensitivity of cost estimatioolgpem
is that the more expensive the requirement is, the greafgadnit
will have on the result when estimated inaccurately. Alguilarly,
it can be expected that the higher the level of inaccuraeybth-
ger the impact it has. The paper indeed statistically cosfitmese
intuitive assumptions. However, the paper also reportsttiae
are exceptions to these trends. It is these exceptionsehatre
careful cost estimation, because they can have unexpgdiah
impact on the selection of requirements. The paper usesta hea
map style visualisation, generated using a search-baggdaqh,
to identify these sensitive exceptions in the data. Thespots on
the heat map will indicate areas where a particular inacyuevel
for a particular requirement estimate can lead to high impElee
heat-map provides an intuitive visual aid to comprehendctre-
plex interaction in the data set.



The paper presents twoftérent formulations of the problem.
With the single-objective formulation, the requirementgjiaeer
assesses the impact of inaccuracy at a specific level on teeigh
customer satisfaction values. In this model, the requirgmen-
gineer knows the expected inaccuracy and seeks to identfab
budget levels and particular requirements that are seasdithis.
The second formulation is the multi-objective formulatinrwhich
the requirements engineer simply seeks to reduce estincatd
and increase estimated revenue, but does not know how irzecu
the estimates are likely to be. The single-objective foatiah is
more appropriate for a mature organisation with a historgef
velopment and a consequent knowledge of likely levels dfrege
inaccuracy. The multi-objective formulation has the adaga that
it can be applied without any knowledge of likely estimatadcu-
racy levels.

Both formulations are applied to both synthetic and realldvor
data. The primary contributions of the paper are as follows:

n
F()?I) = Z revenue- X;
i=1
Similarly, the cost of implementing a set of requiremenfzee
sented b)b?i is:

n
cos()?ﬁ) = Z cost - X;
i=1
Given a budget ob, the single-objective NRP is a problem of

finding a decision vectoX such thatF(?) is maximised while
satisfyingcos(?) <hb:

n
Maximise Z revenue- X;
i=1

n
while subject toz cost-x <b

i=1

1. The paper shows how SBSE can be used as a technique for2-2 Multi-objective Next Release Problem

sensitivity analysis in requirements engineering.

. The paper presents two formulations of the NRP of require-

ments engineering and shows how SBSE can be used for both

formulations, presenting an evaluation using real worlda
and synthetic data.

identify unexpectedly sensitive requirements estimatgside
the decision maker, providing insight into the structure of
their estimate data.

2. BACKGROUND

The paper presents a sensitivity analysis for twitedént formu-
lations of the Next Release Problem (NRP): single-objectier-
sion and multi-objective version.

2.1 Single-objective Next Release Problem

The single-objective formulation follows the definition IRP
by Bagnall et al. [2]. First, it is assumed that for an exigtsoft-
ware system there is a set of possible software requireméats

noted by: R=A{rs,...,r}

For the sake of simplicity, it is also assumed that there idaro
pendency relation between those requirements. Bagndll eote
that any instance of NRP with dependency relation can be con-
verted to abasicNRP by merging the requirements that belong to
dependency chains [2].

The cost of fulfilling this set of requirements (1 < i < n) is

denoted by:
y Cost= {cost, ..., cost}

The expected revenue of every possible requirement is eénot

by:
y Revenue- {revenue,...,revenueg}

The decision problem form of NRP is the question of finding
the optimal subset(s) of requirements to maximise the tetanue
and minimise the cost of development.

The decision vectoﬁ(’, is represented by:

N
X =< Xg,.oo, Xn >

where theith element of is 1 if theith requirement is to be im-
plemented and 0 if it is not. Now, given an instance of the sleni
vector, )7; its fitness,F()?I), is the sum of expected revenues for
the requirements to be implementedﬁy

The multi-objective Next Release Problem (MONRP) is a multi
objective optimisation version of NRP. In multi-objectieptimi-
sation problems, there are multiple objectives expressditiness
functions, which are often in conflict with each other [14j.dase
of MONRRP, it can be said that the expected revenue and thé-deve
opment cost of a product are in conflict with each other.

. The paper shows how heat-maps can be used to intuitively The multi-objective formulation is defined following Zharg

al. [18]. Unlike the single-objective formulation, the tds no
longer a constraint. In multi-objective formulation, thevelop-
ment cost is minimised while the expected revenue is maxidnis

n
Maximise Z revenue- X, and
i=1

n
Minimise Z COoSt - X;
i=1
In multi-objective optimisation, a solution A is said to dorate

a solution B if and only if A is at least equal to B in all objec-
tives, and excels B in at least one objective. This is callec®-
optimality. As a result, a solution of a multi-objective opisation
problem is expressed in a Pareto-front, which is a set ofiphalt
solutions that do not dominate each other.

3. SENSITIVITY ANALYSIS IN NRP

Since the models used in the empirical studies are smallgtnou
to be solved quickly, @&rute forceapproach is implemented for
sensitivity analysis: simply modify the initial input daged run
the algorithm repeatedly to see how the result changes.ré-igu
illustrates the dference between the general optimisation process
and sensitivity analysis. The cost of each requirement idifiecl
to simulate the inaccurate estimation. The data are theinfed
a meta-heuristic optimisation algorithm designed for NRRich
will produce an alternative solution. The impact is thenlexted
by measuring the distance between the original solutionthad
alternative solution.

There are two critical elements that are required in ordsimi-
latewhat-if scenarios in which a particular estimation is inaccurate.
First, the algorithm used to solve NRP has to be deterministh-
erwise it is impossible to determine whether the observeshgh
in the result is due to the inaccurate estimation or the ramess
of the algorithm.

In most (if not all) of multi-objective evolutionary algohims,
Pseudo Random Numbers(PRId8} used in the procedure of evo-
lutionary calculation. For instance, pseudo random numbee
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Figure 1: Sensitivity Analysis Flow Chart

used in generating the initial population, selecting ths ini candi-
dates to perform mutation and crossover. Due to the inheagnat
domness of the evolutionary algorithms, and the fact thedrinot
guarantee the global optimum, every ‘run’ of the implem&ata
would provide a dierent result even if the input data are identical.
In order to perform the sensitivity analysis, we need toimiigtish
the diference between the indeterminacy of the algorithm itself an
the changes caused by the modification on the input data.

We introduce a fixed seed f&#RN to provide an identical se-
qguence of PRNs for each execution of the implementationagsz
the problem definition and the problem model are not changed d
ing the optimisation process, given the identical sequeh&RN,
we ensure that the change on the result is caused by the change
the input data only.

The second element required by sensitivity analysis is &odet
that can measure the changes brought in by the error in dgidrei
manner. If it is not possible to express the changes in ctading
forms, it would also be impossible to compare the critigadit er-
rors. The actual method of measurement is specific to theitiefin
and representation of the problem.

With the single-objective formulation, we evaluate thetience
between two decision vectors by their Hamming distances E&hi
possible because the greedy algorithm, which we use to siodve
single-objective NRP, produces a single solution to araimst of
NRP problem. However, the NSGA-II, which is the algorithm we
use to solve the multi-objective NRP, does not produce alesing
solution, but a set of solutions that form Pareto Frontiehere-
fore, the diference should be measured between two sets of solu-
tions (two optimal fronts), not two flierent solutions. In order to
measure the distance between two sets of solutions, the@eme
Distance is used [17]. It is based on the calculationEwtlidean
Distanceof the solutions between two fronts.

To calculate the distance between two frorts ,) of two dif-
ferent executions of optimisation, we defing (A;, ..., An) to de-
note then solutions belonging to front, while (By, By, ..., By)
denote them solutions belonging to front,, wheren andmare the
numbers of solutions contained by each front respectively.

The distance from solutioA to solutionB is the Euclidean dis-
tance between objective values normalised to [0,1]. In tee ©f
two-objectives NRP, the distance betwe®eandB is defined as:

Dis(A, B) = + v(Xa — Xo)? + (Ya — Yb)?

where, in our casex, and X, is the normalised overall cost for
solution A and B respectively whilg, andy, are the normalised
revenues.

The distance from one particular poitto f, is considered as
the same distance frofto its geometrically closest point on front
fp. Distance betweeA and frontf, is defined as:

Dis(A, f,) = Dis(A, B)

whereB is the closest point té on front fj,.

The distance from fronf, to f, is then calculated as the mean
value of the distance from every point énto fj.

Dis*(fa, fp) = w

wheren is the number of optimal solutions on frofit

Finally, in order to achieve fair contributions from bottoifits
to the distance calculation, we develop the formulatiorelcwdate
the distance between two Pareto frofgsind f, as below:

Dis*(fa, fo) + Dis* (fp, fa)
2

4. EXPERIMENTAL SETUP

The argument of the data sensitivity problem is based onghe a
sumption that some of the estimated quantitative data matato
some error. The amount of the actual error will be known ofly a
terwards. However, it is possible to measure the repemmossf
the potential errors by trying out variowghat-if scenarios. If an
introduction of a certain deliberate error to a specific phrtata
creates large amount of change in the final solution, it wdngd
safe to say that the specific part of data is highly sensitivart
error. With this knowledge, the decision maker can manag@athl
tential risks more #iciently, as well as concentrate on elaborating
the estimation of more sensitive data.

In case of NRP, the most important scenarios are the casas whe
the costs of some requirements are based on wrong estimatien
decision maker would want to know which requirement willatee
the most significant change in the final solution if there ieeor
in the estimation of its development cost. Therefore, tlemanos
in this case will be dferent versions of the data, each containing a
requirement with modified development cost. The altereagimu-
tion will be a subset of requirements selected based on tliiexb
data. If the alternative solution is radicallyfidirent from the origi-
nal solution, it indicates that the introduced error briinga signif-
icant change. If this process is repeated for each requirewith
the same margin of error, it is possible to identify the reguient
that is most sensitive to the same level of inaccuracy.

The intuitive answer to the cost sensitivity analysis peafblis
that the more expensive a requirement is, the bigger impagti i
have if its cost is estimated inaccurately. Similarly, indze said
that the more inaccurate the estimation is, the bigger itipadl
have on the result of NRP. We hereby call this fasitive Cor-
relation AssumptiofPCA). More specifically, we denote the first
assumption (between cost and impact) by PCA-1, and the decon
assumption (between inaccuracy and impact) by PCA-2. Tagse
sumptions are statistically tested against both synttegtit real-
world requirement data. For this, the empirical studiebsetithe
greedy algorithm and NSGA-II to single- and multi-objeetior-
mulations of NRP with deliberate errors in the data set.

4.1 Greedy Algorithm

The greedy algorithm is known to bdfieient and &ective for
0-1 knapsack problem, which is the basis of NRP. It is consitre
in nature and start with an empty set of selected requiremé&nt
each iteration, a requirement is added to the set until nibvdur
additions can be made without exceeding the given budgeé Th
choice of which requirement to select at each iteration idepiby
the fitness value.

First of all, all the requirements are sorted by their reweimde-
scending order and then by cost in ascending order if thedmees
are the same. All those requirements at the front of the quéllie
be then selected into the solution vector until the budgenddas

Distancéf,, f,) =




been reached. Algorithm 1 shows the pseudo-code of the greed and it was decided that they will always be included in thelfina

algorithm used in the paper.

input : N:number of requirements; cost; budget
output: solution; currentCost

1 Sort the requirements in the order of descending revenue
and then in the order of ascending cost if they share the
same revenue

2 fori «— 1toNdo

3 if currentCost+ cos(i) < budgetthen

4 currentCost— currentCost+ cos{(i);

5 solution(i) « 1;

6 end

7 end
Algorithm 1: Greedy Algorithm

4.2 NSGA-II

The recent implementation of NSGA-11[9] from Zhang et aB]1
for multi-objective NRP is used in a simplified version. iaity,
a random parent populatid®, is created. The population size is
N. The population is sorted using the non-dominated relation
Each solution is assigned a fitness value equal to its norirddion
level. Binary tournament selection, crossover, and nmutatiper-
ators are used to create a child populatignof sizeN. Then the
NSGA-II procedure goes to the main loop which is described in
Algorithm 2. Maximising the overall revenue and minimisitige
overall cost of each solution are considered as the two tigsc
for NSGA-II.

1 while not stopping ruledo
2 LetR =P U Q;

3 Let F = fast-non-dominated-soR);
4 LetPi=0andi=1;

5 while |Py,4| + |Fj] < N do

6 Apply crowding-distance-assignmeht];
7 LetPyi =Pui UF;

8 Leti=i+1;

9 end

10 Sort(Fi, < n);

11 LetPyy =Py UF; [1 . (N'|Pt+1|)];
12 Let Q1 = make-new-po,.1);

13 Lett=t+ 1;

14 end

Algorithm 2 : NSGA-II Algorithm

4.3 Requirement Data

The paper uses two sets of synthetically generated datalleasve
a set of real-world requirements data obtained from a |aigeom-
munication company. The first synthetic data is generatediypu
randomly, i.e. there is no correlation between the cost efjaire-
ment and its expected revenue, which is connected to itssfithe
value in the optimisation problem. The second set is geaérsd
that the cost of a requirement has a positive correlatioh itstex-
pected revenue. Each of the two sets of synthetic data cen3ai
requirements. The cost and revenue for each requiremegeare
erated using the uniform distribution over the interval bf {500]
and [1, 10] respectively. Comparing the results from thesesyn-
thetic data set allows us to test the statistical signifieasfd®CA.

The real-world requirement data is obtained from Motordta.
originally contains 40 dferent features that are interference-free,
i.e. any combination of which can be implemented into a singl
product. However, 5 features that represent the core fometity of
the product were combined by dependencies between thezsselv

selection of requirements. This left us 35 features withpose a
dependency relationship that it could be ignored.

4.4 Evaluation

We modify the cost of each requirement only one at a time us-
ing 21 diferent Percentage Increase in Actual Cost (PIAC) values
ranging from-50% to 50% with steps of 5%. A positive PIAC
value means that the actual cost has increased compareel ég-th
timated cost, which means an underestimation; a negatix€ Pl
value means that the actual cost has decreased comparede®-th
timated cost, which means an overestimation. The Hammigsg di
tance and the Euclidean distance between the results fromak-
ified data and the original data is used to quantify théedénce
observed in the multiple executions. Spearman’s rank lzdioa
codficient is used to test PCA and analyse how the changes on re-
sult relates to the modifications of initial data.

4.5 Research Questions

The paper presents the following research questi®@1 and
RQ2 concern the statistical significance of PCA.

RQ1: Does the sensitivity analysis confirm PCA-1, i.e. the cor-
relation between the cost of a requirement and its impact RR N
with statistical significance?

RQ2: Does the sensitivity analysis confirm PCA-2, i.e. the cor-
relation between the level of inaccuracy and its impact ofPMih
statistical significance?

RQ1andRQ2 s quantitatively answered using Spearman’s rank
correlation analysis in Section 5. The third research dgoe#ther-
ently requires qualitative analysis.

RQ3: Is there any exception to the general trend observed by
PCA?

RQ3is answered by analysing the heat-map visualisation in Sec-
tion 5.

5. RESULTS AND ANALYSIS

5.1 Result From Single-Objective Formulation

Figure Zshows four heat-map visualisations from the results of
sensitivity analysis on Motorola’s data set, using singbgective
formulation of NRP. Thex-axis corresponds to flierent instances
of NRP, sorted in ascending order of the budget assignedcto ea
instance. The-axis corresponds to flerent requirements, sorted
in ascending order of their estimated cost. The two heatsroap
the left show the Hamming distance between the originaldyree
algorithm solutions and the alternative solutions with @Malue of
+25%, i.e. the underestimate or overestimate error by 25%imar
Similarly, the two on the right show the results with PIACwalof
+50%, i.e. the underestimate overestimate error by 50% mafgi
darker colour represents a bigger Hamming distance.

The heat-map reveals the complex interaction between ttte bu
get and the revenue and cost of each requirement. A single re-
quirement shows varying levels of sensitiveness deperatintpe
combination of the budget and the margin of error. Howevanes
straightforward patterns can be easily observed. Finsirgon ex-
pensive requirements do not have any impact on smaller ibeidge
if the original estimated cost and the modified cost are batielr
than the given budget, of which the fact is reflected by thetevhi
area in the left lower corner of all four heat-maps. Secortierw
comparing the PIAC value of four heat-maps, the bigger PIAC

1The animated GIF that depicts the evolution of sensitivitybadget level
could be found at: httywww.dcs.kcl.ac.ulpg/renjiarigecco2009.gif.
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Figure 2: Hamming distance from the original solution to the solutionobtained by the greedy algorithm with PIAC value of +25%and +50%

value tend to bring more impact on the results. Third, whean-co
paring the cost of each requirement, more expensive regsines
tend to have bigger impact on the results. On the other hande s
cheaper requirements do not have any impact on the resuitif a
only if their cost is overestimated (PIAE—-25% —50%), in which

A few trends can be easily observed. First, one of the dominan
trends across all three data sets is that the distance betheerig-
inal and inaccurate front increases as PIAC value increaSes-
ond, when comparing the cost of those requirements, morenexp
sive requirements tend to have bigger impact on the restiisse

cases the amount of errors is too small to free enough space ontwo observations are statistically tested in Section 5.3.

given budget for a more expensive requirement to be filled e

last interesting observation is that some expensive reougnts but
with low revenue do not have any impact on Hamming distance
across all budget values, since these requirements aegsatd

the tail of the waiting queue, where the requirements ardikely

to be selected.

However, due to the existence of budget constraint, it ipost
sible to visualise the trend with respect to the cost, thecebqul
revenue, and the PIAC value at the same time. For this, wetdurn
the multi-objective formulation; since the Euclidean diste be-
tween two fronts incorporate fiierences in both the revenue and
the cost, we can observe the trend between PIAC and its impact

5.2 Result From Multi-Objective Formulation

Figure 3 shows the heat-map visualisation generated fram th
sensitivity analysis for the MONRP formulation. Theaxis repre-
sents diferent PIAC values, ranging from50% (overestimation)
to 50% (underestimation). Theaxis represents fierent require-
ments, sorted by their development cost. By cross-refergne
axis andy-axis, it is possible to observe how much impact it makes
to underestimate or overestimate the cost of a specific nement
by the given degree of error. The darker the colour is, thgdrig
impact the particular error has.

However, there are a few exceptions to the general trendai@er
requirement almost consistently has significant impacthenre-
sult. For example, the second requirement in the real-vetatd set
consistently produces a noticeable Euclidean distanece R6AC
value of—5% to—50%. This consistency provides two interesting
insights into the real-world data set. First, this paréculequire-
ment brings about significant impact on the result even wken i
cost is reduced only by 5% (PIAE —5%). Second, and more in-
terestingly, further reduction in its cost still producke same level
of impact up to reduction of 50% (PIAE -50%). This is due
to the fact that the particular requirement has the lowest and
lowest expected revenue among the requirements. It istpegsi
conclude that the threshold for overestimation of thisipalar re-
quirement is 5%. If the PIAC value reaches the thresholdeyahe
final solution will be diferent from the original solution.

5.3 Statistical Analysis

Figure 4 and Figure 5 show the boxplots of Euclidean distance
measured with dierent sets of data. Each boxplot in Figure 4
represents the Euclidean distances measured from alresgeints
that share the same value of development cost. Each boxplot i
Figure 5 represents the Euclidean distances measured froea a
quirements in the data set for a specific PIAC value. In both fig
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Figure 3: Euclidean distance between original estimated Pareto-frat Figure 4: Boxplots of Euclidean distances between Pareto-fronts for
and actual Pareto-front by different PIAC values. different costs of requirements
ures, the general trend is a positive correlation betweatidaan To test PCA statistically, Spearman’s rank correlationiocient
distance and PIAC or cost, meaning that larger PIAC values an p is used to quantitatively describe the relationship betwe
larger development cost will have greater impact on theltresu pairs of separate variables. On the other hand pthealue, which
The random data set with no correlation between cost and rev- is the result of the permutation test, indicates whetherctieu-
enue shows a several unique data points that do not followibe lated value ofp is significant to prove that there is a monotonic
all trend. The position and number of these exception cpoms relationship between the pair of variables. The smallethalue
to the exceptions observed in the corresponding heat-m&jmin is, the stronger monotonic correlation between the paioofgared
ure 3. This implies that, if the data set contains requirésérat variables exists. Ap-value of 0.05 indicates that 95 times in 100
do not fit the Positive Correlation Assumption, there areljikko the monotonic relationship between two sets of variablesiwed
exist exceptional requirements. With the random data sétpas- because a correlation exists, and not because of pure chance
itive correlation between cost and revenue, the PCA tremaboise Figure 4 and Figure 5 are statistically analysed using Sp&as

consistent and smooth. rank correlation analysis. The(rho) values and the corresponding
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Figure 5: Boxplots of Euclidean distances between Pareto-fronts for
different PIAC values

p-values are calculated and plotted in each figure. Allgh@lues
are very close to zero,which indicates strong monotonicetation
between each pair of variables, meaning that larger PIAGegl
and larger development cost will have greater impact ondhbelt.
The visual observations of general trend of PCA-1 and PCAe2 a
confirmed.

Table 1 shows the Spearman’s correlationfioent and thep-
values calculated for the relation between cost of requéramand
Euclidean distance between two Pareto fronts for Motosafiata
set on each level of PIAC. All the-values are smaller than 0.05
which indicates the strong monotonic correlation betwesst and
impact. Again, this confirms the general trend predicted GAHR
at each level of PIAC.

PIAC Pcost Pcost PIAC Pcost Pcost

+50% (06648 00000 -50% Q9246 Q0000
+45% Q8204 00000 -45% Q08918 Q0000
+40% Q7386 00000 -40% Q08912 Q0000
+35% Q8093 00000 -35% Q8940 00000
+30% Q7104 00000 -30% Q8646 Q0000
+25% Q6194 00001 -25% Q8520 Q0000
+20% Q5704 00003 -20% Q7560 Q0000
+15% Q8155 00000 -15% Q6370 Q0000
+10% 06256 00001 -10% Q4645 00049
+5% 04239 00112 -5% Q3600 00336

0% 05026 00021

Table 1. Spearman’s rank correlation codficient and p-values be-
tween cost and impact. For all PIAC values, the values are statistically
significant at the confidence level of 95%.

Req  ppiac p Req  ppiac P

1 09474 00000 19 07318 00002
2 08591 00000 20 08929 00000
3 0.8825 00000 21 07188 00002
4 0.8591 00000 22 08591 00000
5 09604 Q0000 23 07786 00000
6 09630 Q0000 24 07890 00000
7 0.7942 Q0000 25 08721 00000
8 0.7890 Q0000 26 09136 00000
9 09032 Q0000 27 06929 00005
10 04487 00413 28 08617 Q0000
11 08643 00000 29 2071 03676
12 08773 00000 30 08877 00000
13 09266 00000 31 09578 00000
14 03188 01589 32 08123 00000
15 06305 00022 33 09162 00000
16 08981 00000 34 08331 00000
17 02461 02822 35 07838 00000
18 06929 00005

Table 2: Spearman’s rank correlation codficient between PIAC value
and impact. For most requirements, the observeg values are statisti-
cally significant at the confidence level of 95%.

Similarly, Table 2 shows theg and thep-value for the PIAC val-
ues and Euclidean distance for each requirement from Miatsro
data set. Again, the result confirms the general trend pestlicy
PCA-2.

5.4 Answers to the Research Questions

RQ1 andRQ2 are answered by the statistical analysis shown in
Table 1 and Table 2. The Spearman’s rank correlatiorfictent
confirms that there exists a positive correlation betweerctst of
each requirement and the impact, and between the level ofura
racy and the impact. The correlation is statistically digant with
confidence level of 95%.

However, it is the overall trends and the exceptions obskive
Figure 3, Figure 4 and Figure 5 that would be of particulaeriest
to the decision maker. First, while the PCA is statisticalon-
firmed in general, there are exceptions to the trends. Inr&igu
the heat-map for the random data set with no correlation show
that the requirements that have relatively high and low ichfec-
tor from distinct horizontal bands. This phenomenon is veaakl
in the second heat-map for the random data set with comweldfii-
nally, the real world data shows much more complex patteiitis w
very few distinct horizontal bands.

Comparing the first and the second heat-map, it can be said tha
the correlation between the cost and the expected revente of
quirements is an important factor in sensitivity analysiglore
specifically, if it is likely that some requirements have hicpst
and low revenue, or vice versa, these requirements are fiketg |
to contribute to create the sensitive region in NRP solution

Figure 4 and Figure 5 also visually confirm PCA-1 and PCA-
2 respectively. In Figure 4, we can observe unique boxpldtis w
very small variance which correspond to the low-impact zantal



bands observed in the first heat-map in Figure 3. Anotheraste
ing observation found in Figure 5 is that overestimatiordteto
have bigger impact on the solutions of NRP than underestimat
boxplots on the right side of Figure 5 shows steeper incrgase
mean values than those on the left side. This trend has antery i
esting implication to practitioners, because under uaggies, a
human decision maker is more likely to overestimate thareresd
timate. This qualitative assessment of the statisticdlyarsaforms
the answer t&RQ3.

6. RELATED WORK

In the Next Release Problem (NRP), the goal is select an aptim
subset of requirements for the next release of a productndhg
et al. first suggested the term NRP and applied various modern
heuristics including greedy, hill climbers and simulateth@aling
algorithm [2]. Baker et al. [3] applied Search-Based Sofen&n-
gineering approach to NRP by using single objective optitis
algorithms: the greedy algorithm and the simulated anngaligo-
rithm. A variation of the problem using integer linear pragmming
is studied in Van den Akker’s work [16], to find exact soluton
within budgetary constraints.

Zhang et al. [18] introduced new formulations of Multi-otijiee
Next Release Problem(MONRP). In Zhang's MO-NRP formula-
tions, at least two parameters (possibly conflicting) aresiered
as two optimisation objectives simultaneously.

Sensitivity analysis has been widely applied in variouasiie-
cluding complex engineering system, environmental stjcieo-
nomics, health care, etc. [4, 7, 12, 13] It has been used asfone
the principal quantitative techniques in risk managemghtlf can
be used to provide an insight of the reliability and robussnef a
problem model result when making decisions [15]. Howees, t
present paper is the first to introduce Sensitivity Analysisiulti-
objective optimisation problem in the area of software ragring.

The proof-of-principle study by Deb et al. [8] introducedust
optimisation procedures to multi-objective optimisatjgmoblems
for the purpose of searching for robust Pareto-optimal tsmis
in multi-objective optimisation problems. It is worth mamting
that robust optimisation is concerned with finding areasefgo-
lution space that change little. Our approach to sensjtasialysis
is concerned with measuring the impact on the solution mego
to changes (small and large) in the components that servaite m
up a candidate solutions. Whereas robustness helps th&ateci
maker to choose a good solution, sensitivity analysis hiblpsie-
cision maker to re-focuss estimatiofiaet on the problem descrip-
tion data that most requires careful estimation.

7. CONCLUSIONS AND FUTURE WORK

The paper introduces an SBSE approach to identify requinesme
that are anomaly sensitive to inaccurate cost estimatiensifive
requirements are those that have significant impact on thedin
lution of NRP when their cost estimates are inaccurate. Hpep
presents an automated sensitivity analysis approach bassBSE
for both single- and multi-objective NRP formulations. Tiesults
of the sensitivity analysis is summarised in an intuitivatheap
style visualisation to aid the decision maker to identifpsigve
regions in the data.

Through the empirical studies of both synthetic and reaildvo
requirement data, the paper presents a statistical apahzti con-
firms the Positive Correlation Assumption, i.e. more expe&nge-
quirements and higher level of inaccuracies tend to havatgre
impact on NRP. However, the heat-map visualisation alsealsv
that there exist exceptions to this assumption. Identifyirese ex-
ceptions can guide the decision maker towards more accestite

mation and safer decision making. Future work will consitere

complex aspects of NRP such as complex dependency relaion b

tween requirements.
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