
Context-Sensitive Slicing of Concurrent Programs

Jens Krinke
Universität Passau
Passau, Germany

krinke@fmi.uni-passau.de

ABSTRACT
Program slicing is a technique to identify statements that may in-
fluence the computations at other statements. Precise slicing has
been shown to be undecidable for concurrent programs. This work
presents the first context-sensitive approach to slice concurrent pro-
grams accurately. It extends the well known structures of the con-
trol flow graph and the (interprocedural) program dependence graph
for concurrent programs with interference. This new technique
does not require serialization or inlining.

Categories and Subject Descriptors
D.2.5 [Software Engineering]: Testing and Debugging;
D.2.7 [Software Engineering]: Distribution, Maintenance, and
Enhancement—Restructuring, reverse engineering, and reengineer-
ing

Keywords
program analysis, program slicing, context-sensitive, concurrency,
parallelism

General Terms
Algorithms, Performance

1. INTRODUCTION
Today, even small programs use parallelism and languages like

Ada or Java have language features for concurrent execution built-
in. The analysis of programs where some statements may explicitly
be executed concurrently is not new. Thestatic analysis of these
programs is complicated because the execution order of parallel ex-
ecuted statements isdynamic. Testing and debugging of concurrent
programs have increased complexity: They may produce different
behavior even with the same input. The nondeterministic behavior
of a program is hard to understand and finding harmful nondeter-
ministic behavior is even harder. Therefore, supporting tools are
required. Unfortunately, most tools for sequential programs are
not applicable to concurrent programs as they cannot cope with the

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
ESEC/FSE’03,September 1–5, 2003, Helsinki, Finland.
Copyright 2003 ACM 1-58113-743-5/03/0009 ...$5.00.

Entry

read(n) i := 1 s := 0 p := 1 write(s)while (i<=n) write(p)

i := i + 1p := p * is := s + i

i := 1
read(n)

s := 0
p := 1
while (i<=n)

s := s + i
p := p * i
i := i + 1

write(s)
write(p)

Figure 1: A program dependence graph

nondeterministic execution order of statements. One simple way to
circumvent these problems is to simulate these programs through
sequentializedor serializedprograms [30]. These are programs
in which every possible execution order of statements is modeled
through a path where the statements are executed sequentially. This
may lead to exponential code explosion, which is unacceptable for
analysis. Therefore, special representations of parallel programs
have been developed.

In the following a new notation of concurrent programs is in-
troduced by extending the control flow graph (CFG) and program
dependence graph (PDG) to theirthreadedcounterparts tCFG and
tPDG. Based on these graphs a more precise slicing algorithm is
presented and it is shown how the basic model of concurrency can
be extended to allow synchronization and communication.

The rest of this paper is structured as follows: The next section
gives an example-based introduction to slicing of sequential and
concurrent programs. Section three defines slicing of concurrent
programs more formally and presents a high-precision approach
based on a simple model of concurrency which is extended in Sec-
tion four. Related work is discussed in Section five, followed by
conclusions.

2. SLICING
A slice extracts those statements from a program, that poten-

tially have an influence on a specific statement of interest which is
the slicing criterion. Originally, slicing was defined by Weiser in
1979; he presented an approach to compute slices based on itera-
tive data flow analysis [31, 32]. The other main approach to slicing
uses reachability analysis in program dependence graphs [8]. Pro-
gram dependence graphs mainly consist of nodes representing the
statements of a program and control and data dependence edges:

Control dependencebetween two statement nodes exists if one
statement controls the execution of the other.

c©ACM, 2003. This is the author’s version of the work. It is posted here by permission of ACM for your personal use. Not for redistribution.
The definitive version will be published in ESEC/FSE’03.

read a

read b

a = 2*b

print a

read c

Figure 2: A procedure-less program

Data dependencebetween two statement nodes exists if a defini-
tion of a variable at one statement might reach the usage of
the same variable at another statement.

An example PDG is shown in figure 1, where control dependence
is drawn in dashed lines and data dependence in solid ones. Weiser
used program slicing in debugging, nowadays slicing is used in
various other fields as base technology: e.g. testing, differenc-
ing, reengineering or model checking. A broad overview on slicing
techniques and applications is presented in [29].

2.1 Slicing of Sequential Programs

Example: Slicing without Procedures
Figure 2 shows a first example where we want to slice a program
without procedures. To compute the slice for the statementprint
a, we just have to follow the shown dependences backwards. In
this example there are two data dependences and the slice includes
the assignment toa and the read statement forb. In all examples
we will ignore control dependence and just focus on data depen-
dence for simplicity of presentation. Also, we will always slice
backwards from theprint a statement.

Slicing without procedures is trivial: Just find reachable nodes
in the PDG [8]. The underlying assumption is that all paths are
realizable. This means that a possible execution of the program
exists for any path that executes the statements in the same order.

read a

read b

a = 2*b

print a

proc Q():

a = a+1Q()

Q()

proc P():

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Trace:

P: read a

P: read b

Q: a = a+1

P: a = 2*b

Q: a = a+1

P: print a

Figure 3: A program with two procedures

Example: Slicing with Procedures
Now, in the extended example in figure 3, procedures are added.
If we ignore the calling context and just do a traversal of the data
dependences, we would add theread a statement into the slice
for print a . This is wrong because this statement has clearly no
influence on theprint a statement. Theread a statement just

CSS AVG A B C D E F G H I J K L M N

0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

2.00

2.25

2.50

2.75

3.00

3.25

3.50

3.75

4.00

1.67

1.23

Si ze
Time

Figure 4: Context-insensitive vs. -sensitive Slicing

has an influence on the first call of procedureQbuta is killed before
the second call to procedureQ through the assignmenta=2*b in
procedureP. Such an analysis is called context-insensitive because
the calling context is ignored. Paths are now considered realiz-
able only if they obey the calling context. Thus, slicing is context-
sensitive if only realizable paths are traversed. Context-sensitive
slicing is solvable efficiently—one has to generate summary edges
at call sites [11]: Summary edges represent the transitive depen-
dences of called procedures at call sites. During slicing, the sum-
mary edges are used and the traversal will consider edges entering
or leaving procedures in two separate passes. Thus, the computed
slice will be context-sensitive despite that the calling-context is not
handled explicitly.

Context-Sensitive vs. Context-Insensitive Slicing
To evaluate the effect of context-sensitivity onto precision, we have
implemented an infrastructure to compute PDGs for ANSI C pro-
grams. Within that infrastructure we have implemented and eval-
uated various slicing algorithms. The complete evaluation can be
found in [16]; here we will only compare the context-sensitive slic-
ing algorithm that uses summary edges with a context-insensitive
one. The context-insensitive slicing algorithm is just a simple graph
traversal of linear complexity. The context-sensitive algorithm is a
little bit more complex: It needs once a preprocessing stage of cubic
complexity to compute the summary edges, though the algorithm
itself has linear complexity because it is a two-pass graph traversal.
The test data were several programs of limited size: For each pro-
gram 200 to 10.000 slices have been computed depending on the
size of the program.

The evaluation in figure 4 shows that context-insensitive slic-
ing is very imprecise in comparison with context-sensitive slicing
(CSS). The lighter bars show how much larger the slices com-
puted by context-insensitive slicing on average are (for test pro-
gram A-N). The darker bars show how much longer it takes to com-
pute context-insensitive slices (ignoring the time needed to com-
pute summary edges). On average (AVG), the computed context-
insensitive slices are 67% larger than the context-sensitive slices.
This shows that context-sensitive slicing is highly preferable, be-
cause the loss of precision is not acceptable. A surprising result is
that the simple context-insensitive slicing isslower than the more
complex context-sensitive slicing: On average, context-insensitive
slicing needs 23% more time than context-sensitive slicing. The
reason is that the context-sensitive algorithm has to visit much fewer
nodes during traversal due to its higher precision.

read a

b = d

a = 2*b

print a

thread Q:thread P:
.
.
.
.
.
.
.
.

.

.

.

.

.

.

.

.

d = c

read c
.
.
.
.

Trace #1:

P: read a

Q: d = c

P: b = d

P: read c

P: a = 2*b

P: print a

Trace #2:

P: read a

P: b = d

P: read c

Q: d = c

P: a = 2*b

P: print a

Figure 5: A program with two threads

2.2 Slicing Concurrent Programs

Example: Slicing Concurrent Programs
Now, lets return to the example and move on to concurrent pro-
grams. In the example in figure 5 we have two threadsP andQ
that execute in parallel. In concurrent programs that share vari-
ables another type of dependence arises:interference[15]. Inter-
ference occurs when a variable is defined in one thread and used
in a parallel executing thread. In this example, there are two in-
terference dependences: One is due to a definition and a usage of
variabled, the other is due to accesses to variablec . A simple
traversal of interference during slicing will make the slice impre-
cise because interference may lead to unrealizable paths again. In
the example in figure 5, a simple traversal will include theread
c statement into the slice. But there is no possible execution where
the read c statement has an influence on the assignmentb=d .
A matching execution would require time travel because the as-
signmentb=d is always executed before theread c statement.
A path through multiple threads is now realizable if it contains a
valid execution chronology. We call slicingstate-sensitivewhen
the traversal through the PDG only considers realizable paths. At
any point, slicing will then only consider reachable states of the
program. However, even when only realizable paths are consid-
ered, the slice will not be as precise as possible.

Slicing may be imprecise
The reason for this imprecision is that parallel executing threads
may kill definitions of other threads. In the example in figure 6,
the read a statement is reachable from theprint a statement
via a realizable path. But there is no possible execution where the
read statement has an influence on theprint statement when
assuming that statements are atomic. Either theread statement
reaches the usage in the threadQ but is killed afterwards through
the assignmenta=2*b in threadP, or theread statement is imme-
diately killed by the assignmenta=2*b before it can reach the us-
age in threadQ. For procedure-less concurrent programs, we could
find an algorithm which obeys such killing and computes precise
slices. Anyhow, this is impossible for concurrent programs with
procedures: M̈uller-Olm has shown that precise context-sensitive
slicing of concurrent programs is undecidable in general [20]. He
used a reduction onto two-counter-state-machines. Another impor-
tant result has been proven by Ramalingam [24]. He showed that
context-sensitive analysis of concurrent programs with procedures
and synchronization is undecidable in general. This applies not
only to slicing but also to any data flow analysis. Therefore, we
have to use conservative approximations to analyze concurrent pro-
grams. First of all, synchronization can be ignored. In that case, the
results are still correct, only imprecise because unrealizable paths
are now allowed. This only leads to additional interference depen-

read a

read b

a = 2*b

print a

thread Q:

a = a+1

thread P:

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

read c

.

.

.

.

Trace #1:

P: read a

P: read b

P: read c

Q: a = a+1

P: a = 2*b

P: print a

Trace #2:

P: read a

P: read b

P: read c

P: a = 2*b

Q: a = a+1

P: print a

Figure 6: Another program with two threads

dences which cannot happen in real executions. If we use more
precisemay-happen-in-parallel (MHP)information (eg. from [22,
23]), some of those interference dependences can probably be re-
moved again making slicing a little bit more precise. Another sim-
ple approximation is state-insensitive analysis allowing time travel.
However, when we do state-insensitive slicing, we cannot use sum-
mary edges to be context-sensitive. Summary edges would ignore
the effects of parallel executing threads. So, we have to do context-
insensitive slicing and accept the much lower precision or we have
to inline called procedures.

Precise Slicing without Summary Edges
To be able to provide precise slicing without summary edges, we
have developed a new slicing algorithm [16] which is based on cap-
turing the calling context throughcall strings[28]. Call strings can
be seen as a representation of a virtual machine’s call stack. Call
strings can also be seen as virtual inlining. They are used frequently
for context-sensitive program analysis, e.g. pointer analysis. In
presence of recursion we have an infinite set of possible call strings
which makes analysis infeasible. To make the call strings finite, we
fold cycles in PDGs and replace them by a single node. This has
no effect on precision: If one node of a cycle is contained in a slice,
all other nodes have to be contained, too. A side effect is the size
reduction of program dependence graphs: On average 40% of the
nodes are removed, making slicing much faster. Because the graph
is acyclic after folding, only finite call strings can be generated.
The call strings are then propagated along the edges of PDG: At
edges that connect procedures the call string is used to check that a
call always returns to the right call site. Thus, call strings are never
propagated along unrealizable paths.

We have implemented the call string based slicing algorithm for
sequential ANSI C and compared it to the other slicing algorithms.
The result was not unexpected: This approach suffers from combi-
natorial explosion of the call strings, just like other call string based
data flow analysis algorithms. It is only usable if the length of the
call strings is limited to 2 or 3 elements—but length limitation of
call strings decreases the precision.

Interprocedural Slicing Concurrent Programs
The rest of this section will present the main idea of our approach to
slice concurrent programs. It is presented more formally in the next
section. The basic idea is the adaption of the call string approach to
concurrent programs. We assume that a concurrent program con-
sists of separate threads that do not share code and communicate
via shared variables. The context is now captured through one call
string for every thread. The context is then a tuple of call strings
which is propagated along the edges in PDGs. Again, the traver-
sal of intraprocedural edges does not change the call string of the
enclosing thread. The context can simply be propagated. During
traversal of interprocedural edges the call string of the enclosing

thread is used to check that a call always returns to the right call
site. This may generate a single new context.

The traversal of interference edges is much more complicated:
The call string of the newly reached thread is used to check that
the reached node is reachable from a node with the old (saved)
call string. To do that, we have to check every call string that the
reached node can possibly have. This can generate a set of new call
strings that have to be propagated.

To avoid combinatorial explosion of call strings, we pursue a
combined approach: using summary edges to compute the slice
within threads. Additionally, we only generate and propagate call
strings along interference edges if the slice crosses threads. With
this approach much fewer contexts are propagated and the length
limitation can be increased for higher precision. This only outlines
the idea of our approach. The next section presents a detailed de-
scription.

3. A CONTEXT-SENSITIVE APPROACH
For presentation purposes a simple model of concurrency will

be used. A concurrent program is assumed to consist of a set of
threadsΘ = {θ1, . . . ,θn}. Threads may be executed in parallel
on different processors or interleaved on a single processor. All
threads are started immediately after the program’s start and the
program exits after all threads have finished. The threads do not
share any code, communication is done via global variables, and
every statement is assumed to be atomic and synchronized prop-
erly. Every thread consists of a series of procedures which may call
each other but may not call a procedure from a different thread. One
of the procedures for every thread is the main procedure, which is
called from the runtime system after the corresponding thread has
started. The corresponding thread stops after the main procedure
returns. Synchronization is ignored for now (but will be discussed
later).

The individual procedures of a program are represented in con-
trol flow graphsGCFG

p = (Np,Ep,ns
p,n

e
p) for each procedurep with

node setNp and edge setEp. The statements and predicates are
represented by nodesn ∈ Np and the control flow between state-
ments is represented bycontrol flow edges(n,m) ∈ Ep, written as
n⇀ m. Two special nodesns

p andne
p are distinguished: TheSTART

nodens
p and theEXIT nodene

p which represent begin and end of

procedurep. The variables which are referenced at node1 n are de-
noted byref(n), the variables which are defined (or assigned) atn
are denoted bydef(n).

An interprocedural control flow graph(ICFG) is a directed graph
GICFG = (N?,E?,ns

0,n
e
0), whereN? =

⋃
pNp andE? = EC∪

⋃
pEp.

The calls are represented bycall and return edgesin EC: A call
edgee∈ EC is going from acall node n∈ Np to theSTART node
ns

q of the called procedureq. A return edgee∈ EC is going from
the EXIT nodene

q of the called procedureq back to the immediate

successor of call noden∈Np.2 Nodesns
0 andne

0 are theSTART and
EXIT node of the main procedure.

3.1 The Threaded Interprocedural CFG
Every threadt ∈ Θ can be represented with its interprocedural

control flow graphGICFG
t = (N?

t ,E?
t ,ns

t ,n
e
t). Because all threads

are independent, no edges exist between the control flow graphs of
two different threads. Thethreaded interprocedural CFG (tICFG)

1In the rest of this work we will use “node” and “statement” inter-
changeable, as they are bijectively mapped.
2There are two common variants: First, the immediate successor of
a call node is an explicitly defined return node. Second, the return
edge is going from theEXIT node to the call node itself.

GtICFG = (NΠ,EΠ,SΠ,XΠ) is simply the union of all ICFGs for
the different threads:

NΠ =
⋃
t∈Θ

N?
t

EΠ =
⋃
t∈Θ

E?
t

SΠ = {ns
t | t ∈Θ}

XΠ = {ne
t | t ∈Θ}

We make the following assumption:Π(t) exists and returns the
set of threads which may execute in parallel to threadt. In this
simple model, this is trivial:Π(t) = {t ′ ∈ Θ | t ′ 6= t}3. However,
the following will not rely on that to make more complex models
possible later on. The functionθ(n) returns for every noden its en-
closing thread. This function is statically decidable and can already
be generated during parsing and constructing the tICFG.

The main problem is context-sensitivity: This is handled with
explicit context through virtual inlining. It is assumed that the ex-
ecution state of a thread is encoded by a context in the form of
a (possibly infinite) call string. The call string is represented as
a stack of nodes, where the topmost node represents the currently
executing statement.

We first define when a contextreachesanother context:

Definition 1. The execution state of threadt is a context c=
n0 . . .nk, representing an execution stack of nodesni ∈ N?

t with the
topmost nodeT(c) = n0 (contextc belongs to the current noden0
and nodesn1 . . .nk represent call nodes). The ‘pop’ functionP is
defined asP(c) = n1 . . .nk. Let θ(c) = θ(T(c)).

A contextc directly reachesanother contextc′: c ⇀R c′, iff one
of the following alternatives holds:

1. an edgen ⇀ n′ ∈ E?
t exists andn ⇀ n′ /∈ EC

t ∧ T(c) = n ∧
T(c′) = n′ ∧ P(c) = P(c′)
(corresponding edge in the CFG of a procedure exists),

2. a call edgen ⇀ n′ ∈ EC
t exists andT(c) = n ∧ T(c′) = n′ ∧

c = P(c′)
(corresponding call edge exists), or

3. a return edgen ⇀ n′ ∈ EC
t exists and

(a) T(c) = n ∧ T(c′) = n′ ,

(b) P(P(c)) = P(c′) , and

(c) T(P(c)) ⇀ n′ ∈ (E?
t −EC

t)

(corresponding return edge exists which returns to an imme-
diate successor of the last call node).

A contextc reachesanother contextc′: c ⇀+
R c′, iff a series of con-

textsc1, . . . ,cn exists, withc = c1 ∧ c′ = cn ∧ ∀1≤i<nci ⇀R ci+1 .
The set of possible contexts for ICFGGt = (N?

t ,E?
t ,ns

t ,n
e
t) is Ct =

{c′ | ns
t ⇀+

R c′ ∨ c′ = ns
t }.

Note thatc ⇀+
R c′ implies the existence of an interprocedural

realizable path fromT(c) to T(c′). Also, θ(c) 6= θ(c′)⇒ c 6⇀+
R c′

because the ICFGs are disjunct.
Thethreaded interprocedural witnessis now defined in terms of

contexts:

3As the parallel execution relation is symmetric,t ′ ∈Π(t) ⇐⇒ t ∈
Π(t ′) holds. Note that the relation is neither reflexive nor transitive.

Definition 2. A sequencel = 〈c1, . . . ,ck〉 of contexts (execution
stacks) is athreaded interprocedural witnessin a tICFG, iff

∀1≤ j < i ≤ k : θ(c j) ∈Π(θ(ci)) ∨ c j ⇀+
R ci

Basically this means that all contexts in a thread must be reachable
from its predecessors if they cannot execute in parallel.

Intuitively, a threaded interprocedural witness can be interpreted
as a sequence of contexts that form a valid execution chronology.
Having a threaded witnessl = 〈c1, . . . ,ck〉 and a contextc, it can be
decided whetherl ′ = 〈c,c1, . . . ,ck〉 is a threaded witness without
checking the threaded witness properties ofl ′:

OBSERVATION 1 (PREPENDING). Let sequence l= 〈c1, . . . ,ck〉
be a threaded interprocedural witness. Then l′ = 〈c,c1, . . . ,ck〉 is a
threaded interprocedural witness, iff

∀1≤ i ≤ k : θ(ci) ∈Π(θ(c)) ∨ c ⇀+
R ci

This follows from definition 2.

Definition 3. Let l = 〈c1, . . . ,ck〉 be a threaded interprocedural
witness and threadt ∈Θ. F(l , t) is defined as:

F(l , t) =
{

ci ∃i : θ(ci) /∈Π(t)∧∀1≤ j < i : θ(c j) ∈Π(t)
⊥ otherwise

The result is basically the first context of witnessl relevant for the
execution of threadt (if such a context exists).

THEOREM 1 (SIMPLIFIED PREPENDING). Let sequence l=
〈c1, . . . ,ck〉 be a threaded interprocedural witness. Then sequence
l ′ = 〈c,c1, . . . ,ck〉 is a threaded interprocedural witness, iff

F(l ,θ(c)) =⊥ ∨ c ⇀+
R F(l ,θ(c))

PROOF. Proof by contradiction. First assume thatl and l ′ are
witnesses:

F(l ,θ(c)) 6=⊥ ∧ c 6⇀+
R F(l ,θ(c))

⇐⇒∃1≤ i ≤ k : ci = F(l ,θ(c)) ∧ c 6⇀+
R ci

From definition 3 followsθ(ci) /∈Π(θ(c)). Altogether:

∃1≤ i ≤ k : θ(ci) /∈Π(θ(c)) ∧ c 6⇀+
R ci

However, this is a contradiction to observation 1 becausel and l ′

are threaded witnesses.
Second, assume thatl is a witness whilel ′ is not.F(l ,θ(c)) =⊥

cannot hold, otherwisel ′ would be a threaded witness:

F(l ,θ(c)) =⊥ ⇒ ∀1≤ i ≤ k : θ(ci) ∈Π(θ(c))

Therefore assume thatc ⇀+
R F(l ,θ(c)) holds. Becausel ′ is not a

witness, from observation 1 follows

∃1≤ i ≤ k : θ(ci) /∈Π(θ(c)) ∧ c 6⇀+
R ci

This contradictsc⇀+
R F(l ,θ(c)) and therefore theorem 1 holds.

Having a threaded witnessl = 〈c1, . . . ,ck〉 and an edgen ⇀ n′

with T(c1) = n′, T(c) = n andc ⇀R c1, it can be decided whether
l ′ = 〈c,c1, . . . ,ck〉 is a threaded witness without checking the threaded
witness properties ofl ′:

THEOREM 2 (PREPENDING ANEDGE). Let l = 〈c1, . . . ,ck〉 be
a threaded interprocedural witness. If an edge T(c) ⇀ T(c1) ex-
ists, then l′ = 〈c,c1, . . . ,ck〉 is a threaded interprocedural witness.

PROOF. Three possibilities forT(c) ⇀ T(c1) exist: traditional
control flow, call or return edges. Letn = T(c) andn1 = T(c1).
Fromn ⇀ n1 ∈ E∗t follows θ(n) = θ(n1) andθ(c) = θ(c1). Using
observation 1:(

∀1 < i ≤ k : θ(ci) ∈Π(θ(c1)) ∨ c1 ⇀+
R ci

)
∧ c ⇀+

R c1
=⇒

(
∀1 < i ≤ k : θ(ci) ∈Π(θ(c)) ∨ c1 ⇀+

R ci
)
∧ c ⇀+

R c1
=⇒

(
∀1 < i ≤ k : θ(ci) ∈Π(θ(c)) ∨ c ⇀+

R ci
)
∧ c ⇀+

R c1
=⇒ ∀1≤ i ≤ k : θ(ci) ∈Π(θ(c)) ∨ c ⇀+

R ci

which is observation 1 itself.

The concept of threaded interprocedural witnesses is needed to
define slices in concurrent interprocedural programs based on the
threaded interprocedural PDG which is presented next.

3.2 The Threaded Interprocedural PDG
As threaded programs have a special representation in the control

flow graph, they also need special representation in the program
dependence graph to enable accurate slicing.

The extensions of the ICFG to the tICFG do not influence dom-
ination and control dependence. Data dependence in traditional
CFGs is based on reaching definitions. However, this is inadequate
for tICFGs as reaching definitions include definitions of parallel
executing threads. For slicing purposes it is desirable to separate
reaching definitions from parallel threads, which makes the data
dependence in non parallel threads computable by standard tech-
niques for sequential programs.

3.2.1 Interference Dependence
When a variable is defined in one thread and referenced in an-

other parallel executing thread,interferenceoccurs, which must be
represented explicitly.

Definition 4. A noden is calledinterference dependentonm, if

1. there is a variablev, such thatv∈ def(m) andv∈ ref(n), and

2. θ(m) ∈Π(θ(n))
(n andm may potentially be executed in parallel).

The dependences introduced by interference cannot be handled
with normal data dependence as normal dependence is transitive:
The transitivity of data and control dependence results from their
definitions where a sequential path between the dependent nodes is
demanded. The composition of paths in the CFG always results in a
path again. Interference dependence is not transitive: If a statement
x is interference dependent on a statementy, which is interference
dependent onz, thenx is only dependent onz iff there is a possible
execution where these three statements are executed one by one:
The sequence〈z,y,x〉 of the three statements has to be a threaded
witness in the tICFG.

Control and data dependence is computed for the different threads,
assuming that every thread is independent from all the others. This
results in a set of non-connected interprocedural program depen-
dence graphs—one IPDG for each thread. The next step is to com-
pute the interference dependence between threads. If a variable is
defined in one thread and referenced in another parallel executing
thread, an interference dependence edge is generated between the
corresponding nodes.

The threaded interprocedural PDG (tIPDG)is the union of the
IPDGs for each thread, connected by the interference dependence
edges. The control flow, call and return edges from the ICFG are
also present in the tIPDG (this is necessary for the later algorithm).
The usual call edges in IPDGs have to be distinguished from the

control flow call edges. Therefore, control flow edges will be de-
noted with⇀ and dependence edges with⇁. The different types of

dependence edges are distinguished by a labeld in
d
⇁, e.g. dd for a

data dependence edge
dd
⇁. An interference dependence edgen

id
⇁ m

will be inserted for all(n,m) if there is a variablev which is defined
at n, referenced atm andθ(n) ∈ Π(θ(m)) holds. Interference can
be computed more precisely by using a refinedΠ according to [17]
or [22, 23].

Definition 5. A path P = 〈n1, . . . ,nk〉 in a tIPDG is athreaded
interprocedural realizable path, iff

1. the path contains no edge from the control flow graph (con-
trol flow edges, control flow call or return edges):

n1
d1⇁ ...

dk−1
⇁ nk,

2. every sub-path without an interference edge is an interproce-
dural realizable path in the containing IPDG:

∀1≤ i < k, i < j ≤ k : (∀i ≤m< j : dm 6= id)⇒
〈ni , . . . ,n j 〉 is interprocedural realizable,

and

3. a threaded interprocedural witnessW exists and corresponds
to pathP:

∃W = 〈c1, . . . ,ck〉 : P = 〈T(c1), . . . ,T(ck)〉

If a noden is reachable fromn′ via a threaded interprocedural real-
izable path, it is denoted asn′ ⇁?

R n.

Slicing on the PDG of sequential programs is a simple graph
reachability problem because control and data dependence are tran-
sitive. As interference dependence is not transitive, this definition
of a slice for PDGs is not valid for tIPDGs and hence the standard
algorithms are not adequate.4 Therefore, slicing is now defined in
terms of threaded interprocedural realizable paths:

Definition 6. The (backward) slice Sθ(n) of a tIPDG at a node
n consists of all nodesm on which n depends transitively via a
threaded interprocedural realizable path:

Sθ(n) = {m |m⇁?

R n}

Definition 7. Theslice Sθ(c) in a tIPDG for a contextc consists
of all contextsc′ for which T(c) depends transitively onT(c′) via
a threaded interprocedural realizable path:

Sθ(c) = {c′ | ∃P = 〈T(c′), . . . ,T(c)〉 : T(c′) ⇁?

R T(c)}

with the additional constraint thatP’s threaded interprocedural wit-
nessW is W = 〈c′, . . . ,c〉. This definition stays the same for a slice
S(c) restricted to an IPDG.

These definitions of threaded interprocedural paths and slices are
not computable because the setC of possible contexts is infinite
when recursion exists in the analyzed program. However, the next
section will show a way to make the set of possible contexts finite
and thus slices computable.

4The “classical” definition of a slice is any subset of a program that
does not change the behavior in respect to the criterion: a program
is a correct slice of itself. Therefore, if interference is modeled
with normal data dependence, the resulting slices are correct but
imprecise.

3.3 Slicing the tIPDG
For reachability the amount of recursive calls is irrelevant and

cycles in the ICFG can be folded into a single node representing
the strongly connected region. There are two sources for cycles:

1. Loops in the program cause cycles only in the intraprocedu-
ral part of the CFG and have no ‘stacking’ influence on the
amount of possible contexts.

2. Recursive calls cause cycles over call and return edges. If
such cycles are replaced by a single node, reachability is not
realizable interprocedurally because call and return edges are
not matched correctly.

The cycles are replaced by a two pass approach to keep the match-
ing of call and return edges intact. The first pass finds and folds
strongly connected components in the ICFGs consisting of con-
trol flow and call edges but ignores return edges. The second pass
finds and folds cycles in the resulting graph consisting of control
flow and return edges (now ignoring call edges). This replacement
generates a functionρ that maps nodes from the original ICFG
G = (N?,E?,ns

0,n
e
0) to the new graphG = (N?

,E?
,ns

0,n
e
0):

ρ(n∈ N?) =

 n if ∀n
d1⇀ ...

dk⇀ n :
∃i, j : di = call∧d j = return

n′ /∈ N? otherwise

ρ(n) 6= n ⇔ ∀n
d1⇀ n1 . . .nk−1

dk⇀ n :(
∀i, j : di 6= call∧d j 6= return

)
⇒

(
∀i : ρ(ni) = ρ(n)

)
N? = {ρ(n) | n∈ N?}

Every interprocedural realizable path in the resulting graph has a
corresponding realizable path in the original graph. Due to unreal-
izable matchings of call and return edges, there are still cycles in
the graph.

Based on the newly created graphG the set of contexts and the
‘reaches’ relation between contexts are redefined: The execution
statec∈Ct of threadt is a stackc= n0 . . .nk of nodesni ∈N?

t with
the topmost nodeT(c) = n0. The ‘pop’ functionP is defined as
before:P(c) = n1 . . .nk.

Definition 8. A contextc1 ∈Ct reaches directlyanother context
c2 ∈Ct : c1 ⇀R c2, iff one of the following alternatives holds:

1. an edgen1 ⇀ n2 ∈ E?
t exists withn1 ⇀ n2 /∈ EC

t and where
T(c1) = ρ(n1) ∧ T(c2) = ρ(n2) ∧ P(c1) = P(c2)
(corresponding edge in the CFG of a procedure exists),

2. a call edgen1 ⇀ n2 ∈ EC
t exists and

(a) T(c1) = ρ(n1)∧T(c2) = ρ(n2),

(b) T(c1) 6= T(c2) → c1 = P(c2) , and

(c) T(c1) = T(c2) → c1 = c2

(corresponding call edge exists), or

3. a return edgen1 ⇀ n2 ∈ EC
t exists and

(a) T(c1) = ρ(n1) ∧ T(c2) = ρ(n2) ,

(b) T(c1) 6= T(c2) →
P(P(c1)) = P(c2)
∧ ∃n3 ⇀ n2 ∈ (E?

t −EC
t) : ρ(n3) = T(P(c1)) ,

and

(c) T(c1) = T(c2) → c1 = c2

(corresponding return edge exists, leading to a return node
which matches the last call node).

A contextc reachesanother contextc′: c ⇀+
R c′, iff a series of con-

textsc1, . . . ,cn exists with c = c1 ∧ c′ = cn ∧ ∀1≤i<nci ⇀R ci+1 .
The set of possible contexts for ICFGGt = (N?

t ,E?
t ,ns

t ,n
e
t) is Ct =

{c′ | ρ(ns
t) ⇀+ c′ ∨ c′ = ρ(ns

t)}.

With this definitionCt must be finite because traversing call edges
does not ‘stack’ call nodes inside recursive cycles.

Now, a contextc1 = n0 . . .nk reaches another contextc2 = m0 . . .ml
(c1,c2 ∈Ct) in terms of definition 1, iffc1 = n0 . . .nk′ reachesc2 =
m0 . . .ml ′ in terms of definition 8 (c1,c2 ∈ Ct), where
ρ(n0) . . .ρ(nk) = n0

i1 . . .nk′
ik′ ∧ ρ(m0) . . .ρ(ml) = m0

j1 . . .ml ′
j l ′ .

Based on this observation, definition 8 can now be used in the
definitions and theorems about threaded interprocedural witnesses.
Hence it is decidable and computable whether a path in a tIPDG
is threaded interprocedural realizable. Thus, slicesSθ(c) can be
computed using definition 8, denoted asSθ(c) andS(c).

A naive implementation would enumerate the possible paths to
the slicing criterion node and check them to be threaded interpro-
cedural realizable paths. This way is too expensive and various
approaches are combined to a more efficient approach for slicing
based on tIPDGs, shown in algorithm 1. There, the extraction of
the ith elementci in a tupleΓ = (c1, . . . ,cn) is denoted byΓ[i]. The
substitution of theith elementci in a tupleΓ = (c1, . . . ,cn) with
a valuex will be denoted as[x/i]Γ. Its basic idea is the coding
of possible execution states of all threads in tuples(c1, . . . ,c|Θ|−1),
where theci are contexts (in the tIPDG). The valueci represents
that it is still possible to reach contextci in threadθi (a value of
⊥ does not restrict the state of execution). This is used to keep
track of the contextci where threadθi has been left by following
an interference edge. If another interference edge is followed back
into the thread at nodeq, the reachability ofc from the contexts
c′ of q (q = T(c′)) can be checked. It assures that paths over in-
terference edges are always threaded witnesses in the tICFG. This
is the reason why the control flow edges have to be kept in the
tIPDG. Reachability can be computed without checking threaded
witness properties, because the simplified prepending theorem 1
allows checking based on the last reached context in a thread (the
first element of a threaded witness relevant to the thread).

The algorithm keeps a worklist of pairs of contexts and state tu-
ples which have to be examined. For computation of the sliceS(c)
inside a thread (not shown in algorithm 1), every edge reaching the
top node of the current context is examined and handled dependent
on its type. A new pair consisting of the new context and the mod-
ified state tuple is inserted into the worklist. According to theorem
2 this is done without checking the threaded witness property.

Interference edges are ignored while computingS(c), they are
handled explicitly in algorithm 1. An interference dependence edge
may only be considered if the (old) context relevant to the source
node thread is reachable from a context at the source node in the
tICFG (all examined paths are still threaded witnesses). Then, the
new pair with the updated state tuple is inserted into the worklist.
The resulting slice is the set of nodes which is constructed out of
the first elements of the inserted pairs.

Algorithm 1 contains two bottlenecks which are eased in the fol-
lowing: the computation ofCt(n) andS(c). The idea of subsuming
call strings is used to build subsuming contexts: With subsuming
contexts,Ct(n1) just contains one elementn1� which subsumes all
contextsn1 . . .nk ∈Ct(n1). Now, the third constraint of definition
8 has an alternative:

A return edgen1 ⇀ n2 ∈ EC
t exists and either con-

straint 3 of definition 8 holds or

Algorithm 1 Slicing Algorithm for tIPDGs,Sθ

Input: The tIPDGG = (NΠ,EΠ,SΠ,XΠ)
The slicing criterions∈ NΠ

Output: The sliceS, a set of nodes of the tIPDG

Let Ct(n) be a function which returns the set of possible contexts
for a noden in IPDGGt .

Initialize the worklist with an initial state tuple:
Γ = (ne

θ1
, . . . ,ne

θ|Θ|), every thread is at its end node

W = {(c,Γ′) | t = θ(s)∧c∈Ct(s)∧Γ′ = [c/t]Γ}
M = W, Mark the contents of the worklist

repeat
Remove the next element w= (c,Γ) from W:
W = W−{w}
S= S∪{n | ρ(n) = T(c)}

Compute a sliceS(c) for c in the IPDGGt .
Compute the set of node and contexts with≥1 incoming
interference dependence edges:

I = {c′ ∈ S(c) | ∃n∈ NΠ : n
id
⇁ T(c′)}

foreach i ∈ I do

foreachedgen
id
⇁ n′, ρ(n′) = T(i)do

t = θ(T(i)) current thread
t ′ = θ(n) reached thread
Γ′ = [i/t]Γ
Compute valid contexts in the reached thread:
C′ = {c′ | c′ ∈Ct ′(n)∧c′ ⇀+

R Γ[t ′]}
Fill the worklist:
foreachw′ ∈ {(c′′, [c′′/t ′]Γ′) | c′′ ∈C′} do

if w′ /∈M then
M = M∪{w′}
W = W∪{w′}

until W = /0
return S

1. c1 = ρ(n1)� ∧ T(c2) = ρ(n2) and

2. T(c1) = T(c2) → c1 = c2

(return edge exists which returns to a node matching�
automatically).

In particular, traversal of a return edgen1 ⇀ n2 from a context
ρ(n1)� leads to a contextρ(n2)�.

The second bottleneck is the computation of sliceS(c). Section
2.2 showed that the computation based on explicit context may suf-
fer from combinatorial explosion. Because the computation is re-
stricted to an IPDG, summary edges can be generated and used
for more efficient slicing. Instead of computing an expensive slice
S(c), a traditional slice using summary edges is computed. In this
slice, all nodes are identified with at least one incoming interference
dependence edge. For each of these nodes, a chop is computed
between the node and the original slicing criterion. This chop is
truncated non-same-level which can be computed efficiently [25].
Now, only along nodes in this chop the more expensive sliceS(c) is
computed. This is much more efficient because a far smaller set of
nodes is visited. In algorithm 2, only the modifications to algorithm
1 implementing this improvement are shown.

Algorithm 2 Improved Slicing Algorithm for tIPDGs

...
foreach t ∈Θ do

Generate summary edges and transform IPDGGt into a SDG
...
repeat

Remove the next element w= (c,Γ) from W:
W = W−{w}.
Nc = {n | ρ(n) = T(c)}
S= S∪Nc

Compute a sliceS(n′) for onen′ ∈ Nc in the SDGGt .

IN = {n1 ∈ S(n′) | ∃n2 ∈ NΠ : n1
id
⇁ n1}

Nodes in the slice with≥1 incoming interference dep. edges.

foreach iN ∈ IN do
Compute a truncated non-same-level chopCTN(iN,n′)
Compute a sliceS(c) only along nodes inCTN(iN,n′).
foreach i ∈ S(c) | T(c) = ρ(iN) do

foreach incoming interference dep. edgen
id
⇁ T(i)do

t = θ(T(i)) current thread
t ′ = θ(n) reached thread
...

until W = /0
return S

4. EXTENSIONS
For simplicity, additional features of threaded programs have not

been looked at so far. Most models of parallel execution include
some methods of synchronization. Two such methods are synchro-
nized blocks and send/receive communication, which will be dis-
cussed in the following, including a look at other models of con-
currency.

4.1 Synchronized Blocks
Synchronized blocks are blocks of statements that are executed

atomically: Interference cannot arise inside such a block. An ex-
ample for an instance are monitors:

...
5 synchronized {
6 x = y;
7 if (z > 0)
8 x = x + z;
9 }

...

In this example, interference cannot happen to the variablesx , y
andz while the synchronized block is executing: The usage ofx in
line 8 can only be data dependent on line 6. However, both defini-
tions in line 6 and line 8 can interfere with any usage or definition
of the same variable in other threads.

One possibility is to ignore the synchronization statement and
treat synchronized blocks as normal blocks. This is a conservative
approximation and will only add unrealizable interference. The
precise solution is to compute the set of definitions reaching the
end of the synchronized block and the set of usages reaching the
entry.

Definition 9. A nodem is interference dependenton noden, if

1. there is a variablev, such thatv∈ def(n) andv∈ ref(m),

2. n is not embedded in a synchronized block or the definition
atn reaches the exit of the synchronized block,

3. m is not embedded in a synchronized block or the usage atm
reaches the entry of the synchronized block, and

4. θ(n)∈Π(θ(m)) (n andmmay potentially be executed in par-
allel) or the synchronized blocks ofn andm would poten-
tially execute in parallel without synchronization.

To improve the precision of the interference dependence edges,
the MHP information in [22, 23] can be (and should be) used.

4.2 Communication via Send/Receive
If two threads exchange information via send and receive com-

munication, the execution of the receiving thread may block until
the sending thread has sent some information. This has three effects
on control and data dependence:

1. The exchange of information creates a data dependence be-
tween the sending and receiving statement. To distinguish
it from normal data dependence, such dependence may be
called communication dependence. In order to omit time
travel, communication dependence must be treated like in-
terference dependence during slicing.

2. Because the execution at a receive may be blocked until some
other thread sends some data, the computation ofΠ becomes
more complex. However, a conservative approximation is to
ignore such blocking as theΠ function will still return an
(imprecise) superset of the realizable relations.

3. A receiving statement that may block (together with its suc-
cessors) can be seen as control dependent on the sending
statement. This control dependence can be computed simply
by inserting the communication dependence into the control
flow graph and treat it as a control flow edge.

4.3 Other Models of Concurrency
The presented simple model of concurrency is similar to the Ada

concurrency mechanism, except for synchronization. To model the
Ada-style rendezvous, the send/receive-style communication can
be used.

To allow code sharing between threads, the duplication of the
shared code is sufficient. Every thread will then have its own in-
stance of the shared code.

The synchronization extensions can also be used to represent a
concurrency model where the different threads are allowed to be
started and stopped from other threads. This is similar to the con-
currency model of Java. However, in Java, threads are generated
dynamically which cannot be represented in the simple concur-
rency model. Therefore, data flow analysis is needed to compute
a conservative approximation of the set of possible threads. The
(now) static set can be represented in the simple concurrency model
with synchronization extensions, enabling more precise slicing of
concurrent Java programs.

The send/receive-style synchronization can also be used to sim-
ulate a cobegin/coend parallelism within the presented model: The
branches of the cobegin/coend statement are transformed into sin-
gle threads. At cobegin, synchronization statements that start the
newly created threads are introduced, and at coend, synchroniza-
tion statements are introduced to wait until the newly created threads

have finished. This requires a modifiedΠ-function—the earlier
trivial definition of Π has never been exploited in a proof and thus,
the presented theorems are not weakened.

5. RELATED WORK
There are many variations of the program dependence graph for

threaded programs like parallel program graphs [26, 4, 3, 6, 2].
Most approaches to static or dynamic slicing of threaded programs
are based on such dependence graphs.

Dynamicslicing of threaded orconcurrentprograms has been
approached by different authors [18, 5, 6, 14, 12, 9] and is surveyed
in [29]. Probably the first approach forstatic slicing of threaded
programs was the work of Cheng [3, 35, 4]. He introduced some
dependences which are more specialized than the previously pre-
sented dependences. These are needed for a variant of the PDG, the
program dependence net(PDN). Hisselectiondependence is a spe-
cial kind of control dependence; hissynchronizationdependence
is basically control dependence resulting from the previously pre-
sented communication dependence. Cheng’scommunication de-
pendenceis a combination of data dependence and the presented
communication dependence. Although the tIPDG is not mappable
to his PDN and vice versa, both graphs are similar in the number
of nodes and edges. Cheng defines slices simply based on graph
reachability. The resulting slices are not precise, as they do not
take into account that dependences between parallel executed state-
ments are not transitive. Therefore, the integration of his technique
of slicing threaded programs into slicing threaded object oriented
programs [35, 36, 33, 34] has the same problem.

After the first publication of our previous work on slicing of con-
current programs [15] more work onprecisestatic slicing has been
done: [21] improves the earlier version of the presented work and
[1] is a different approach but also based on dependence graphs.

There is a series of works which use static slicing of concur-
rent programs but treat interference transitive and accept the im-
precision: [10, 7] present the semantics of a simple multi-threaded
language that contains synchronization statements similar to the
Java virtual machine. Based on this statements, they introduce
and define additional types of dependence: divergence dependence,
synchronization dependence and ready dependence. [19] applies
Cheng’s approach to slice Promela for model checking purposes.

Data flow analysis frameworks exist also for multi-threaded pro-
grams: [13] uses a cobegin/coend model of parallelism. Seidl [27]
presents a framework for the problems of strong copy constant
propagation and (ordinary) liveness of variables in concurrent pro-
grams. He proves that these problems have the same complexity
in both sequential and parallel cases. Slicing is a harder problem
than reaching definitions. Proofs for lower bounds can be found in
[20, 24]. Both show that precise slicing of concurrent programs is
undecidable in the interprocedural case.

6. CONCLUSIONS
All previous approaches known to the author to slice concurrent

programs precisely rely on the inlining of called procedures ([21,
1]). The presented approach is the first which is able to slice con-
currentrecursiveprograms accurately.

The presented approach is precise up to threaded interprocedural
realizable paths. The undecidability result in [24] does not apply
to the simple model as it does not contain synchronization. Our
approach is not optimal in terms of [20]—their undecidability re-
sults apply to the model used here: It is possible that a thread kills
a definition in a different thread. Within the presented approach we
have ignored such killing. To explore how much precision is lost

through this approach, we have done another experiment: We have
modified the underlying data flow analysis for sequential ANSI C
to ignore killing. A definition is now never killed by another def-
inition. This adds more data dependences to the PDG. The results
were quite surprising: On average, the generated slices are only
5% larger than before. With this result we argue that ignoring the
killing effects of parallel executing threads has only a small influ-
ence on precision.

Acknowledgements:Silvia Breu, Maximilian Sẗorzer and Chris-
tian Hammer provided valuable comments on an earlier version of
this paper.

7. REFERENCES
[1] Z. Chen and B. Xu. Slicing concurrent java programs.ACM

SIGPLAN Notices, 36(4):41–47, 2001.
[2] Z. Chen, B. Xu, J. Zhao, and H. Yang. Static dependency

analysis for concurrent ada 95 programs. In7th Ada-Europe
International Conference on Reliable Software Technologies,
pages 219–230, 2002.

[3] J. Cheng. Slicing concurrent programs. InAutomated and
Algorithmic Debugging, 1st International Workshop,
AADEBUG’93, pages 223–240, 1993.

[4] J. Cheng. Dependence analysis of parallel and distributed
programs and its applications. InInternational Conference
on Advances in Parallel and Distributed Computing, 1997.

[5] J.-D. Choi, B. Miller, and R. Netzer. Techniques for
debugging parallel programs with flowback analysis.ACM
Trans. Prog. Lang. Syst., 13(4):491–530, 1991.

[6] E. Duesterwald, R. Gupta, and M. L. Soffa. Distributed
slicing and partial re-execution for distributed programs. In
5th Workshop on Languages and Compilers for Parallel
Computing, pages 497–511, 1992.

[7] M. B. Dwyer, J. C. Corbett, J. Hatcliff, S. Sokolowski, and
H. Zheng. Slicing multi-threaded java programs: A case
study. Technical Report KSU CIS TR 99-7, Department of
Computing and Information Sciences, Kansas State
University, 1999.

[8] J. Ferrante, K. J. Ottenstein, and J. D. Warren. The program
dependence graph and its use in optimization.ACM Trans.
Prog. Lang. Syst., 9(3):319–349, 1987.

[9] D. Goswami and R. Mall. Dynamic slicing of concurrent
programs. InHigh Performance Computing - HiPC 2000,
7th International Conference, pages 15–26, 2000.

[10] J. Hatcliff, J. C. Corbett, M. B. Dwyer, S. Sokolowski, and
H. Zheng. A formal study of slicing for multi-threaded
programs with JVM concurrency primitives. InStatic
Analysis Symposium, pages 1–18, 1999.

[11] S. B. Horwitz, T. W. Reps, and D. Binkley. Interprocedural
slicing using dependence graphs.ACM Trans. Prog. Lang.
Syst., 12(1):26–60, 1990.

[12] M. Kamkar and P. Krajina. Dynamic slicing of distributed
programs. InInternational Conference on Software
Maintenance, pages 222–231, 1995.

[13] J. Knoop, B. Steffen, and J. Vollmer. Parallelism for free:
Efficient and optimal bitvector analyses for parallel
programs.ACM Trans. Prog. Lang. Syst., 18(3):268–299,
1996.

[14] B. Korel and R. Ferguson. Dynamic slicing of distributed
programs.Applied Mathematics and Computer Science
Journal, 2(2):199–215, 1992.

[15] J. Krinke. Static slicing of threaded programs. InProc. ACM
SIGPLAN/SIGFSOFT Workshop on Program Analysis for

Software Tools and Engineering (PASTE’98), pages 35–42.
ACM Press, 1998. ACM SIGPLAN Notices 33(7).

[16] J. Krinke. Evaluating context-sensitive slicing and chopping.
In International Conference on Software Maintenance, pages
22–31, 2002.

[17] C. E. McDowell and D. P. Helmbold. Debugging concurrent
programs.ACM Computing Surveys, 21(4):593–622, 1989.

[18] B. P. Miller and J.-D. Choi. A mechanism for efficient
debugging of parallel programs. InACM SIGPLAN’88
Conference on Programming Language Design and
Implementation, pages 135–144, 1988.

[19] L. Millett and T. Teitelbaum. Slicing promela and its
applications to model checking. InProceedings of the 4th
International SPIN Workshop, 1998.

[20] M. Müller-Olm and H. Seidl. On optimal slicing of parallel
programs. InSTOC 2001 (33th ACM Symposium on Theory
of Computing), pages 647–656, 2001.

[21] M. G. Nanda and S. Ramesh. Slicing concurrent programs.
In International Conference on Software Testing and
Analysis (ISSTA 2000), pages 180–190, 2000.

[22] G. Naumovich and G. S. Avrunin. A conservative data flow
algorithm for detecting all pairs of statements that may
happen in parallel. InProceedings of 6th International
Symposium on the Foundations of Software Engineering,
pages 24–34, 1998.

[23] G. Naumovich, G. S. Avrunin, and L. A. Clarke. An efficient
algorithm for computing mhp information for concurrent
java programs. In O. Nierstrasz and M. Lemoine, editors,7th
ACM SIGSOFT Symposium on the Foundations of Software
Engineering, volume 1687 ofLNCS, pages 338–354.
Springer, 1999.

[24] G. Ramalingam. Context-sensitive synchronization-sensitive
analysis is undecidable.ACM Trans. Prog. Lang. Syst.,
22(2):416–430, 2000.

[25] T. Reps and G. Rosay. Precise interprocedural chopping. In
Proceedings of the 3rd ACM Symposium on the Foundations
of Software Engineering, pages 41–52, 1995.

[26] V. Sarkar and B. Simons. Parallel program graphs and their
classification. InProc. 6th Workshop on Languages and
Compilers for Parallel Computing, pages 633–655, 1993.

[27] H. Seidl and B. Steffen. Constraint-based inter-procedural
analysis of parallel programs. InProceedings of ESOP’00,
9th European Symposium on Programming, volume 1782 of
LNCS, 2000.

[28] M. Sharir and A. Pnueli. Two approaches to interprocedural
data flow analysis. InProgram Flow Analysis: Theory and
Applications, pages 189–233. Prentice-Hall, 1981.

[29] F. Tip. A survey of program slicing techniques.Journal of
programming languages, 3(3), 1995.

[30] N. Uchihira, S. Honiden, and T. Seki. Hypersequential
programming.IEEE Concurrency, pages 44–54, 1997.

[31] M. Weiser.Program slices: formal, psychological, and
practical investigations of an automatic program abstraction
method. PhD thesis, University of Michigan, Ann Arbor,
1979.

[32] M. Weiser. Program slicing.IEEE Trans. Softw. Eng.,
10(4):352–357, 1984.

[33] J. Zhao. Multithreaded dependence graphs for concurrent
java programs. InProceedings of 1999 International
Symposium on Software Engineering for Parallel and
Distributed Systems, pages 13–23, 1999.

[34] J. Zhao. Slicing concurrent Java programs. InProceedings of
the 7th IEEE International Workshop on Program
Comprehension, pages 126–133, 1999.

[35] J. Zhao, J. Cheng, and K. Ushijima. Static slicing of
concurrent object-oriented programs. InProceedings of the
20th IEEE Annual International Computer Software and
Applications Conference, pages 312–320, 1996.

[36] J. Zhao, J. Cheng, and K. Ushijima. A dependence-based
representation for concurrent object-oriented software
maintenance. InProcedings of the 2nd Euromicro
Conference on Software Maintenance and Reengineering,
pages 60–66, 1998.

