
Using Eclipse in Distant Teaching of Software Engineering

Philipp Bouillon
Philipp.Bouillon@FernUni-Hagen.de

Jens Krinke
Jens.Krinke@FernUni-Hagen.de

Software Engineering Group
FernUniversität in Hagen

Abstract

Software engineering education is most often comple-
mented by a software engineering project where a team of
students has to develop a large software system. At a dis-
tance teaching university such projects challenge the stu-
dents in communication and collaboration, because team
members work in different places, many miles away from
each other. We present anECLIPSE-based unified platform
that leverages available tools and solutions and discuss the
problems involved. Besides using plug-ins that support the
students during implementation, our platform integrates a
collaborative distant education environment and a software
project management system that will ease the students’ col-
laboration in the software engineering project.

1. Introduction

Teaching software engineering at a university is a multi-
level education starting with teaching programming up to
teaching advanced topics. Software engineering education
has to be accompanied with hands-on experience, typically
in software engineering projects where the students have to
work in teams to develop a complete software system. Such
projects have the goals that students (1) design, validate,
verify, implement, and maintain software systems, (2) un-
derstand processes and models, and (3) obtain and improve
team and communication skills. A major requirement is that
the projects are realistic, i.e. the system to be implemented
is of a non-trivial size and the students use realistic (or even
better, real) tools.

At the FernUniversität in Hagen, the first distance teach-
ing university in Germany, most software engineering
courses are taught completely as distant learning courses
(online or via snail-mail). However, the software engineer-
ing projects in the graduate level have to pay special atten-
tion to problems arising from the distribution of our stu-
dents, because the students are not working together at the
same place, but rather they are all working at home, possi-

bly hundreds of miles away from the others. At present, the
students visit the university in Hagen to form their teams
and to be introduced to the projects circumstances. Then
they return to their respective homes, implement their part
within the IDE of their choice1, and discuss their work and
communicate via a system calledCURE(Collaborative Uni-
versal Remote Education environment) [3], the collabora-
tion platform of the FernUniversität.

Several problems arise as a consequence of this situation
with respect to the software engineering project:

Communication. Students at the FernUniversität usually
use electronic means to communicate, i.e. mail, instant
messaging, and telephone. However, as all students
have individual working habits, most communication
is asynchronous.

Collaboration. Because students don’t work on campus
(or even better, in central computer pools), they also
have to use electronic means for collaboration. Even
worse, because of asynchronous communication, they
need support to find outwhat has been done in the
projectandwhat needs to be done.

Our goal is to create a uniform environment based on
ECLIPSEwhich will allow for students located in different
areas to collaborate in a team to produce a large software
system. To accomplish this goal, we need to incorporate
existing tools intoECLIPSEand provide somegluing-code
which allows for the plug-ins to work together. As soon
as this platform works, “traditional” universities will bene-
fit from the IDE as well, because the processes taught and
supported by theIDE also apply.

Section 2 gives an overview about the current situation in
teaching Software Engineering with Eclipse including a de-
tailed description of the problems involved. Our approach
of an Eclipse basedIDE to support distant teaching is de-
picted and discussed in Section 3. Section 4 presents future
work while finally Section 5 concludes the article with a
summary.

1Often enough, they useECLIPSEalready

1



2. The situation today

Every software engineering student must learn how to
write programs at the beginning. Because the education of
programming is so important, a number of tools and en-
vironments to facilitate the teaching exist. Focusing on
ECLIPSE, there are a number of plug-ins readily available
which introduce new perspectives into the platform, guid-
ing the novice programmer along the task of creating a first
program. The simplification of tasks seems to be paramount
to a novice programmer. Today, several plug-ins for Eclipse
exist that facilitate the education of novice programmers.
For example,GILD [6], PENUMBRA [4], and the DrJava
plug-in [5] aim to make the learning process easier for stu-
dents byremovingcertain features of theECLIPSEenviron-
ment. However, our software engineering courses are tailor-
made for graduate students who already have programming
experience, and thus, the students should be able to use all
the support they can get fromECLIPSE.

Once the programmers have “grown up” in the sense that
they are now well aware of the functionality and power
of ECLIPSE and its plug-ins, how are they supposed to
learn and experience software engineering practices and
programmingin the largewhich basically meansdevelop-
ing and programming in a team? There are, as yet, not
many plug-ins forECLIPSEthat support collaborative work-
ing. There exist plug-ins that just integrate available instant
messaging solutions like theIM -Plug-in2 or PepeMax3. But
collaboration is much more than just instant messaging;
other plug-ins and projects like Jazz [2] seek to integrate
collaborative capabilities intoECLIPSE. However, its focus
is synchronous communication and collaboration of teams
working in close proximity; a situation different than the
one found in distant teaching. On the other hand, the plat-
form of the FernUniversität already provides support for
synchronous and asynchronous communication and collab-
oration. This system, calledCURE (Collaborative Univer-
sal Remote Education environment [3]), is simply spoken a
combination of wiki and chat, includes a mail system, doc-
ument management, and a simple calendar. As the students
are used to the system, it should be integrated into the tool
set used for their software engineering project.

Any software engineering project within distant teaching
is alwaysdistributed software engineering (DSE). DSE is
supported by project management or groupware solutions
ranging from communication and collaboration support to
software-centric solutions typically found in open source
projects, e.g. SourceForge4 or GForge5. These seem to
be a good infrastructure for software engineering projects

2http://eimp.sourceforge.net/d/
3http://pepemax.jabberstudio.org/
4http://www.sourceforge.org/
5http://www.gforge.org/

and indeed, some universities use GForge for that purpose.
However, we have decided to use a commercial variant,
CodeBeamer6 from Intland, due to its improved usability
and increased functionality.

The third major requirement is supervision, observation,
and grading. The teacher must be able to supervise the
groups advances, guide the students through the project, and
quickly identify problems to offer help or intervene. For this
purpose and for the later grading, he must be able to analyze
the communication in the group, the rendered documents,
and the developed software. There exists some support to
analyze software inside and outsideECLIPSEwhich can be
used by the teacher. The JRefleX project [7] provides plug-
ins for collaboration analysis and evolution analysis.

So, new plug-ins have to be developed and existing plug-
ins have to be grouped together andglued, so that they are
aware of each other and facilitate the collaborative working
of students in software engineering projects.

3. An IDE for distant teaching

The first question that arises when discussing a newIDE
which is supposed to support teamwork for students that
are not close together is:Which functionality is needed?
Although the question is rather simple, the answer is not.
Students (as well as professionals) all pursue a different
methodology when working: Some tend to prefer working
in the night, some get up early to get some work done be-
fore breakfast, some tend to plan first and then implement,
while again others may implement and then test it. So, how
can anIDE help to support the preferred working technique
of a programmer without making the team depend on a cer-
tain methodology? The key issues in this setting iscommu-
nication andcollaboration. As previously discussed, two
systems will have a major role in software projects at the
FernUniversität: TheCURE and the CodeBeamer system;
both support communication and collaboration.

3.1. Communication and Collaboration inCURE

CURE facilitates collaborative learning in distributed
teams using standard browsers over the Internet.CURE is
based on combining the room metaphor, wiki ideas, and
communication tools. Users can create rooms for specific
groups and purposes. Room owners can restrict access
rights. A room contains pages, resources and communi-
cation tools, which are created, manipulated, navigated and
read by users of the room. A simple wiki syntax is used to
write the content of pages including formatted text, images,
and TEX for expressing mathematical formulas. Each room
may have its own chat and room mailbox that are kept per-
sistent. All users in a room can simply chat with all other

6http://www.intland.com/

2



Figure 1. Eclipse with CUREand CodeBeamer View

online users in that room, or view and send mails to the dis-
cussion threads in the room’s mailbox.

Previous experience withCURE in software engineering
projects showed that students just use the asynchronous fea-
tures ofCURE. This has two reasons: firstly, synchronous
communication is rare (as explained above) and secondly,
students reverted to widespread instant messaging solu-
tions. The instant messaging tools still fit on the screen
with the student’sIDE. In contrast, usingCURE always en-
forced a context switch to the browser. Therefore, we devel-
oped anECLIPSEplug-in that integrates aCUREView into
ECLIPSE. A sample screen is shown in Figure 1. The middle
view shows a page of a room and the tree view on the right
shows the rooms currently available to the user. A software
project is mapped to a room, while its pages represent the
sub projects, milestones, and various other topics.

3.2. Project Management

Software projects in distant teaching need a strict project
management. Experience shows teams usingCURE for
project management had better results than teams using
implicit project management. However, project manage-
ment with CURE is very cumbersome in comparison to
project management tools. For this purpose we have chosen
CodeBeamer, a server based software development solution
with comprehensive collaborative features for development
teams. It is a ready-to-use solution with light-weight project
management based ontrackers. These trackers can be used
to manage requirements, tasks, bugs etc. and can be vi-
sualized in diagrams (e.g. gantt charts). This approach
eases the traceability for the participating students and the
teacher. The tracking system is able to present the list of
things that have been worked on lately or that have to be
tackled with next. CodeBeamer comes with a plug-in that

3



integrates the trackers withECLIPSE.7 This service will be
provided by a server located at the FernUniversität and thus
it can be accessed by any team member currently taking
the software engineering course; besides the plug-in there
is no software to be installed by the student. Figure 1 shows
CodeBeamer’s trackers in the lower view.

3.3. Phases of a project

Besides the two major components described above, we
have evaluated some available plug-ins for usage in a (dis-
tant teaching) software engineering project. There is vary-
ing support for the different phases of a software project,
which we will present next.

Phase 1: The creation of the project. When creating a
project, a supervisor must be able to enter a project descrip-
tion and mark the milestones at which certain parts of the
project have to be completed. This is achieved by using
the task tracker of CodeBeamer, where every task can have
an end date. It would be desirable to automatically enter
those dates into a team-calendar which is shared by each
team member, allowing for the addition of team-internal
dates. We have not found a plug-in that provides calendar
functionality. The optimal solution for this kind of (sim-
ple) calendar would be to integrateECLIPSEwith MS Out-
look or IBM Lotus Notes since these are the applications
used by most people to organize their meetings. Present
open-source project management and/or collaboration solu-
tions provide their own calendars which cannot be synchro-
nized with others. Currently, there are even two calendars
in the university’s platform, one in the administration and
e-learning platform and one inCURE; both are independent
and cannot be synchronized.

Phase 2: Requirements analysis In the beginning of a
project, most activities imply discussing issues and doc-
umenting requirements. To allow for a vivid discus-
sion among team members, both, synchronous and asyn-
chronous communication must be provided. Furthermore,
the final requirements document should be produced in the
same environment without the need to constantly switch be-
tween applications. Therefore, a chat and mail functional-
ity, as well as wiki-pages where team members can jot down
their ideas is ideal.

Most of this is available inCUREwhere students can dis-
cuss the requirements and can use the wiki functionality to
produce their resulting document. TheCURE plug-in pro-
vides chat, mail, and wiki in the same style as the standalone
CUREsystem, however it is not coupled to theCVS reposi-
tory. Also, it would be desirable forCURE to use a standard

7We originally planned to use GForge as a free alternative, however,
due to its architecture it is not easily integrate-able intoECLIPSE.

instant messaging solution which would be integrate-able
via standard instant messaging plug-ins.

The student team also has to generate tasks from the
requirement. Together with the milestones given by the
teacher, the students have to plan their project. For each
requirement and each task the students have to generate a
tracker entry. This approach eases the traceability for the
participating students and the teacher. The tracking system
is able to present the list of things that have been worked on
lately or that have to be tackled with next. Besides Code-
Beamer, there are other tracker plug-ins, e.g. plug-ins that
integrate BugZilla.

Phase 3: Design A variety of UML design tools exist.
However, none of the available open source tools allow for
collaborative design. Very useful would be a graphical diff-
view that directly shows the user, which changes were made
(i.e. by highlighting modified, added, or removed elements
in the diagram). Additionally, mostUML-tools are not eas-
ily usable in a software engineering project, because they
either have not enough functionality or are to complex for
the novice user. Best suited for our needs are Together8 and
MagicDraw9; other tools are either not integrate-able into
ECLIPSEor suffer from stability problems.

Furthermore,UML design can be accompanied by a chat
window to support synchronous communication during the
work (see discussion above).

Phase 4: Coding and module testing ECLIPSEis already
excellently equipped for coding purposes inJAVA. Other
languages are not so well supported, yet, but this is hope-
fully going to change in the future. For testing (and one
way to specify),JUNIT is shipped withECLIPSE, which our
students are required to use. Independent of the program-
ming language, a team interface is integrated withECLIPSE
which allows forCVS communication, so this collaborative
issue is already solved elegantly inECLIPSE.

To improve this phase, external tools like JML (a speci-
fication language forJAVA) will be provided. We also plan
to evaluate the effect of code checking plug-ins like Check-
Style or PMD, debugging aids like delta debugging [1], or
others. Of course, discovered bugs are managed in our set-
ting with the CodeBeamer’s bug tracker.

Phase 5: Delivery and Grading At last, after the stu-
dents have delivered the software together with the required
documents, the teacher has the task to evaluate and grade
the students. Criteria for the evaluation can be many fold:
(1) Communication and collaboration skills, (2) quality of
the design and the implementation, (3) accordance of the

8http://www.borland.com/together/eclipse/
9http://www.nomagic.com/

4



final version to the documented requirements and design,
and (4) needed time. The key requirement here is trace-
ability. In a traditional software engineering project, where
the group is given a task and delivers the final software sys-
tem, it is almost impossible to grade the students individu-
ally. This is different with the presented infrastructure: The
teacher is able to extract the needed data from the persistent
communication inCURE (chat protocols, mail archives, all
versions of the wiki pages), from the CodeBeamer track-
ers, and from the documents and source code stored in the
CVS archive. Furthermore, he can use reverse engineering
tools to compare the architecture of the delivered software
with the original design. A plug-in specifically dedicated to
this approach is JRefleX [7] which provides collaboration
analysis (how has the team worked together) and evolution
analysis (how has the architecture changed over time). We
plan to evaluate JRefleX in our context.

4. Experiences and Future Work

During the evaluation of the various plug-ins we have
experienced that most plug-ins provide good solutions to
single problems. However, in a setting like ours, it is not
enough that support inECLIPSEexists, but that the various
plug-ins are more integrated and aware of each other. For
example, the various instant messaging plug-ins are stan-
dalone solutions and are not interchangeable. This would
require them to be based on a framework like Koi10.

There is a similar situation in collaboration and project
management solutions. Each solution comes with its own
discussion forums, calendar, document management, etc.—
but it is not possible to integrate them with other forums or
calendars. This results in a situation where our infrastruc-
ture used for software engineering projects offers at least
four(!) discussion forums: (1) traditional news groups, (2)
a discussion forum in the general learning platform, (3) the
mail and chat solution withinCURE, and (4) the discussion
forums within CodeBeamer. This situation is confusing and
must be solved by a more general, integrated solution.

5. Conclusions

We have presented how we useECLIPSEas the key envi-
ronment for software engineering projects in distant teach-
ing. It mainly consists of the integration of two major com-
ponents: the standard collaboration platform of the Fer-
nUniversität,CURE, and the project management solution
CodeBeamer.CUREhas been integrated by a newly devel-
oped plug-in that enables the usage of wiki, mail, chat, and
group calendar withinECLIPSE. CodeBeamer comes with a
plug-in that integrates the various trackers intoECLIPSE.

10http://www.eclipse.org/koi/

Together with additional plug-ins, this platform will ease
the (distant teaching) software engineering project in all
phases; students will be able to collaborate more inten-
sively, manage their project more easily, and deliver higher
quality software. Because of the heavy use of persistent
communication, trackers, and version repositories, it will
be easier for the teacher to grade their students individually.

This integrated environment will be used the first time in
the next term; an evaluation will show further needs on the
students side as well as on the teachers side.

Acknowledgments. This work was supported by an IBM
Eclipse Innovation Award and LVU project funding.

About the Authors. Philipp Bouillon is a PhD stu-
dent/scientific assistant in the software technology group
at FernUniversität Hagen. In his diploma thesis he im-
plemented automated debugging inECLIPSE, a work partly
funded by anECLIPSEinnovation grant. Jens Krinke is as-
sistant professor for software technology at FernUniversität
Hagen. His research focus is program analysis, clone detec-
tion, aspect mining and distant learning. He was one of the
main contributors to the Praktomat System, a unique system
for providing web-based programming courses.

References

[1] P. Bouillon, M. Burger, and A. Zeller. Automated debugging
in eclipse. InProceedings of the 2003 OOPSLA Workshop on
Eclipse Technology eXchange, pages 1–5, 2003.

[2] L.-T. Cheng, S. Hupfer, S. Ross, and J. Patterson. Jazzing up
eclipse with collaborative tools. InProceedings of the 2003
OOPSLA Workshop on Eclipse Technology eXchange, pages
45–49, 2003.

[3] J. Haake, T. Schümmer, M. Bourimi, and B. Landgraf. Sup-
porting flexible collaborative distance learning in the cure
platform. In Proceedings of the Hawaii International Con-
ference On System Sciences (HICSS-37), 2004.

[4] F. Mueller and A. L. Hosking. Penumbra: An eclipse plugin
for introductory programming. InProceedings of the 2003
OOPSLA Workshop on Eclipse Technology eXchange, pages
65–68, 2003.

[5] C. Reis and R. Cartwright. A friendly face for eclipse. In
Proceedings of the 2003 OOPSLA Workshop on Eclipse Tech-
nology eXchange, pages 25–29, 2003.

[6] M.-A. Storey, J. Michaud, M. Mindel, M. Sanseverino,
D. Damian, D. Myers, D. German, and E. Hargreaves. Im-
proving the usability of eclipse for novice programmers. In
Proceedings of the 2003 OOPSLA Workshop on Eclipse Tech-
nology eXchange, pages 35–39, 2003.

[7] K. Wong, W. Blanchet, Y. Liu, C. Schofield, E. Stroulia, and
Z. Xing. Jreflex: Towards supporting small student software
teams. InProceedings of the 2003 OOPSLA Workshop on
Eclipse Technology eXchange, pages 50–54, 2003.

5


