
Automated Debugging in Eclipse
(at the touch of not even a button)

Philipp Bouillon
bouillon@st.cs.uni-sb.de

Martin Burger
mburger@st.cs.uni-sb.de

Andreas Zeller
zeller@cs.uni-sb.de

Software Engineering Chair, Saarland University

Abstract

Recent advances in debugging allow for automatic isola-
tion of failure causes such as failure-inducing input or code
changes. So far, these advances required a significant in-
frastructure, notably program analysis, automated testing,
or automated construction. TheECLIPSEenvironment pro-
vides such an infrastructure in an integrated, user-friendly
fashion. We show how developers and users of automated
debugging tools can greatly benefit from such an integrated
infrastructure.

1. Introduction

Debugging programs is no longer the tedious, long-lasting,
boring work, it used to be. Better and better analysis tools
are available thatpreventfailures by detecting errors in the
source code. If a failure still occurs, we canobservewhat’s
going on in a program, using advanced debugging tools.
Our ability to handle complexity has grown—unfortunately,
so has the complexity of our programs.

In the past few years, a new generation of debugging
tools has emerged that relies onexperimentationrather than
analysis or observation. The general idea is to run an auto-
mated test under various configurations of circumstances, in
order to isolate the failure-inducing circumstances. The so-
calledDelta Debugging approach has been shown to iso-
late failure-inducing code changes [3] or failure-inducing
input [4].

The problem with experimental approaches, though, is
that they place a high demand on the infrastructure. For
failure-inducing input, one needs an automated test and
a means to access the input; for failure-inducing code
changes, one additionally needs access to the version
archive as well as automated reconstruction. Such services
can all be accessed and integrated using, say, configuration
scripts, which is fine for case studies—but who wants to set
up a configuration script just to debug one failure?

To make automated debugging user-friendly requires an

environment whichintegratesall these services—an in-
tegrated development environment such asECLIPSE. In
ECLIPSE, versioning is supported viaCVSand local history,
JUNIT is tightly embedded intoECLIPSE providing auto-
mated tests. Furthermore, automatic construction and exe-
cution are integral parts ofECLIPSE.

Figure 1 on the following page shows the result of our
work—anECLIPSEworkbench with our Delta Debugging
plug-ins. The programmer is implementing someJAVA code
in ECLIPSE, usingJUNIT to unit-test it. Suddenly, some test
fails. Our plug-ins are automatically activated by this failing
test, and after a moment, report the problem causes:

Failure-Inducing Input. In Figure 1, theIsolate Failure-
Inducing Inputplug-in reports that the testtestSim-
ple in the classDDClipseTestfailed. This test opened
a file calledsample.xmlwhich is responsible for the
failure—more precisely, the wordRomeowithin this
file.

Failure-Inducing Code Changes.In Figure 1, theMini-
mize Source Differencesplug-in tells the developer
which changes in the source code led to the fail-
ure: the failure occurs if and only if the statement
if (a == 3) i--; has been inserted.

Given such information, the programmer has a rather
precise hint to what caused the failure and where the error
in the program might be. As the diagnosis is automatically
started each time aJUNIT test fails, the programmer will
thus gain not only the knowledgethat something is wrong,
but alsowhy it is wrong.

The remainder of this paper is organized as follows: Sec-
tion 2 summarizes how Delta Debugging isolates failure-
inducing circumstances such as input or code changes. Sec-
tion 3 describes ourECLIPSEplug-ins. Our experiences are
discussed in Section 4. Section 5 closes with a conclusion
and future work.



Figure 1. Our tools in action

2. Finding Failure Causes

Delta Debugging is an algorithm to automate code change-
and input minimization [4]. To do this, the algorithm needs

Deltas. Delta Debugging takes some large set of differ-
ences — calleddeltas— between two program runs
and computes the difference that is responsible for the
failure. In our cases, a delta is a single change in the
program code or a single character of the input of a
program. All changes in the code from the last ver-
sion to the current one or all characters of the input
are combined in a set of deltas. Given this set, Delta
Debugging finds the minimal subset of deltas that re-
produces the failure.

A Test Function. In addition to the deltas, Delta Debug-
ging needs a test function that determines whether the
previously observed failure in the program occurs or
not. Given a subset of deltas, this test function re-
runs the program (or even rebuilds the program in the
case of minimizing code changes) and tests whether
the failure still occurs. Depending on that outcome,
Delta Debugging produces new sets of deltas by split-
ting and reducing the original set.

Delta Debugging depends on its test function telling,
whether the test succeeds or not. But what happens, if the
test does not produce an outcome (for example, because it
could not rebuild the program due to a missing parenthe-
sis)? Whenever all outcomes of the tests for the current set
of deltas areunresolved, the sets of deltas are reorganized:
not two subsets of deltas are produced, but four. Each com-
bination of these deltas is subsequently tested, which even-
tually produces a passing or failing outcome.

In subsequent steps, Delta Debugging tests progressively
smaller sets of deltas. If no smaller set can be tested with-
out reproducing the failure, the algorithm terminates. The
reduced set of deltas hopefully guides the programmer to
the failure. In figure 2 this computation is demonstrated in
an example. The wordRomeoin a file makes a test fail.
First, the lines of this file are analyzed and those lines not
responsible for the failure are removed from it. Later, as
shown in figure 3, single characters are analyzed. Since the
whole minimization process is basically a binary search, the
detection of the failure-inducing input is fast.

We have implemented severalECLIPSEplug-ins that im-
plement and extend the Delta Debugging algorithm. In the
case of minimizing code changes, we first determine the
code differences between the current version, and an ear-
lier, working version. Delta Debugging then systematically
narrows down these differences, usingJUNIT to test inter-

2



1540

770

770

385

385

193

193

97
... and so on

Figure 2. Minimizing input lines

wwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwww�

51 <TITLE>The Tragedy of Romeo and Juliet</TITLE> ✘
52 <TITLE>The Tragedy of Romeo and Juliet</TITLE> ✔
53 <TITLE>The Tragedy of Romeo and Juliet</TITLE> ✔
54 <TITLE>The Trag edy of Romeo and Juliet</TITLE> ✔
55 <TITLE>The Trag edy of Romeo and Juliet</TITLE> ✘
56 <TITLE>The Trag edy of Romeo and Juliet</TITLE> ✔
57 <TITLE>The Tragedy of Romeo and Juliet</TITLE> ✘
58 <TITLE>The Tragedy of Romeo and Juliet</TITLE> ✔
59 <TITLE>The Tragedy of Romeo and Juliet</TITLE> ✔
60 <TITLE>The Tragedy of Romeo and Juliet</TITLE> ✔
61 <TITLE>The Tragedy of Romeo and Juliet</TITLE> ✔
62 <TITLE>The Tragedy of Romeo and Juliet</TITLE> ✔
63 <TITLE>The Tragedy of Romeo and Juliet</TITLE> ✔
64 <TITLE>The Tragedy of Romeo and Juliet</TITLE> ✔
65 <TITLE>The Tragedy of Romeo and Juliet</TITLE> ✔
66 <TITLE>The Tragedy of Romeo and Juliet</TITLE> ✔
67 <TITLE>The Tragedy of Romeo and Juliet</TITLE> ✔
68 <TITLE>The Tragedy of Romeo and Juliet</TITLE> ✔
69 <TITLE>The Tragedy of Romeo and Juliet</TITLE> ✔
70 <TITLE>The Tragedy of Romeo and Juliet</TITLE> ✔
71 <TITLE>The Tragedy of Romeo and Juliet</TITLE> ✔
72 <TITLE>The Tragedy of Romeo and Juliet</TITLE> ✔

Figure 3. Minimizing input characters

mediate versions, until a minimal difference (= change) is
found.

The input minimization plug-in uses Delta Debugging
slightly different. In this case, the algorithm determines a
minimal difference, too — but this time between the failure-
inducing input and an empty input. In short, it simplifies
the input until every part left is relevant for producing the
failure.

3. Integration with Eclipse

We implemented Delta Debugging as anECLIPSEplug-in.
The core plug-in implements the Delta Debugging algo-
rithm itself, while our other plug-ins extend it to provide
code change minimizationand input minimization, respec-
tively.

3.1. The Delta Debugging Core

The core implements the Delta Debugging class which pro-
vides the Delta Debugging algorithm variants calledddMin

anddd (for differences, see [4]). Additionaly, the core in-
cludes severalDelta Creatorclasses to create sets of deltas
from any initial format. These are used, for example, to
transform a file or a string into single characters, each rep-
resenting a delta.

The Delta Debugging core works closely with four in-
terfaces calledTester, Builder, Splitter, andResolver(cf.
figure 4). To extend the Delta Debugging core, it is only
neccessary to implement aTester. All other interfaces are
optional and are used to specialize the algorithm. There
should be no need for more interfaces in the future.

«plug-in»
SimplifyingInput

«plug-in»
SimplifyingSourceDifferences

org.junit
«plug-in»

{uses}

{uses}

JUnitFileTester

«plug-in»
DeltaDebugging

DeltaDebugging

«interface»
Resolver

«interface»
Splitter

«interface»
Builder

«interface»
Tester Deltas

deltacreators

{creates}

JUnitTester DefaultSplitter

JUnitCodeTester {uses}

Figure 4. The Plug-In Architecture

Tester. A Tester implementation takes the given set of
deltas and runs its test on it. The outcome is passed
to the Delta Debugging algorithm. We would like
to useJUNIT as an easy way for the user to access
our analysis tools. SinceTestergets a current set of
deltas and has to rerun its test based on them, we had
to find a means to apply the deltas, before theJUNIT
test is started. Therefore, we implemented a wrapper
to JUNIT. In the case of the minimizing source differ-
ences plug-in, the wrapper (JUnitCodeTester) applies
the deltas, rebuilds the program, and reruns theJUNIT
test. For the input minimization plug-in, we use an-
other wrapper (JUnitFileTester) which creates a new
input by applying the deltas and reruns theJUNIT test
afterwards.

Builder. A Builder implementation is used to perform any
neccessary pre-formatting of deltas. As an example,
consider a simple file format that stores its file length
in its first four bytes. Afterwards follows the text.
During the minimization process, the length of the file
would be changed and so the value stored in the first
four bytes has to be modified accordingly. This can be
achieved by a builder implementation. Applied to the
code change minimization plug-in, the builder is used
to rebuild the project.

3



Splitter. A Splitter implementation is used to split any
given set of deltas inton new sets of deltas, and prepar-
ing them to be tested in the next round of the Delta De-
bugging algorithm. The default implementation sim-
ply splits the original set inton equally sized sets.
More sophisticated implementations could use infor-
mation on the deltas which they are operating on to
produce avalid set of deltas (e.g. a syntactically cor-
rectJAVA program instead of aJAVA program just split
in half).

Resolver. A Resolverfinally tries to resolve test outcomes
that are unresolved. This could happen during the
minimization process of aJAVA program for example:
for some reason, an opening parenthesis is not closed
again (because the closing parenthesis is part of a dif-
ferent set of deltas). So, the resolver tries to regroup
the delta sets to produce a resolved test outcome.

Figure 5 illustrates the process and the interaction of
those interfaces with the Delta Debugging algorithm. First,
the original set of deltas is split into two halves. In the
second step, the first half is built and tested, in this case
with a passing outcome. So, this half is not responsible for
the failure. Afterwards, the second half is built and tested
and yields an unresolved outcome, so Delta Debugging re-
solves it, in this case by prepending a subset of the first half.
Building and testing the so constructed set leads to a failing
outcome which Delta Debugging splits again and continues
until the set cannot be minimized any further.

1. Splitter

Original set of deltas

2. Builder and Tester 3. Builder and Tester

4. Resolver

5. Builder and Tester

6. Splitter

... ...and so on

Figure 5. The Delta Debugging Algorithm

Apart from the algorithm, the Delta Debugging core im-
plementation also provides an user interface which can be
extended by other plug-ins. The basic user interface con-
sists only of theDelta Debugging View. By extending the
view, a plug-in will appear as an entry in a tree which can
display any calculation results in its child nodes.

3.2. Detecting Failure-Inducing Code Changes

The reduction of a possibly large set of code changes to a
set only containing the failure-inducing changes takes place
in a plug-in that extends the Delta Debugging core plug-in.
The test that has to be performed during the minimization
applies a subset of changes to the working version, rebuilds
it, and checks whether it still works or not. This is done by
a class calledJUnitCodeTesterwhich extendsJUnitTester.
The original working version of the project source is not
changed here but a copy of it is modified.

In order to retrieve the last version of the source that suc-
cessfully completed its test, the plug-in uses theCVS func-
tionality of ECLIPSE. Once retrieved, the code-changes be-
tween the current, failing version and the working version
are computed and afterwards minimized to yield the failure-
inducing change.

3.3. Detecting Failure-Inducing Input

To detect failure-inducing input, we have written another
plug-in that extends the Delta Debugging core plug-in. The
JUnitFileTesterclass extendsJUnitTesterwhich is an im-
plementation of theTesterinterface. TheJUnitFileTester
class creates a file from a given set of deltas (characters in
this case). The created file is then read by theJUNIT test
and results are passed to the Delta Debugging algorithm.

The plug-in has to determine (automatically) if aJUNIT
test opens a file or not. This is done by debugging the first
JUNIT run, suspending execution on all file-access methods
(or constructors). If such a breakpoint is reached during the
test execution, the name of the opened file is determined and
— provided that the original test fails — Delta Debugging
is applied to that file.

4. Experiences

The steep learning curve for plug-in developers inECLIPSE
is hard to master. There is plenty of documentation on how
to write a very simple plug-in, but the step from the easy ex-
ample to real world solutions is not covered by much docu-
mentation. The developer only has the API documentation
to go on from this point.

Furthermore, the documentation does not provide an
overview of the interaction between the classes. The classes
and their methods are described in great detail, but how sev-
eral classes can be combined to solve a specific task is not
shown. Especially, it is often surprising for the developers
that they have to cast an object into another one in order to
achieve a certain behaviour. Often, if the programmer wants
to accomplish something, she has to search theECLIPSE
source code for that functionality, copy it and customize it
to suite her needs.

4



Once the learning curve is mastered,ECLIPSEturns into
a very powerful platform. The existingCVS, JUNIT, and
debugger interfaces allow us to easily add Delta Debugging
to ECLIPSEand thereby providing automated debugging for
JAVA programs. Compared to the complexity of implement-
ing our own integrations of these tools,ECLIPSEprovides
an easy access to everything we need.

Because of its architecture ([1]),ECLIPSEallows the ef-
ficient development of new plug-ins which in turn are ex-
tensible, thereby allowing the world-wide sharing of ideas
and plug-ins. The architecture allows all of the plug-ins to
communicate and interact with each other via cleanly de-
fined interfaces which is a great benefit for the user, the de-
veloper,and ECLIPSE itself, because its value is steadily
increased by the encouraged software engineers.

Thanks toECLIPSE, researchers finally benefit from an
environment which allows them to directly transport cur-
rent results from universities to the industry for their mutual
profit.

5. Conclusion and Future Work

Without ECLIPSE, our automated debugging tools would
never have found the way to the end user.ECLIPSE ad-
vances the integration and interaction of programming tools
in a way that can only be compared to the advent of the
UNIX system, 30 years ago. This integration and interac-
tion also opens new, exciting research perspectives:

Exploiting syntactic information. Isolating failure-
inducing code changes can greatly profit from
syntactic knowledge. All changes belonging to
one class or one method can be combined, thereby
reducing the amount of unresolved tests that occur
during the minimization process.

Integration with testing tools. Besides interacting with
standard services, there are also opportunities for in-
tegrating multiple plug-ins. For instance, continuous
testing [2] tells the programmerwhile she is typing
which tests pass and fail. In combination with our
Delta Debugging plug-ins, the programmer will see at
oncewhythe test fails.

Learning from test results. Isolating failure-inducing
code changes requires some successful test of an
earlier version. To achieve this, adatabasethat
stores all results of allJUNIT test runs (including the
configuration that led to the result) would be highly
useful. Eventually, one could devise tools that learn
from earlier test results to predict possible failure
causes.

Cause-effect chains.Delta Debugging can also be applied
on program statesto isolate failure-inducing vari-
ables: “Initially, variable v1 wasx1, thus variablev2
becamex2, thus variablev3 becamex3... And thus the
program failed.” This explains failure causes automati-
cally and effectively. We are working on implementing
this approach forJAVA programs withinECLIPSE.

All in all, ECLIPSEpromises to become a standard platform
for development and analysis ofJAVA programs. With more
and more researchers porting their tools toECLIPSE, users
can immediately benefit from the researchers’ work. We are
happy to contribute our own research results to theECLIPSE
community—and hope that, in the future, programmers will
not even have to press a button to find out why their pro-
grams failed.

Acknowledgments.We would like to thank Erich Gamma
and Darin Wright for their support via the developer mailing
list. Christian Lindig and Thomas Zimmermann for proof-
reading and Holger Cleve and Stephan Neuhaus for their
constant support.

6. About the Authors

Philipp Bouillon andMartin Burger are students of com-
puter science at the software engineering chair of Saarland
University in Germany. Philipp has ported Delta Debugging
to ECLIPSEand implemented the plug-in that automatically
minimizes or isolates failure-inducing input, and Martin has
implemented the plug-in that automatically isolates failure-
inducing code changes.

Andreas Zeller is a software engineering professor at Saar-
land University in Germany. His research interests include
dynamic program analysis, configuration management, and
program visualization. Zeller received a PhD in computer
science from the Technical University of Braunschweig,
Germany.

References

[1] OTI Labs. Eclipse platform technical overview. White Paper,
2003. Available online at www.eclipse.org.

[2] D. Staff and M. D. Ernst. Can continuous testing speed soft-
ware development? In14th International Symposium on Soft-
ware Reliability Engineering, Denver, Colorado, Nov. 2003.

[3] A. Zeller. Yesterday, my program worked. Today, it does not.
Why? InProceedings of Joint 7th European Software Engi-
neering Conference (ESEC) and 7th ACM SIGSOFT Interna-
tional Symposium on the Foundations of Software Engineer-
ing (FSE-7), volume LNCS 1687. Springer Verlag, 1999.

[4] A. Zeller and R. Hildebrandt. Simplifying and isolating
failure-inducing input. IEEE Transactions on Software En-
gineering, 28(2):183–200, Feb. 2002.

5


