
Information Flow Control and Taint Analysis with Dependence Graphs

Jens Krinke
FernUniversität in Hagen

Hagen, Germany

1. Introduction

Ensuring that the integrity of critical computation is not
violated by untrusted code or the confidential data is pro-
tected is a complex problem for current software systems.
We can observe two main directions to approach the prob-
lems:

• For critical system, formal approaches are needed. One
is (static) information flow control which analyzes the
software to check if it conforms to some security pol-
icy. An example is noninterference: secret information
does not influence the publicly observable behavior of
a system.

• Many informal approaches can be subsumed under bug
detection. A violation of some security policy can be
regarded as a bug and therefore many bug detection ap-
proaches do some kind of taint analysis. Data from un-
trusted sources (e.g. the user) is tainted and is not al-
lowed to reach exploitable functions like system calls
vulnerable to buffer overruns.

There is a large overlap in both directions. Let’s consider
taint analysis as described in the later direction: Taint anal-
ysis is just a special case of information flow control and
noninterference (tainted information does not influence vul-
nerable parts of the system). Moreover, it is a very simple
form as it just has a security policy with two levels “tainted”
and “untainted”.

There is a major difference in both directions: The first
is conservative while the later is optimistic. This means that
the formal approaches do not allow false negatives: If the
noninterference check does not reveal a violation, it is guar-
anteed that the analyzed code does not contain leaks. On the
other hand, bug detecting approaches prefer an optimistic
approach that allows false negatives. This has two reasons:
First, this reduces the amount of false positives, and second,
practicable solutions (as in tools) often require unsound ap-
proaches.

It is not surprising that both directions have almost dis-
junct research communities. For example, the recent com-
prehensive survey by Sabelfeld and Myers [11] about infor-
mation flow security does include 147 references, but none

of them is related to taint analysis for bug detection. How-
ever, a closer examination reveals that both communities
can benefit from each other. Especially as both communities
make heavy use of program analysis for their approaches.

For information flow control, many approaches use pro-
gram analysis in terms of special type systems that ensure
noninterference or other security policies for well-typed
programs. Such type systems are usually extensions or mod-
ifications of real world languages, examples are Jif by My-
ers et al. [6, 7], similar to Java, and Flow Caml by Simonet
and Pottier [10,12], similar to Objective Caml. However, as
Zdancewic [15] has observed, information-flow based en-
forcement mechanisms have not been widely used.

In contrast, taint analysis for bug detection is more and
more used for the analysis of real systems. Many of such
approaches are based on a long record of research on pro-
gram analysis for optimization and reengineering [1]. Usu-
ally, type systems are only one of the used analyses (most
often used for efficient pointer analysis) and other, more
complex representations are used. For example, the taint
analysis approaches from Pistoia et al. [9] use program slic-
ing [13] or the one from Livshits and Lam [4, 5] that uses
IPSSA, an interprocedural variant of gated SSA [2, 8]. Wi-
lander discusses some more tools.

It seems that the bug detection approaches are some-
what more successful than the information flow control ap-
proaches. From our point of view, this is related to major
difference that has not been pointed out by Zdancewic as
a challenge [15]: Information flow control approaches and
tools like Jif and Flow Caml rely on dedicated languages
that support information flow control while the bug detec-
tion approaches analyze real world programs in standard
languages like C or Java with additional security-related in-
formation provided. This enables security analyses on al-
ready existing software, whereas in information flow con-
trol approaches one needs to reimplement the system.

In the following we will present our approach for infor-
mation flow control that is based on dependence graphs, us-
ing results from both major directions discussed above. It
will enable more flexible security policies than taint anal-
ysis without for real world languages like C or Java, thus
having the advantages of both directions.

Published in the Proceedings Third International Workshop on Code Based Software Security Assessments (CoBaSSA),
2007 in Vancouver, Canada.



2. Security levels and declassification

The simple two-level security policy of taint analysis is
sufficient for simple problems, but in practice one wants
more detailed information about security levels of individ-
ual statements. Thus theoretical models for IFC utilize a lat-
tice L = (L,t,u) of security levels, the simplest consisting
just of two security levels High and Low. We provide a spec-
ification option for the lattice, and an option to mark some
(or all) statements with their security level. The approach is
based on the program dependence graph representation [3],
Program statements or expressions are the graph nodes. A
data dependence edge x→ y means that statement x assigns
a variable which is used in statement y (without being reas-
signed underway). A control dependence edge x→ y means
that the mere execution of y depends on the value of the ex-
pression x (which is typically a condition in an if- or while-
statement). A path x →∗ y means that information can flow
from x to y; if there is no path, it is guaranteed that there is
no information flow. In particular, all statements influenc-
ing y (the so-called backward slice) are easily computed as
BS (y) = {x | x→∗ y}. If there is no PDG path from a to b, it
is guaranteed there is no information flow from a to b. This
is true for all information flow which is not caused by hid-
den physical side channels such as timing leaks.

The security level of statement with PDG node x is writ-
ten S (x), and confidentiality requires that an information re-
ceiver must have at least the security level of any sender.
In PDGs, this implies ∀y ∈ pred(x) : S (x) ≥ S (y) which
ensures S (y) { S (x). The dual condition for integrity is
∀y ∈ pred(x) : S (x) ≤ S (y) However, this assumes that
every statement resp. node has a security level specified,
which is not realistic. We want to specify provided as well
as required security levels not for all statements, but for cer-
tain selected statements only. The provided security level
specifies that a statement sends information with the pro-
vided security level and the required security level speci-
fies that only information with a smaller security level may
reach that statement. The provided security levels are de-
fined by a partial function P : N → L, where N is the set of
nodes resp. statements of the programs. Thus, l = P(s) spec-
ifies the statement’s security level. The required security
levels are defined similarly as a partial function R : N → L.
Thus, P(s) specifies the security level of the information
generated at s and R(s) specifies the maximal allowed se-
curity level of the information reaching s. Information with
security level l that is generated at some node x in the de-
pendence graph, is propagated along the dependences and
should not reach another node a which has a required se-
curity level which is smaller than l. Thus a program repre-
sented as a dependence graph does not violate confidential-
ity, iff

∀a ∈ dom(R) : ∀x ∈ BS (a) ∩ dom(P) : P(x) ≤ R(a)

1 class PasswordFile {
2 private String[] names/*P:confidential*/
3 private String[] passwords; /*P:secret*/
4 public boolean check(String user,
5 String password /*P:confidential*/) {

6 boolean match = false;
7 for (int i=0; i<names.length; i++) {
8 if (names[i]==user
9 && passwords[i]==password) {

10 match = true;
11 break;
12 }

13 }

14 return match; /*R:public*/

15 }

16 }

check

match=0

i<names.length

names[i]==user

pws[i]==pw

match=1

return match

i++

pw user pws

[]

names

[]

i=0
1

0

2 3

4

5

6

78

9

10

11

12

13

14

Figure 1. A Java password checker with its PDG

i.e. the backward slice from a node a with a required secu-
rity level R(a) must not contain a node x that has a higher
security level P(x).

Usually, the number of nodes that have a specified secu-
rity level is low, e.g. points of output. Therefore, the above
criterion can easily be transformed into an algorithm that
checks a program for confidentiality:
PDG-Based Confidentiality Check. For every node in the
dependence graph that has a required security level speci-
fied, compute the backward slice, and check that no node in
the slice has a higher provided security level specified.

Checking each node separately allows a simple yet pow-
erful diagnosis in the case of a security violation: If a node
x in the backward slice BS (a) has a provided security level
that is too large (P(x) > R(a)), the responsible nodes can be
computed by a chop CH(x, a). The chop computes all nodes
that are part of path from node x to node a, thus it contains
all nodes that may be involved in the propagation from x’s
security level to a.

As an example, consider the PDG for a password check-
ing program (Figure 1) . We choose a three-level secu-



rity lattice: public, confidential, and secret where public{
confidential { secret. The list of passwords is secret, thus
P(3) = P(4) = secret. The list of names and the parame-
ter password is confidential, because they should never be
visible to a user. Thus, P(1) = P(5) = P(6) = confidential.
Figure 1 shows the annotated PDG: The security levels are
depicted through white for public, light gray for confiden-
tial, and gray for secret. According to the criterion, we re-
quire that no confidential or secret information flows out of
the method, thus we require the return statement to have a
required security level of public (R(14) = public). A back-
ward slice for node 14 will reveal that nodes 1 and 3–6 are
included in the slice and have a higher security level, thus a
security violation is revealed.

In practice the above approach is too simple because in
some situations one might accept that information with a
higher security level flows to a “lower” channel. A typical
example is the password checking method presented earlier:
The result of the method will eventually be used to access
the user’s private data or to output an error message that the
login was not successful. Of course, that areas will not have
the same security level (secret) as the list of passwords. De-
classification allows to lower the security level of incom-
ing information at specified points. In the example, declas-
sification would reduce the security level at the return node
14 to security level public such that the result of the pass-
word check can be used in low security areas.

We model declassification by specifying certain PDG
nodes to be declassification nodes: Let D be the set of de-
classification nodes. A declassification node x ∈ D has to
have a required and a provided security level: r = R(x) and
p = P(x). Information reaching x with a maximal security
level r is lowered (declassified) down to p. Now a path from
node y to a with P(y) > R(a) is not a violation, if there is
a declassification node x on the path with P(y) ≤ R(x) and
P(x) ≤ R(a) (assuming that there is no other declassifica-
tion node on that path).

The above slicing solution no longer works with declas-
sification, as information flow with declassification is no
longer transitive and slicing is based on transitive informa-
tion flow. This can easily be solved: First, we compute the
backward slice for every node a with a required security
level specified. By definition of a slice, no node outside this
slice can have any influence on a. The subsequent analysis
(see below) will only consider nodes and edges that are part
of this slice, i.e. the dependence graph is reduced to the sub-
graph represented by the initial slice for a. This avoids spu-
rious dependencies and false alarms caused by potential se-
curity violations outside the backward slice of a.

The analysis will then compute the actual required secu-
rity level for every node in the (sliced) program dependence
graph by a backward analysis. The actual required security
level of a node is the maximal security level that may reach

the node without causing a security violation at the crite-
rion node under observation.

The actual incoming (required) security level S IN(x) for
a statement x is computed from the outgoing security levels
of its successors y ∈ succ(x):

S IN(x) =

{
> if succ(x) = ∅�

y∈succ(x) S OUT(y) otherwise

At nodes without declassification, the outgoing security
level is simply the incoming security level: S OUT(x) =

S IN(x). At declassification nodes x ∈ D with a declassifi-
cation from R(x) down to P(x), S is replaced with the new
required level: S OUT(x) = R(x). Thus

S OUT(x) =

{
R(x) if x ∈ D
S IN(x) otherwise

These equations are data flow analysis equations and
can be iteratively solved using a standard algorithm, with
a proper initialization of S OUT. The initialization is done
based on the criterion node a under observation, i.e. it is
checked that no security violation occurs due to R(a):

S OUT(x) =


R(a) if x = a
R(x) if x ∈ D
> otherwise

Due to the monotonicity of the computation and the limited
height of the security level lattice, a minimal fixed point for
S IN is guaranteed to exist and can be computed using a stan-
dard iteration. The computed S IN have then to be checked
for confidentiality:
Confidentiality Check With Declassification. For every
node a in the dependence graph that has a required security
level specified which is not a declassification node, compute
the incoming security levels S IN(x) of all statements x in its
backward slice and check the following property:

∀x ∈ dom(P) ∩ BS (a) : P(x) ≤ S IN(x) (1)

Thus, for any l = P(x) such that l � S IN(x) we have a con-
fidentiality violation at x because l 6{ S IN(x) (the secu-
rity level l is not allowed to influence the required level of
S IN(x) . Note that it is � and not > because l and S IN(x)
might not be comparable. Because the slice BS (a) has been
computed first, the confidentiality check can be done during
the dataflow analysis: If the current node has a provided se-
curity level P(x), a computed required level S IN � P(x) is a
violation. Declassification nodes themselves are not consid-
ered as information sinks in the above check, even though
they have to have a required security level.

Let us return to the example in Figure 1 and assume
R(14) = public. The computation to check confidential-
ity for criterion node 14 will start with a backward slice
BS (14). Because node 14 can be reached from every node



in the PDG, the slice will contain the complete PDG, thus it
is not reduced. The subsequent computation of the actual re-
quired security levels will result in S IN(x) = public for all
nodes x of the example. The confidentiality check will re-
veal violations at nodes 1 and 3–6 because for these nodes,
the specified provided level is higher than the computed ac-
tual required.

Now assume the node 14 is a declassification node
secret → public: 14 ∈ D, R(14) = secret, P(14) = public.
The computation of the actual required security lev-
els will result in S IN(x) = secret for x < 14. The confi-
dentiality check will no longer reveal a security violation,
which may be desirable depending on the security pol-
icy, since only a negligible amount of information leaks
from password checking.

3. Taint analysis

The above presented approach has been implemented
and we are currently evaluating it for confidentiality se-
curity polices. While preparing the evaluation for integrity
security policies (to which taint analysis belongs), we dis-
covered a disadvantage of the proposed approach. For taint
analysis, we are able to specify the sources of untrusted
data (e.g. user inputs) as with a provided security level of
tainted and to specify the vulnerable functions to have a re-
quired security level of untainted. However, many opera-
tions or functions do a declassification from tainted down
to untainted. For example, consider taint variable analysis
for buffer overrun protection. The call of snprintf from
the C-library prints its arguments to a buffer. However, it
is guaranteed by snprintf that the buffer will not over-
run. Thus, snprintf declassifies a security level of tainted
in its arguments down to untainted in the buffer. Such a de-
classification can easily be specified within our approach by
specifying the assignment to the buffer inside snprintf as
declassification node.

However, there are other operations that turn tainted vari-
ables into untainted ones. An example is a simple check of
the buffer with the user input against a maximal size (“if
(length(s) < MAX)”). In the true branch, s is untainted
and in the false branch, it is tainted. Such a declassification
cannot easily be specified within our approach: Any use of
variable s inside the true branch will have a direct data de-
pendence to the tainted assignment to s and will result in a
generated level of tainted.

We are currently investigating more flexible way to spec-
ify declassifications. One approach would be to use Wilan-
der’s pattern matching on dependence graphs [14]. For the
above example, the declassification would be specified as “a
check of the length of a variable against a maximal size will
declassify all accesses to the variable in the true branch to
untainted”. As SSA form is needed here to prevent that the

check and the access are different instances of the same vari-
able, another approach that is investigated by is to use gated
SSA form.

References

[1] B. Chess and G. McGraw. Static analysis for security. IEEE
Security & Privacy, November/December 2004.

[2] R. Cytron, J. Ferrante, B. K. Rosen, M. N. Wegman, and F. K.
Zadeck. Efficiently computing static single assignment form
and the control dependence graph. ACM Trans. Prog. Lang.
Syst., 13(4):451–490, 1991.

[3] J. Ferrante, K. J. Ottenstein, and J. D. Warren. The program
dependence graph and its use in optimization. ACM Trans.
Prog. Lang. Syst., 9(3):319–349, July 1987.

[4] V. B. Livshits and M. S. Lam. Tracking pointers with path
and context sensitivity for bug detection in C programs. In
ACM SIGSOFT Symposium on the Foundations of Software
Engineering, pages 317–326, 2003.

[5] V. B. Livshits and M. S. Lam. Finding security vulnerabili-
ties in java applications with static analysis. In USENIX Se-
curity Symposium, 2005.

[6] A. C. Myers. Jflow: practical mostly-static information
flow control. In POPL ’99: Proceedings of the 26th ACM
SIGPLAN-SIGACT symposium on Principles of program-
ming languages, pages 228–241, 1999.

[7] A. C. Myers, S. Chong, N. Nystrom, L. Zheng,
and S. Zdancewic. Jif: Java information flow.
http://www.cornell.edu/jif, 1999.

[8] K. J. Ottenstein, R. A. Ballance, and A. B. MacCabe.
The program dependence web: a representation supporting
control-, data-, and demand-driven interpretation of impera-
tive languages. In PLDI ’90: Proceedings of the ACM SIG-
PLAN 1990 conference on Programming language design
and implementation, pages 257–271, 1990.

[9] M. Pistoia, R. J. Flynn, L. Koved, and V. C. Sreedhar. In-
terprocedural analysis for privileged code placement and
tainted variable detection. In ECOOP 2005 – 19th Euro-
pean Conference on Object-Oriented Programming, volume
3586 of Lecture Notes in Computer Science, 2005.

[10] F. Pottier and V. Simonet. Information flow inference for ml.
ACM Trans. Prog. Lang. Syst., 25(1):117–158, 2003.

[11] A. Sabelfeld and A. Myers. Language-based information-
flow security. IEEE Journal on Selected Areas in Communi-
cations, 21(1), Jan. 2003.

[12] V. Simonet. Flow caml. http://cristal.inria.fr/ simonet/soft-
/flowcaml/.

[13] M. Weiser. Program slicing. IEEE Trans. Softw. Eng.,
10(4):352–357, July 1984.

[14] J. Wilander and P. Fak. Pattern matching security proper-
ties of code using dependence graphs. In Proceedings of the
First International Workshop on Code Based Software Secu-
rity Assessments, pages 5–8, 2005.

[15] S. Zdancewic. Challenges for information-flow secu-
rity. In Proceedings of the 1st International Workshop on
the Programming Language Interference and Dependence
(PLID’04), 2004.


