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ABSTRACT
A dependence cluster is a set of mutually inter-dependent
program elements. Prior studies have found that large de-
pendence clusters are prevalent in software systems. It has
been suggested that dependence clusters have potentially
harmful effects on software quality. However, little empirical
evidence has been provided to support this claim. The study
presented in this paper investigates the relationship between
dependence clusters and software quality at the function-level
with a focus on effort-aware fault-proneness prediction. The
investigation first analyzes whether or not larger dependence
clusters tend to be more fault-prone. Second, it investigates
whether the proportion of faulty functions inside dependence
clusters is significantly different from the proportion of faulty
functions outside dependence clusters. Third, it examines
whether or not functions inside dependence clusters playing
a more important role than others are more fault-prone. Fi-
nally, based on two groups of functions (i.e., functions inside
and outside dependence clusters), the investigation considers
a segmented fault-proneness prediction model. Our experi-
mental results, based on five well-known open-source systems,
show that (1) larger dependence clusters tend to be more
fault-prone; (2) the proportion of faulty functions inside de-
pendence clusters is significantly larger than the proportion
of faulty functions outside dependence clusters; (3) functions
inside dependence clusters that play more important roles
are more fault-prone; (4) our segmented prediction model
can significantly improve the effectiveness of effort-aware
fault-proneness prediction in both ranking and classification
scenarios. These findings help us better understand how
dependence clusters influence software quality.
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1. INTRODUCTION
A dependence cluster is a set of program elements that

all directly or transitively depend upon one another [8, 18].
Prior empirical studies found that large dependence clusters
are highly prevalent in software systems and further compli-
cate many software activities such as software maintenance,
testing, and comprehension [8, 18]. In the presence of a
(large) dependence cluster, an issue or a code change in one
element likely has significant ripple effects involving the other
elements of the cluster [8, 18]. Hence, there is a reason to
believe that dependence clusters have potentially harmful
effects on software quality. This suggests that the elements
inside dependence clusters have relatively lower quality when
compared to elements outside any dependence cluster. Given
this observation, dependence clusters should be useful in
fault-prediction. However, few empirical studies have inves-
tigated the effect of dependence clusters on fault-proneness
prediction.

This paper presents an empirical study of the relationships
between dependence clusters and fault-proneness. The con-
cept of a dependence cluster was originally introduced by
Binkley and Harman [8]. They treat program statements
as basic units, however, they note that dependence clusters
can be also defined at coarser granularities, such as at the
function-level [7]. For a given program, the identification
of function-level dependence clusters consists of two steps.
The first step generates a function-level System Dependence
Graph for all functions of the program. In general, these
graphs involve two types of dependencies between functions:
call dependency (i.e., one function calls another function)
and data dependency (e.g., a global variable defined in one
function is used in another function). In the System De-
pendence Graphs used in our study, nodes denote functions
and directed edges denote the dependencies between these
functions. In the second step, a clustering algorithm is used

This is the author’s version of the work. It is posted here for your personal use. Not for
redistribution. The definitive version was published in the following publication:

ASE’16, September 3–7, 2016, Singapore, Singapore
c© 2016 ACM. 978-1-4503-3845-5/16/09...

http://dx.doi.org/10.1145/2970276.2970353

296



to calculate all the maximal strongly connected components
found in the System Dependence Graph (SDG). In function-
level dependence clusters, functions are regarded as the basic
units and each cluster consists of at least two functions. Ac-
cording to Binkley et al. [7], the function-level dependence
clusters can offer an effective proxy for the more expensive
statement-level dependence clusters.

Based on this observation, we investigate dependence clus-
ters at the function-level. Our main contributions are the
following:

1) We investigate whether the qualities of dependence
clusters are influenced by their size. Our results show that
larger dependence clusters tend to be more fault-prone.

2) We examine whether functions inside dependence clus-
ters are more fault-prone than functions outside dependence
clusters. The results show that the proportion of faulty func-
tions inside dependence clusters is significantly greater than
that of functions outside all dependence clusters.

3) We examine whether functions playing more important
roles inside dependence clusters are more fault-prone. Our
empirical results show that importance metrics are positively
correlated with fault-proneness.

4) Finally, we propose a segmented prediction model for
fault-proneness prediction. More specifically, we build two
different fault-proneness prediction models respectively for
functions inside and functions outside dependence clusters.
The empirical results show that our segmented prediction
model can significantly improve the prediction performance
in effort-aware evaluations.

The rest of this paper is organized as follows. In Section 2,
we summarize related work. We present our research ques-
tions in Section 3. In Section 4, we describe the experimental
setup, including the subject systems and the data collection
method used. In Section 5, we describe the research method
and report the detailed experimental results with respect
to each of the research questions. Section 6 discusses our
findings. In Section 7, we examine threats to validity. Final-
ly, Section 8 concludes the paper and outlines directions for
future work.

2. RELATED WORK
This section summarizes related work on dependence clus-

ters and dependence analysis in fault-proneness prediction.

2.1 Dependence Clusters
Binkley and Harman [8] originally introduced the concept

of dependence clusters based on program slicing at the s-
tatement level. They proposed a “same slice size” approach
to identifying dependence clusters using the SDG. Later,
Harman et al. [18] extended this initial study to include a
larger set of programs. Their empirical results showed that
the “same slice size” approach was extremely accurate. In
addition, they found that large dependence clusters were
surprisingly commonplace and consumed from more than
10% of the program to, in some cases, 80% of the whole
program. Islam et al. [20, 21] introduced the concept of
coherent dependence clusters. In a coherent dependence clus-
ter, all elements depend upon the same set of elements and
also affect a common set of elements. They used coherent
dependence clusters to identify logical functionality within
programs.

Binkley and Harman [10, 9] introduced a method to mea-
sure the effect of an SDG vertex or an edge on the formation

of dependence clusters and then used this method to identify
linchpins, which effectively hold a dependence cluster togeth-
er. Their results showed that only a few vertices and edges
act as linchpins. After that, Binkley et al. [10] introduced a
simple transformation-based analysis algorithm to identify
the impact of global variables on the presence of dependence
clusters. Their results showed that over half of the studied
programs include a global variable that was responsible for
the formation of a dependence cluster.

Beszédes et al. [5, 6] conducted an empirical study into the
properties of SEA-based dependence clusters. Such cluster
are defined at the function-level and are based on the static
execute after (SEA) relation. Their empirical results showed
that SEA-based dependence clusters occur frequently in pro-
grams regardless of their domain and size. However, the
SEA-based relation only considers call structure information.
In other words, data dependencies are not considered in their
study. In contrast, we take the data dependency between
functions into account in our study.

Binkley et al. [7] compared the following two types of
dependence clusters: slice-based dependence clusters at the
statement-level and SEA-based dependence clusters at the
function-level. They found that the less expensive SEA-based
dependence clusters could be used as an effective proxy for
the more expensive slice-based dependence clusters. Unlike
the above studies, we investigate dependence clusters from
the perspective of software quality. More specifically, we
investigate whether dependence clusters have practical value
in effort-aware fault-proneness prediction.

2.2 Dependence Analysis in Fault-Proneness
Prediction

Zimmermann and Nagappan [41] calculated network met-
rics based on a dependence graph and used them to predict
faults. More specifically, they first generate a SDG at the
function level. Two kinds of dependencies between functions
are then taken into account: call dependencies and data
dependencies. They then lift this graph up to binary level
since the defects were at the binary level. They considered
the presence of dependencies without considering the multi-
plicity of dependencies. After that, they compute network
measures on the dependence graph and then evaluated their
fault-proneness prediction performance on Windows Server
2003. Their results show that the recall of the model built
from network measures was 10% higher than the model built
from complexity measures.

Ma et al. [23] conducted an empirical study to examine
the effectiveness of network measures in the context of effort-
aware fault-proneness prediction, taking into account the
effort required to inspect predicted faulty module. They
investigated dependence graphs at the file-level and did not
consider the multiplicity of dependencies between files. They
found that most network measures were of practical value
in the context of effort-aware evaluations. Unlike these two
studies, our SDGs are finer grained (i.e., function-level vs
binary/file-level). In addition, we take into account the
multiplicity of dependencies between functions.

Cataldo et al. [13] compared the relative impact of the
syntactic, logical, and work dependencies on fault-proneness
prediction. Syntactic dependencies are code dependencies
(e.g., control and data dependencies). Logical dependencies
focus on deducing dependencies between source code files
that are changed together [16]. Finally, work dependencies
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account the human and organization of information [17, 19,
27, 29, 32]. Their work showed that the logical dependencies
explained most of the variance in fault proneness while work
flow dependencies had more impact than code dependencies.
In our study, we only investigate syntactic dependencies, but
do so at a finer granularity.

Oyetoyan et al. [31] studied the impact of cyclic depen-
dencies on fault-proneness prediction. They found that most
defects and defective components were concentrated in cyclic
dependent components. The cyclic dependent components
are those in call cycles in call dependence graph at the class
level. These structures can also be viewed as dependence
clusters. Our study is different from their study mainly with
respect to the following aspects: 1) our dependence clustering
is at a finer granularity (i.e., function level) while their study
is at the file/class level; 2) we take into account more types
of dependencies, including both call and data dependencies;
3) we study the fault-proneness prediction model in effort-
aware evaluations with respect to ranking and classification
scenarios; 4) we propose a segmented fault-proneness pre-
diction model and compare our models with the traditional
fault-proneness prediction models.

3. RESEARCH QUESTIONS
In this section we discuss our research questions and use

the example SDG shown in Figure 1 to illustrate the ques-
tions. In Figure 1, the nodes (e.g., f1 and f2 ) are functions
and the directed edges are dependencies between functions,
depicting data dependencies (labeled “d”) and function call
dependencies (labeled “c”), respectively. In this dependence
graph, there are 15 functions and 3 dependence clusters (i.e.,
dc1, dc2, and dc3). In Figure 1, dc1, dc2, and dc3 are separate
clusters since they are maximal strongly connected subgraph-
s. The functions are divided into two groups: functions
inside dependence clusters and functions outside dependence
clusters. Functions inside dependence clusters and functions
outside dependence clusters form the subgraphs SubGin and
SubGout, respectively.

First, because a code change to one element of a depen-
dence cluster likely ripples to the others elements of the
cluster, our first research question (RQ1) investigates the
relationship between the size of dependence clusters and
fault-proneness:

RQ1. Are larger dependence clusters more fault-prone?
Second, functions in Figure 1 are classified into two groups:

functions inside and outside dependence clusters. Our second
research question (RQ2) focuses on the quality of functions
in these two groups.

RQ2. Are functions inside dependence clusters more fault-
prone than functions outside dependence clusters?

Third, functions inside dependence clusters form a sub-
dependence graph (e.g., SubGin of Figure 1). Different
functions play different roles in this sub-graph. Thus, we set
up RQ3 for functions inside dependence clusters as follows:
RQ3. Are functions playing more important roles inside

dependence clusters more fault-prone?
Finally, we aim to examine the usefulness of dependence

clusters for fault-proneness prediction. Therefore, our last
research question (RQ4) is set up as follows:
RQ4. Are dependence clusters useful in fault-proneness

prediction?
These research questions are important to both software

researchers and practitioners, as they help us better under-

Figure 1: An SDG with dependence clusters

stand the effects of dependence clusters on software quality.
Little is currently known on this subject. Our study attempts
to fill this gap.

4. EXPERIMENTAL SETUP
This section first introduces the systems studied before

describing the procedure used to collect the experimental
data.

4.1 Studied Projects
Table 1 summarizes the subjects used in the study. The

first column is the system name. We use five well-known
open-source projects as subject systems: Bash (BASH), gcc-
core (GCC), GIMP (GIMP), glibc (GLIB), and GStreamer
(GSTR). Bash is a command language interpreter, gcc-core
is the GNU compiler collection, GIMP is the GNU Image
Manipulation Program, glibc is the GNU Project’s imple-
mentation of the C standard library and GStreamer is a
multimedia framework. We chose these five projects as sub-
jects for two reasons. First, they are well-known open source
projects with a publicly available bug-fix history. In particu-
lar, the bug-fixing releases do not add any new features to the
corresponding systems, thus allowing us to collect accurate
fault data at the function level. For instance, gcc distribu-
tion website states “Note that starting with version 3.3.4, we
provide bug releases for older release branches for those users
who require a very high degree of stability”. Second, they are
non-trivial software systems belonging to several different
domains. In Table 1, the second to the seventh columns are
respectively the version number, the release date, the total
source lines of code in the subject release, the number of
functions, the number of faulty functions, and the percentage
of faulty functions. The eighth and the ninth columns are the
version number and the release date of the previous version
used for computing the process metrics in Section 5.4. The
last two columns are the version number and the release
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Table 1: The subject systems

System
Subject release Previous release Fixing release

Version Release Total # functions # faulty % faulty Version Release Version Release
date SLoC functions functions date date

Bash 3.2 2006-10-11 49 608 1 947 68 3.49% 3.1 2005-12-08 3.2.57 2014-11-07
Gcc-core 4.0.0 2005-04-21 422 182 13 612 430 3.16% 3.4.0 2004-04-20 4.0.4 2007-01-31
Gimp 2.8.0 2012-05-12 557 436 19 978 818 4.10% 2.7.0 2009-08-15 2.8.16 2015-11-21
Glibc 2.1.1 1999-05-24 172 559 5 923 417 7.04% 2.0.1 1997-02-04 2.1.3 2000-02-25
Gstreamer 1.0.0 2012-09-24 75 985 3 946 146 3.70% 0.11.90 2011-08-02 1.0.10 2013-08-30

date of the fixing release. The subject projects are moderate
to large-scale software systems (from 49 to 557 KSLOC).
They have only a small number of faulty functions (from
approximately 3% to 7% of all functions). Furthermore, on
average, the fixing release comes out approximately 3 years
after the subject version is released. We believe 3 years is
sufficiently long for the majority of faulty functions to be
identified and fixed.

4.2 Data Collection Procedure
We collected data from the above mentioned five projects.

For each subject system, we obtained the fault data and
identified dependence clusters for further analysis using the
following steps. At the first step, we determined the faulty or
not faulty label for each function. As mentioned before, any
of the bug-fixing releases did not add any new features to the
corresponding system. For each of the subject systems, we
compared these versions with the latest bug-fixing releases
(identified by the last two columns of Table 1) and determined
which functions were changed. If a function was changed,
it was marked as a faulty. Otherwise, it was marked as
not-faulty. This method has been used to determine faulty
functions before [42].

Our second step, collected the dependence clusters for
each system using the Understand1 tool and an R package
igraph2. For each subject system, we first generated an
Understand database. Then, we extracted the call and data
dependencies for all functions from the generated database.
In this way we obtained the SDG of the subject system.
After that, we used the function cluster in igraph package
to identify all dependence clusters. Each system’s functions
are divided into two groups: functions inside and functions
outside dependence clusters.

Table 2: The dependence clusters in subject systems

% functions Size of
System # functions # clusters inside clusters largest cluster

BASH 1 947 41 46.2 483
GCC 13 612 139 34.9 4083
GIMP 19 978 363 14.2 158
GLIB 5 923 105 11.6 277
GSTR 3 946 59 15.2 170

Table 2 describes the clusters in the subject projects. The
third to the fifth columns respectively show the number of
clusters, the percentage of functions inside clusters, and the
size of the largest cluster in each subject project. From Table
2, we can see that there exist many dependence clusters
(from 41 to 363) in these projects. Furthermore, from 11.6%
to 46.2% of the total functions are found inside dependence
clusters. Additionally, the size of the largest cluster in these

1https://scitools.com
2http://igraph.org/r/

Spearman rank correlationClusters: dc1, dc2, dc3, ...

Size Metric

Fault density

RQ1

Figure 2: Overview of the analysis method for RQ1

projects varied from 158 to 4083. Of these five projects,
GCC has the largest dependence cluster (that includes 4083
functions). This, to a certain extent, indicates that GCC is
more complex than the other systems.

5. METHODOLOGY AND RESULTS
In the section, we describe the research method and report

the experimental results in detail with respect to each of the
research questions.

5.1 RQ1. Are larger dependence clusters more
fault-prone?

In the following, we describe the research method used
and report the experimental result to address RQ1.

5.1.1 Research method
Figure 2 provides an overview of the analysis method

used to address RQ1. As can be seen, in order to answer
RQ1, we use Spearman’s rank correlation to investigate the
relationship between the size of dependence clusters and the
fault density of dependence clusters. Here, fault density
refers to the percentage of faulty functions in the dependence
clusters. There are two basic metrics to measure the size
of a graph: Size and Ties. Size is the number of functions
within dependence clusters while Ties is the number of edges
between functions in dependence clusters. In this study,
we first use igraph to compute these two metrics for all
dependence clusters in each subject system. We choose
Spearman’s rank correlation rather than Pearson’s linear
correlation since the former is a non-parametric method and
makes no normality assumptions on variables [30]. According
to Ott and Longnecker [30], for correlation coefficient rho, the
correlation is considered either weak (|rho| ≤ 0.5), moderate
(0.5 < |rho| < 0.8), or strong (0.8 ≤ |rho| ≤ 1.0).

Table 3: Spearman correlation for dependence clus-
ters size and fault density (RQ1)

System # clusters
Size Ties

rho p rho p
BASH 41 0.230 0.148 0.315 0.045
GCC 139 0.299 < 0.001 0.233 0.006
GIMP 363 0.150 0.004 0.195 < 0.001
GLIB 105 0.092 0.350 0.113 0.249
GSTR 59 0.345 0.007 0.295 0.023

299



Consistency table

Fisher s exact test and OR

RQ2f3f1 f2 ...

f5 f6 ...f4

Figure 3: Overview of the analysis method for RQ2

5.1.2 Experimental result
In the following, we describe the empirical results used to

answer RQ1. Table 3 summarizes the Spearman correlation
coefficients relating the size metrics with fault density of
dependence clusters. In Table 3, the second column is the
number of dependence clusters in each subject system. The
third and the fifth columns respectively present the corre-
lation coefficients for the Size and the Ties metrics from
Spearman’s singed-rank correlation. The correlation coeffi-
cients which are not statistically significant at the significance
level of α = 0.05 are marked in gray.

In Table 3, we see that all the absolute values of the
correlation coefficients are less than 0.5. This indicates that
there is only a weak correlation between these two size metrics
(i.e., Size and Ties) with fault density of dependence clusters.
However, all the correlation coefficients are larger than 0 and
most of them are statistically significant at the significance
level of α = 0.05. This indicates that these size metrics are
positively correlated with fault density. In other words, larger
dependence clusters tend to be more fault-prone. Thus, large
dependence clusters are likely more harmful and hence should
be avoided, advice that is consistent with prior studies [8,
18].

5.2 RQ2. Are functions inside dependence clus-
ters more fault-prone than functions out-
side dependence clusters?

In the following, we describe the research method and the
experimental result answering RQ2.

5.2.1 Research method
Figure 3 provides an overview of the data analysis method

for addressing RQ2. As can be seen, in order to answer
RQ2, we use Fisher’s exact test and the odds ratio (OR) to
examine whether the proportion of faulty functions inside
dependence clusters is statistically significantly different from
the proportion of faulty functions outside dependence clusters.
Fisher’s exact test is a statistical significance test used in
the analysis of contingency tables [36]. The contingency
table is a matrix that displays the frequency distribution of
variables. In our study, the contingency table has four types
of functions: (1) functions inside dependence clusters that
have faults; (2) functions inside dependence clusters that
have no faults; (3) functions outside dependence clusters that
have faults; and (4) functions outside dependence clusters
that have no faults. The OR indicates the likelihood that
an event (e.g., that a function is faulty) occurs [36]. Assume
p is the proportion of faulty functions inside dependence
clusters and q is the proportion of faulty functions outside

dependence clusters. Then, OR is defined as p�(1−p)
q�(1−q) . Thus

OR > 1 indicates that faults are more likely to occur inside
dependence clusters. OR = 1 indicates an equal probability.

5.2.2 Experimental result
Table 4 summarizes the results of the comparison of the

proportions of faulty functions inside and outside dependence
clusters. In Table 4, the second and the third columns re-
spectively represent the proportion of faulty functions inside
and outside dependence clusters. The fourth and the fifth
columns respectively show the Bonferroni adjusted p-value
from Fisher’s exact test and OR.

Table 4: The proportion of faulty functions inside
vs. outside dependence clusters (RQ2)

System
% functions is faulty Fisher’s

OR
inside outside exact test

BASH 5.44% 1.82% < 0.001 3.115
GCC 6.08% 1.59% < 0.001 4.004
GIMP 4.47% 4.03% 1.000 1.115
GLIB 14.54% 6.06% < 0.001 2.638
GSTR 10.20% 2.54% < 0.001 4.361

From Table 4, we can see that the proportion of faulty
functions inside dependence clusters is larger than the pro-
portion of faulty functions outside dependence clusters in all
cases, and significantly larger in all but one case. All the
p-values are less than 0.05 except in GIMP which indicates
statistically significant at the significance level of α = 0.05.
This indicates that the proportions of faulty functions be-
tween these two groups are significantly different. Meanwhile,
all the ORs are substantially greater than 1, two are even
greater than 4, which confirms the results from Fisher’s exact
test.

Overall, Fisher’s exact test and the ORs consistently in-
dicate that functions inside dependence clusters are more
fault-prone than functions outside dependence clusters.

5.3 RQ3. Are functions playing more impor-
tant roles inside dependence clusters more
fault-prone?

In the following, we describe the corresponding research
method and the experimental results that address RQ3.

5.3.1 Research method
Figure 4 provides an overview of the analysis method for

RQ3. Functions inside dependence clusters form an inde-
pendent dependence graph (e.g., SubGin in Figure 1). In
order to answer RQ3, we first use this graph to compute the
importance metrics as described in Table 5 for the functions
inside dependence clusters in the sub-dependence graph. The
metrics in Table 5 are widely used networks metrics [37] that
measure the extent to which these functions contribute to
the sub-dependence graph. For example, the Betweenness
metric for a vertex measures how many shortest paths pass
through the vertex for all pairs of vertices of the subgraph.
Thus, vertices with large Betweenness indicates a large im-
portance. Note that some of these importance metrics can be
computed by one the following three methods: “IN”, “OUT”,
and “ALL”. The “IN” method concerns all incoming edges.
The “OUT” method concerns all outgoing edges. While the
“ALL” method treats the graph as an undirected graph. In
this study, we only compute the metrics using the “OUT”
method.

After that, we build univariate logistic regression models
for each of these metrics with fault-proneness. Similar to
prior studies [11, 38], we use ∆OR, the odds ratio associated
with one standard deviation increase, to quantify the effect of
these metrics on fault-proneness. ∆OR is defined as follows:
∆OR = eβ×σ . Here, β and σ are respectively the regression
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Figure 4: Overview of the analysis method for RQ3

Table 5: Summarization of the importance metrics
Metric Description
Betweenness # shortest paths through the vertex
Centr betw Centrality score according to betweenness
Centr clo Centrality score according to the closeness
Centr degree Centrality score according to the degrees
Centr eigen Centrality score according to eigenvector
Closeness How close to other vertices
Constraint The Burt’s constraint
Degree # v’s adjacent edges
Eccentricity Maximum graph distance to other vertices
Page rank Google page rank score

coefficient from the univariate logistic regression and the
standard deviation of the variable. ∆OR > 1 indicates that
the corresponding metric is positively associated with fault-
proneness while ∆OR < 1 indicates a negative association.

5.3.2 Experimental result
Table 6 summarizes the ∆ORs from univariate logistic

regression analysis for the metrics of functions inside de-
pendence clusters. In Table 6, the second and the third
rows respectively show the number of functions and faulty
functions inside dependence clusters for each subject system.
After each ∆ORs, “×” indicate the ∆ORs is not statistically
significant at a significance level of α = 0.05. Note that,
all the p-values are corrected by the Bonferroni correction
method.

Table 6: Results from univariate analysis for the
importance metrics of functions inside dependence
clusters in terms of ∆OR (RQ3)
Metric BASH GCC GIMP GLIB GSTR
N 900 4752 2839 688 598
# faulty functions 49 289 127 100 61
Betweenness 1.394 1.159 1.097 × 0.876 × 1.079 ×
Centr betw 1.431 1.194 1.108 × 0.949 × 1.080 ×
Centr clo 1.034 × 1.257 0.957 × 1.315 1.101 ×
Centr degree 1.425 1.227 1.051 × 1.314 1.223
Centr eigen 1.013 × 1.004 × 1.106 × 0.340 × 0.947 ×
Closeness 1.035 × 1.277 0.958 × 1.310 1.102 ×
Constraint 0.716 0.705 1.039 × 0.779 0.775 ×
Degree 1.425 1.227 1.051 × 1.314 1.223
Eccentricity 0.901 × 1.068 × 0.998 × 1.030 × 0.963 ×
Page rank 1.264 × 1.037 × 1.246 0.845 × 1.127 ×

In Table 6, we see that the ∆ORs of the Centr degree
and Degree metrics are larger than 1.0 in all systems. For
other metrics, the ∆ORs are larger than 1.0 in most systems.
This indicates that they are positively associated with fault-
proneness. Overall, this result indicates that functions that
play a more important role in dependence clusters tend to
be more fault-prone.

5.4 RQ4. Are dependence clusters useful in
fault-proneness prediction?

In the following, we describe the research method and
present the experimental results for RQ4.

5.4.1 Research method

Figure 5 provides an overview of the analysis method
for RQ4. In order to address RQ4, we use AIC as the
criteria to perform a forward stepwise variable selection
procedure to build the following two types of multivariate
logistic regression models: (1) the “B” model and (2) the
“B+C” model. The logistic regression is a standard statistical
modeling technique in which the dependent variable can take
on only one of two different values [3]. It is suitable and
widely used for building fault-proneness prediction models [34,
33]. We choose the forward rather than the backward variant
because the former is less time consuming on stepwise variable
selection especially on a large number of independent metrics.
AIC is a widely used variable selection criteria [33].

Table 7: The most commonly used product, process,
and network metrics in this study
Category Description
Product SLOC, FANIN, FANOUT, NPATH, Cyclomatic, Cy-

clomaticModified, CyclomaticStrict, Essential, Knot-
s, Nesting, MaxEssentialKnots, MinEssentialKnots,
n1, n2, N1, N2

Process Added, Deleted, Modified
Network Size, Ties, Pairs, Density, nWeakComp, pWeakCom-

p, 2StepReach, ReachEffic, Broker, nBroker, EgoBe-
tw, nEgoBetw, effsize, efficiency, constraint, Degree,
Closeness, dwReach, Eigenvector, Betweenness, Pow-
er

Table 8: Description of the studied network metrics
Metric Description
Size # alters that ego is directly connected to
Ties # ties in the ego network
Pairs # pairs of alters in the ego network
Density % possible ties that are actually present
nWeakComp # weak components in the ego network
pWeakComp # weak components normalized by size
2StepReach # nodes ego can reach within two steps
ReachEffic 2StepReach normalized by sum of alters’ size
Broker # pairs not directly connected to each other
nBroker Broker normalized by the number of pairs
EgoBetw % all shortest paths across ego
nEgoBetw normalized EgoBetween (by ego size)
Effsize # alters minus the average degree of alters
Efficiency effsize divided by number of alters
Constraint The extent to which ego is constrained
Degree # nodes adjacent to a given node
Closeness sum of the shortest paths to all other nodes
dwReach # nodes that can be reached
Eigenvector The influence of node in the network
Betweenness # shortest paths through the vertex
Power The connections of nodes in one’s neighbors

(1) The “B” model. The “B” model is used as the baseline
model, which is built with the most commonly used product,
process, and network metrics. In this study, the product
metrics consist of 16 metrics, including one code size metric,
11 complexity metrics, and 4 software science metrics. The
process metrics consist of 3 code churn metrics [28]. The
description for the product and the process metrics can be
found in [38]. The network metrics consist of 21 network
metrics, which are described in Table 8. We choose these
metrics as the baseline metrics for the following reasons.
First, the network analysis metrics are also computed from
dependence graphs [41]. Second, these metrics are widely
used and considered as useful indicators for fault-proneness
prediction [25, 26, 28, 41]. Third, they can be cheaply
collected from source code for large software systems.
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Figure 5: Overview of the analysis method for RQ4

(2) The “B+C”model. The “B+C” model is our segmented
model which consists of two independent models, i.e., the
“B+Cin” model and the “B+Cout” model. The “B+Cin” and
the “B+Cout” models are respectively used for predicting the
probability that a function inside and outside dependence
clusters are faulty. They are both built with the most com-
monly used product/process/network metrics and the impor-
tance metrics described in Table 5. For the “B+Cin” model,
the importance metrics are computed on the sub-dependence
graph for functions inside dependence clusters (e.g., SubGin

of Figure 1). While for the “B+Cin” model, the importance
metrics are computed on the sub-dependence graph for func-
tions outside dependence clusters (e.g., SubGout of Figure
1).

Note that, as mentioned in Section 5.3.1, some of the
importance and the network metrics can be computed by
the “IN”, “OUT”, or the “ALL” method. For the sake of
simplicity, we only use the “OUT” method.

After building the “B” and the “B+C” models, we compare
the prediction performance of the “B” model and the “B+C”
model with respect to ranking and classification scenarios.
In the following, we describe the performance indicators and
the prediction settings, respectively.

(1) Performance indicators. In recent years, effort-
aware performance measures have been widely used for eval-
uating the fault-proneness prediction models. The reason
is that effort-aware measures take into account the effort
required to inspect the predicted “faulty” functions and thus
can provide a more realistic evaluation than non-effort-aware
measures [24]. In this study, we thus compare the “B” and
the “B+C” models in effort-aware evaluations. In greater de-
tail, the predictive effectiveness is evaluated in the following
two different scenarios: ranking and classification. In the
ranking scenario, the functions are ranked in a descending
order by the degree of their predicted relative risk. With
such a ranking in hand, software project managers can easily
select as many “high-risk” functions for inspecting or testing
as available resources will allow. In the classification scenario,
the functions are first classified into two categories according
to their predictive relative risk: high-risk and low-risk. The
functions that are predicted as high risk will be focused on for
software quality enhancement. Following previous work [38],

Figure 6: SLOC-based Alberg diagram

we also use SLOC in a function f as the proxy of the effort
required to inspect or test the function and define the rela-
tive risk of function f as R(f) = Pr�SLOC(f), where Pr
is the predicted probability of function f being faulty. In
other words, R(f) represents the predicted fault-proneness
per SLOC. In the following, we describe the effort-aware
predictive performance indicators used in this study with
respect to ranking and classification.

Ranking. We use CE, which is the cost-effectiveness
measure proposed by Arisholm et al. [2] to evaluate the effort-
aware ranking effectiveness of a fault-proneness prediction
model. The CE measure is based on the concept of the
“SLOC-based” Alberg diagram. In this diagram, the x-axis
and y-axis are respectively the cumulative percentages of
SLOC of the functions and the cumulative percentage of
faults found in selected from the function ranking list. Figure
6 is an example “SLOC-based” Alberg diagram showing the
ranking performances of a prediction model m (in our context,
the prediction model m could be the“B”model and the“B+C”
model). To compute CE, we also include two additional
curves: the “random” model and the “optimal” model. In the
“random” model, functions are randomly selected to inspect
or test. In the “optimal” model, functions are sorted in
decreasing order according to their actual fault densities.
Based on this diagram, the effort-aware ranking effectiveness
of the prediction model m is defined as follows [2]:

CEπ(m) =
Areaπ(m)−Areaπ(random)

Areaπ(optimal)−Areaπ(random)

Here, Areaπ(m) is the area under the curve corresponding
to model m for a given top 100% percentage of SLOC. The
cut-off value π varies between 0 and 1, depending on the
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amount of available resource for inspecting functions. As
aforementioned, practitioners are more interested in the rank-
ing performance of a prediction model at the top fraction. In
this study, we use the CE at the cut-off π = 0.2 (indicated
as CE0.2) to evaluate the effort-aware ranking performance
of a model.

Classification. We use Effort Reduction in Amount
(ERA), a classification performance indicator adapted from
the “ER” measure used by Zhou et al. [40], to evaluate the
effort-aware classification effectiveness of a fault-proneness
prediction model. In the classification scenario, only those
functions predicted to be high-risk will be inspected or test-
ed for software quality enhancement. The ERA measure
denotes the amount of the reduced SLOC (i.e., the amount
of effort reduction) to be inspected by a model m compared
with the random model that achieves the same recall of faults.
Therefore, the effort-aware classification effectiveness of the
prediction model m can be formally defined as follows:

Here, Effort(m) is the ratio of the total SLOC in those
predicted faulty functions to the total SLOC in the sys-
tem. Effort(random) is the ratio of SLOC to inspect or test
to the total SLOC in the system that a random selection
model needs to achieve the same recall of faults as the pre-
diction model m. In this paper, for the sake of simplicity,
we use ERA0.2 to evaluate the effort-aware classification
performance. In order to compute ERA0.2, we first use the
predicted fault-proneness by the model to rank the modules
in descending order. Then, we classify the top 20% modules
into the fault-prone category and the other 80% modules into
the defect-free category. Finally, we compute the effort-aware
classification performance ERA as ERA0.2. Here, we use
20% as the cut-off value because many studies show that the
distribution of fault data in a system generally follow the
Pareto principle [1, 15]. The Pareto principle, also known as
the 20-80 rule, states that for many phenomena, 80 percent
of the consequences stem from 20 percent of the causes [22].
In our context, this means that by inspecting these 20%
predicted fault-prone functions, we expect that almost 80%
of faulty modules in a system will be found.

(2) Prediction settings. To obtain a realistic compari-
son, we evaluate the prediction performance under 30 times
3-fold cross-validation. We choose 3-fold cross-validation
rather than 10-fold cross-validation due to the small per-
centage of faulty function in the data sets. At each 3-fold
cross-validation, we randomize and then divide the data set
into 3 parts of approximately equal size. Then, we test each
part by the prediction model built with the remainder of the
data set. This process is repeated 30 times to alleviate poten-
tial sampling bias. Note that, for each fold of the 30 times
3-fold cross-validation, we use the same training/test set to
train/test our segmented model (i.e., the “B+C” model) and
the baseline model (i.e., the “B” model). On each fold, we
first divide the training set into two groups: functions inside
dependence clusters and functions outside dependence clus-
ters. Then, we train the “B+Cin” model and the “B+Cout”
model, respectively. We also divide the test set into two
groups and subsequently use the “B+Cin” model and the
“B+Cout” model to predict the probability of those functions
that contain faults. After that, we combine the predicted
values to derive the final predicted values to compute the
performance indicators.

Based on these predictive effectiveness values, we use the
Wilcoxon’s signed-rank test to examine whether two models
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Figure 7: Ranking performance comparison for the
“B” and the “B+C” model in terms of CE0.2

have a significant difference in their predictive effectiveness.
Then, we use the Bonferroni correction method to adjust
p-values to examine whether a difference is significant at the
significance level of 0.05 [4]. Furthermore, we use Cliff’s δ
to examine whether the magnitude of the difference between
the prediction performances of two models is important from
the viewpoint of practical application [2]. Cliff’s δ is widely
used for median comparison. By convention, the magnitude
of the difference is considered either trivial (|δ| < 0.147),
small (0.147 ∼ 0.33), moderate (0.33 ∼ 0.474), or large (>
0.474) [35].

5.4.2 Experimental result
This section presents the results with respect to ranking

and classification scenarios to answer RQ4.
(1) Ranking performance comparison
Figure 7 employs the box-plot to describe the distributions

of CE0.2 obtained from 30 times 3-fold cross-validation for the
“B” and the “B+C” models with respect to each of the subject
systems. For each model, the box-plot shows the median
(the horizontal line within the box), the 25th percentile (the
lower side of the box), and the 75th percentile (the upper
side of the box). In Figure 7, a blue box indicates that (1)
the corresponding “B+C” model performs significantly better
than the “B” model according to the p-values from Wilcoxon
signed-rank test; and (2) the magnitude of the difference
between the corresponding “B+C” model and the “B” is not
trivial according to Cliff’s δ (i.e. |δ| ≥ 0.147).

Table 9: Ranking comparison in terms of CE0.2: the
“B” model vs the “B+C” model

System B B+C %↑ |δ|
BASH 0.098 0.201 104.90% 0.688

√

GCC 0.148 0.197 33.00% 0.714
√

GIMP 0.073 0.130 78.70% 0.938
√

GLIB 0.172 0.188 9.40% 0.194
√

GSTR 0.160 0.198 24.00% 0.426
√

Average 0.130 0.183 50.00% 0.592

From Figure 7, it is obvious that the“B+C”model performs
substantially better than the “B” model in each of the subject
systems.

Table 9 presents median CE0.2 for the “B” and the “B+C”
models. In Table 9, the second and the third columns present
the median CE0.2” respectively for the B and the “B+C”
model. The fourth and the fifth column are respectively the
percentage of the improvement for the “B+C” model over
the “B” model and the effect sizes in terms of the Cliff’s δ.
In the last column, “

√
” indicates that the “B+C” model has

significantly larger median CE0.2 than the “B” model by the
Wilcoxon’s signed-rank test. The last row in Table 9 shows
the average values for the five projects.

From Table 9, we have the following observations. For all
systems, the “B+C” model has a larger median CE0.2 than
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Figure 8: Classification performance comparison for
the “B” and the “B+C” model in terms of ERA0.2

the “B” model in terms of the median CE0.2. On average, the
“B+C” model leads to about 50.0% improvement over the “B”
model in terms of the median CE0.2. The Wilcoxon signed-
rank test p-values are very significant (< 0.001). Furthermore,
the effect sizes are moderate to large except in GLIB where
the effect size is small. The core observation is that, from the
viewpoint of practical application, the “B+C” model has a
substantially better ranking performance than the “B” model.

(2) Classification performance comparison
Figure 8 employs box-plots to describe the distributions

of ERA0.2 obtained from 30 times 3-fold cross-validation for
the “B” and the “B+C” models with respect to each of the
subject systems. From Figure 8, we can find that the “B+C”
models are also substantially better than the “B” model.

Table 10: Classification comparison in term of
ERA0.2: the “B” model vs the “B+C” model

System B B+C %↑ |δ|
BASH 0.098 0.211 115.20% 0.644

√

GCC 0.148 0.210 41.80% 0.816
√

GIMP 0.059 0.124 112.60% 0.940
√

GLIB 0.110 0.135 22.80% 0.462
√

GSTR 0.132 0.189 43.30% 0.551
√

Average 0.109 0.174 67.10% 0.683

Table 10 presents the classification performance for the “B”
and the “B+C” models in terms of CE0.2. For all systems,
the “B+C” model has a larger median ERA0.2 than the “B”
model in terms of the median ERA0.2. On average, the
“B+C” model leads to about 67.1% improvement over the “B”
model. The p-values are very significant (< 0.001). Besides,
the effect sizes are moderate to large. The core observation is
that, from the viewpoint of practical application, the “B+C”
model has a substantially better classification performance
than the “B” model.

Overall, the above observations suggest that the “B+C”
model outperforms the“B”model in effort-aware fault-proneness
prediction under both ranking and classification scenarios.
This indicates that dependence clusters are actually useful
in effort-aware fault-proneness prediction.

6. DISCUSSION
In this section, we further discuss our findings. First, we

analyze whether our conclusions will change if the potentially
confounding effect of module size is excluded for the “B” and
the “B+C” models. Then, we analyze whether we have
similar conclusions if the multiplicity of dependencies is not
considered.

6.1 Will our conclusions change if the poten-
tially confounding effect of module size is
excluded?

In our study, when building a fault-proneness prediction
model, we did not take into account the potentially con-

founding effect of function size on the associations between
those metrics with fault-proneness [14, 39]. Therefore, it is
not readily known whether our conclusions will change if
the potentially confounding effect of module size is excluded.
In the following, we use the method proposed by Zhou et
al. [39] to remove the confounding effect of module size and
then rerun the analyses for RQ4.

Table 11: Ranking comparison in terms of CE0.2 af-
ter excluding the potentially confounding effect of
module size: the “B” model vs the “B+C” model

System B B+C %↑ |δ|
BASH 0.117 0.094 -0.194 0.224

GCC 0.150 0.174 0.160 0.520
√

GIMP 0.073 0.131 0.799 0.928
√

GLIB 0.183 0.188 0.025 0.041

GSTR 0.155 0.187 0.209 0.399
√

Average 0.136 0.155 0.200 0.333

Table 12: Classification comparison in terms of
ERA0.2 after excluding the potentially confounding
effect of module size: the “B” model vs the “B+C”
model

System B B+C %↑ |δ|
BASH 0.128 0.109 -15.40% 0.136

GCC 0.148 0.196 31.80% 0.728
√

GIMP 0.059 0.128 118.80% 0.948
√

GLIB 0.112 0.135 20.70% 0.446
√

GSTR 0.128 0.171 33.40% 0.444
√

Average 0.115 0.148 37.90% 0.486

Table 11 and Table 12 respectively present the median
CE0.2 and ERA0.2 for the “B” and the “B+C” models after
excluding the potentially confounding effect of module size.
From Table 11 and Table 12, we find that the “B+C” models
have both larger median CE0.2 and median ERA0.2 than the
“B”model in all the five subject systems except in BASH. This
indicates that our proposed model still performs better than
the baseline model in both of the ranking and classification
scenarios in most cases.

Overall, after excluding the potentially confounding effect
of function size, our conclusion on RQ4 is mostly the same.

6.2 Will our conclusions change if the multi-
plicity of dependencies is ignored?

As mentioned before, in our study we take into account
the multiplicity of dependencies between functions. The
multiplicity information is used as the weight of dependencies
in the SDG. However, prior studies [23, 31, 41] ignored
this information. Therefore, it is not readily answerable
whether our conclusions will change if the multiplicity of
dependencies is also ignored. Next, we ignore the multiplicity
of dependencies and rerun the analysis for RQ4.

Table 13 and Table 14 respectively summarize the median
CE0.2 and the median ERA0.2 for the “B” and the “B+C”
models when the multiplicity of dependencies is not con-
sidered. From Table 13 and Table 14, we observe that the
“B+C” models have substantially larger median CE0.2 and
median ERA0.2 than the “B” model in all the five subject
systems. This indicates that our proposed model still per-
forms substantially better than the baseline model in both
of the ranking and classification scenarios.

Overall, the above observations show that our conclusions
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on RQ4 remain unchanged if the multiplicity of dependencies
is not considered.

Table 13: Ranking comparison in terms of CE0.2

when the multiplicity of dependencies is not consid-
ered: the “B” model vs the “B+C” model

System B B+C %↑ |δ|
BASH 0.142 0.187 32.20% 0.313

√

GCC 0.159 0.196 23.30% 0.576
√

GIMP 0.070 0.134 92.60% 0.986
√

GLIB 0.172 0.179 4.50% 0.167
√

GSTR 0.160 0.192 20.60% 0.378
√

Average 0.140 0.178 34.60% 0.484

Table 14: Classification comparison in terms of
ERA0.2 when the multiplicity of dependencies is not
considered: the “B” model vs the “B+C” model

System B B+C %↑ |δ|
BASH 0.157 0.202 28.80% 0.261

√

GCC 0.163 0.203 24.50% 0.605
√

GIMP 0.058 0.135 132.90% 0.994
√

GLIB 0.100 0.122 22.20% 0.402
√

GSTR 0.131 0.184 40.10% 0.501
√

Average 0.122 0.169 49.70% 0.552

7. THREATS TO VALIDITY
This section analyzes the most important threats to the

construct, internal, and external validity of our study.

7.1 Construct Validity
There are two potential threats to the construct validity

of our study. The first threat concerns the fault data. In
our study, we collected fault data by comparing the latest
bug-fixing version with the investigated version for each
system. Bug-fixing version did not add new features to the
corresponding systems. Thus, the construct validity of the
fault data can be considered acceptable. The second threat
concerns the method we used to compute the importance and
the network metrics. In our study, we use the “OUT” method
to compute those metrics which only concerns the outgoing
degree. In order to address this threat, we recomputed
those metrics by using the other two methods and reran the
analysis for RQ3, and RQ4. We found that the results were
very similar.

7.2 Internal Validity
There are three possible threats to the internal validity

of our study. The first threat is the unknown effect of the
method to define the relative risk of a function in RQ4. In
our study, we use the ratio of the predicted value from a
näıve logistic regression model to the functions SLOC as the
relative risk for each function. However, in the literature,
most studies use the predicted value from the näıve logistic
regression model as the relative risk of a function. In order to
eliminate this threat, we reran the analysis for RQ4 by using
the predicted value from the näıve logistic regression model
as the relative risk. We found that the relative performance
of the “B” model and the “B+C” model is not changed. That
is to say, the “B+C” model is still significantly better than
the “B” model. The second threat is from the specific cut-off
value used for the performance indicator (i.e. the CE and

ERA). In our study, 0.2 is used as the cut-off value for the
computation of CE and ERA. To eliminate this potential
threat, we rerun all the analyses using the following typical
cut-off values: 0.10 and 0.30. We found our conclusion
remains unchanged. The third threat is the unknown effect
of the method for the stepwise variable selection in RQ4.
In our study, we use AIC as the criteria to perform the
stepwise variable selection. BIC is also a widely used method
to perform stepwise variable selection [12]. We reran the
analysis for RQ4 using BIC as the criteria to perform variable
selection and found the results to be very similar.

7.3 External Validity
Our experiments are based on five long-lived and widely

used open-source C systems. The most important threat to
the external validity of this study is that our findings may
not be generalized to other systems, especially closed-source
systems. The second threat to the external validity of this
study is that our findings are restricted to only one language.
These external threats are ever present in any empirical study
concerning program analysis, we hope that researchers will
replicate our study across a wide variety of systems in the
future.

8. CONCLUSIONS AND FUTURE WORK
In this study, we perform an extensive study to examine

the relationships between function-level dependence cluster-
s and fault-proneness. Our findings from five widely used
industrial-size systems show that (1) larger dependence clus-
ters tend to be more fault-prone; (2) functions inside depen-
dence clusters tend to be more fault-prone than functions
outside dependence clusters; (3) functions that play more
important roles in dependence clusters are more fault-prone;
(4) our segmented prediction model can significantly improve
the performance in effort-aware fault-proneness prediction.
These results consistently suggest that (1) large dependence
clusters in software systems should be avoided; (2) when per-
forming code refactoring, we should pay more attention to
dependence clusters. These results provide valuable data for
better understanding the properties of dependence clusters
and its effect on software quality.

This study focuses on function-level dependence cluster for
open-source C software systems. As future work, we plan to
replicate our experiments for dependence clusters at different
granularities (e.g., statement level) and on systems written
in other languages and other programming paradigms.
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