
Mining Control Flow Graphs for Crosscutting Concerns

Jens Krinke
FernUniversität in Hagen, Germany

krinke@acm.org

Abstract

Aspect mining tries to identify crosscutting con-
cerns in existing systems and thus supports the adaption
to an aspect-oriented design. This paper describes an au-
tomatic static aspect mining approach, where the control
flow graphs of a program are investigated for recurring ex-
ecution patterns based on different constraints, such as the
requirement that the patterns have to exist in different call-
ing contexts. A case study done with the implemented tool
shows that most discovered crosscutting candidates are in-
stances of crosscutting delegation and should not be refac-
tored into aspects.

1. Introduction

The notion of scattered code refers to code that exists
several times in a software system but cannot be encap-
sulated by separate modules using traditional module sys-
tems because it crosscuts the whole system. This makes
software more difficult to maintain, to understand, and to
extend. Aspect-Oriented Programming [11] provides new
separation mechanisms for such complex crosscutting con-
cerns [19].

A major problem in re-engineering legacy code based
on aspect-oriented principles is to find and to isolate these
crosscutting concerns. This task is also called aspect min-
ing. The detected concerns can be re-implemented as sep-
arate aspects, thereby improving maintainability and exten-
sibility as well as reducing complexity. Aspect mining can
also provide insights that enable us to classify common as-
pects which occur in different software systems, such as
logging, timing, and communication. It is still an ongoing
discussion what types of crosscutting concerns should be
refactored into aspects to improve the quality of a system.
It is our belief that only superimposed crosscutting behav-
ior should be refactored, i.e. behavior that is not core func-
tionality of a system. Others believe that aspects can be
used to implement almost anything. However, there is not
yet enough experience with aspect oriented programming

to judge whether this is true. Independent of this, identifi-
cation of the crosscutting concerns in a system is still very
useful for the system comprehension.

Several approaches based on static program analysis
techniques have been proposed for aspect mining (see re-
lated work in Section 4 for a discussion). We have previ-
ously developed a dynamic program analysis approach [2]
that mines aspects based on program traces. During pro-
gram execution, program traces are generated, which reflect
the run-time behavior of a software system. These traces are
then investigated for recurring execution patterns. Differ-
ent constraints specify when an execution pattern is “recur-
ring”. These include the requirement that the patterns have
to exist in different calling contexts in the program trace.
The dynamic analysis approach monitors actual (i.e., run-
time) program behavior instead of potential behavior, as sta-
tic program analysis does. Because it is not always possible
to execute the program that should be analyzed and to ex-
plore the differences between static and dynamic analyses
in aspect mining, we have developed a static analysis vari-
ant of our approach [12] that analyzes control flow graphs
for recurring execution patterns. This work will show how
the execution relations and their constraints can be general-
ized, it will present an algorithm to compute execution rela-
tions from control flow graphs, and will present an in-depth
case study of the identified relations in JHotDraw. We ex-
perienced two main things with this approaches:

• The results of the static and dynamic analysis are dif-
ferent due to various reasons.

• Crosscutting concerns are often perfectly good style,
because they result from delegation and coding style
guides.

The first point is obvious (issues are not executed code, late
binding, etc.) and thus, only the second point will be dis-
cussed in the following. The evaluation of the results of the
static aspect mining approach will specifically try to distin-
guish crosscutting concerns that are instances of delegation
from those that can be regarded as superimposed behavior.
This distinction helps us to classify whether a refactoring
of the detected crosscutting concern into an aspect will im-

c©2006 IEEE. To be published in the Proceedings of the 13th Working Conference on Reverse Engineering: IEEE International Astrenet Aspect Analysis
(AAA) Workshop, 2006 in Benevento, Italy. Personal use of this material is permitted. However, permission to reprint/republish this material for advertising
or promotional purposes or for creating new collective works for resale or redistribution to servers or lists, or to reuse any copyrighted component of this
work in other works must be obtained from the IEEE.



prove the systems quality (in the sense of maintainability,
complexity, comprehensibility).

The next section contains a description of our static as-
pect mining approach based on control flow graphs. Sec-
tion 3 contains a case study, followed by related work. Sec-
tion 5 discusses the results and concludes.

2. Aspect Mining based on Execution Rela-
tions

The dynamic aspect mining approach previously intro-
duced [2] is based on the analysis of program traces which
mirror a system’s behavior in certain program runs. Within
these program traces we identify recurring execution pat-
terns which describe certain behavioral aspects of the soft-
ware system. We have seen that recurring execution patterns
are potential crosscutting concerns which describe recur-
ring functionality in the program and thus are possible as-
pects. In order to detect these recurring patterns in the pro-
gram traces, a classification of possible pattern forms based
on so-called execution relations has been introduced. They
describe in which relation two method executions are in
the program trace. However, often enough a program that
should be analyzed cannot be executed. For such circum-
stances we have developed a static analysis that extracts the
execution relations from a control flow graph. The execu-
tion relations are a general concept and in the following it is
shown how the execution relations and their constraints are
defined for this static approach.

A control flow graph (CFG) is a directed attributed graph
G = (N,E, ns, ne) with node set N and edge set E. The
statements and predicates are represented by nodes n ∈ N
and the control flow between statements is represented by
control flow edges (n, m) ∈ E, written as n → m. E
contains control flow edge e, iff the statement represented
by node target(e) may immediately be executed after the
statement represented by source(e), i.e. no other statement
is executed in between. Two special nodes ns ∈ N and
ne ∈ N are distinguished, the START node ns and the EXIT
node ne, which represent beginning and end of the pro-
gram. Node ns does not have predecessors and node ne

does not have successors. Each procedure or method p ∈ P
of a program is represented with its own control flow graph
Gp = (Np, Ep, n

s
p, n

e
p), where ∀p, q : p 6= q ⇒ Np ∩Nq =

∅ ∧ Ep ∩ Eq = ∅ and N? =
⋃

p Np, E? =
⋃

p Ep repre-
sent the set of nodes and edges for the complete program
that is represented by the graph G? = (N?, E?). Note that
we assume a unique EXIT node which is a join in presence of
multiple return statements. In languages like Java there
may be multiple exits due to exception handling. However,
in our approach such exits are ignored and execution rela-
tions are only identified in the parts of the source code that
lead to a normal exit.

void m1() {
a();
b();
a();

}
void m2() {
a();
if (...) {
b();
a();

}
}
void m3() {
a();
c();

}

Figure 1. Example

Usually, the procedures’ graphs are connected with
edges that represent procedure or method calls, how-
ever, such edges are not important for this paper and we
assume that the graphs are not connected. In the follow-
ing we will only use the term method to denote methods or
procedures.

2.1. Classification of Execution Relations

In the control flow graphs we focus on method calls
(and executions) because we want to analyze imperative or
object-oriented systems where logically related functional-
ity is encapsulated in methods.

Crosscutting concerns are reflected by the two different
execution relations that can be found in control flow graphs:
A method can be executed either after the preceding method
execution is terminated or inside the execution of another
method call. We distinguish between these two cases and
say that there are outside- and inside-execution relations in
control flow graphs. We thus define formally:

u ⇀ v with u, v ∈ P , is called an outside-before-
execution relation if there is a path nu →? nv in G? where
nu is a call of u, nv is a call of v and there is no other call on
the path. This is read as “u is executed before v”. S⇀(G)
is the set of all outside-before-execution relations in a call
graph G. This relation can also be reversed, i.e., v ↼ u
is an outside-after-execution relation if u ⇀ v ∈ S⇀(G).
The relation u ↼ v can be read as “v is executed after u”.
The set of all outside-after-execution relations in a graph G
is then denoted with S↼(G). Figure 1 shows a small frag-
ment that will be used as an example. The following rela-
tions can be identified: a ⇀ b, b ⇀ a, a ⇀ c, b ↼ a,
a ↼ b and c ↼ a.

2



u ∈> v with u, v ∈ P is called an inside-first-execution
relation if there is a path nv →? nu in Gu such that
nv = ns

v is the START node, nu is a call of u and there is
no other call on the path. The relation u ∈> v can be read
as “u is executed first in v”. u ∈⊥ v is called an inside-last-
execution relation if if there is a path nu →? nv in Gu such
that nv = ns

v is the EXIT node, nu is a call of u and there is
no other call on the path. The relation u ∈⊥ v can be read
as “u is executed last in v”. S∈>(G) is the set of all inside-
first-execution relations in a control flow graph G, S∈⊥(G)
is the set of all inside-last-execution relations. In the fol-
lowing, we drop G when it is clear from the context. In Fig-
ure 1, the following relations can be identified: a ∈> m1,
a ∈> m2, a ∈> m3, a ∈⊥ m1, a ∈⊥ m2 and c ∈⊥ m3.

There is one special case that has to be represented ex-
plicitly. Whenever there is a path ns

p →? ne
p that does not

contain any call, the following two relations are explicitly
generated: ε ∈> p and ε ∈⊥ p. These two relations cap-
ture the possibility that no call to a method occurs dur-
ing the execution of method p. Moreover, any inside-first-
or inside-last-execution relation also generates similar con-
straints on the outside execution relations. An inside-first-
execution relation u ∈> v generates ε ⇀ u as there is no
other call before u is called and an inside-last-execution re-
lation u ∈⊥ v generates ε ↼ u because there is no other
call after u is called. These generated relations are called
epsilon relations. In Figure 1, the following epsilon rela-
tions can be identified: ε ⇀ a, ε ↼ a, and ε ↼ c.

The above execution relations including the special cases
are similar to the execution relations defined for the dy-
namic aspect mining approach and most of the following
constraints can now be used in both approaches.

2.2. Execution Relation Constraints

Recurring execution relations can be seen as indicators
for more general execution patterns. To decide under which
circumstances certain execution relations are recurring pat-
terns and thus potential crosscutting concerns in a system,
constraints have to be defined. The constraints will implic-
itly also formalize what crosscutting means.

Formally, an execution relation s = u ◦ v ∈ S◦, ◦ ∈
{⇀,↼,∈>,∈⊥}, is called uniform if ∀w ◦ v ∈ S◦ : u = w
with u, v, w ∈ P ∪ {ε} holds, i.e., it exists in always the
same composition. Û◦ is the set of execution relations s ∈
S◦ which satisfy this requirement. This constraint is easy
to explain. Consider an outside-before-execution relation
u ⇀ v. This is defined as recurring pattern if every execu-
tion of v is preceded by an execution of u. The argumenta-
tion for outside-after-execution relations is analogous. The
uniformity-constraint also applies to inside-execution rela-
tions. An inside-execution relation u ∈> v (or u ∈⊥ v)
can only be a recurring pattern if v never executes another

method than u as first (or last) method inside its body. In
Figure 1, only the following relations are uniform: a ⇀ b,
a ⇀ c, a ↼ b, a ∈> m1, a ∈> m2, a ∈> m3, a ∈⊥ m1,
a ∈⊥ m2, c ∈⊥ m3, and ε ↼ c.

We now drop the ε-relations and define a further analy-
sis constraint: An execution relation s = u ◦ v ∈ U◦ =
Û◦\{u ◦ v | u = ε ∨ v = ε} is called crosscutting if
∃s′ = u ◦ w ∈ U◦ : w 6= v with u, v, w ∈ P holds, i.e.,
it occurs in more than a single calling context in the con-
trol flow graph. For inside-execution relations u ∈> v (or
u ∈⊥ v) the calling context is the surrounding method exe-
cution v. For outside-execution relations u ⇀ v (or u ↼ v)
the calling context is the method v invoked before (or af-
ter) method u. R◦ is the set of execution relations s ∈ U◦

which satisfy this requirement. Execution relations s ∈ R◦

are also called aspect candidates as they represent the po-
tential crosscutting concerns of the analyzed software sys-
tem. In Figure 1, only the following relations are uniform
and crosscutting: a ⇀ b, a ⇀ c, a ∈> m1, a ∈> m2,
a ∈> m3, a ∈⊥ m1, and a ∈⊥ m2.

The above definitions are exactly the same as in the dy-
namic approach and the technique to extract the uniform
and crosscutting relations (which is not presented here) has
been reused in the static approach that is presented next.

2.3. Static Aspect Mining

We implemented a tool to extract and evaluate the exe-
cution relations from the previous section. This analysis ex-
tracts the execution relations from a control flow graph of
the analyzed program. In particular, we generate the con-
trol flow graphs for the methods of a program to analyze
and the traverse the edges. The algorithm itself is basically
a reaching definitions data flow analysis, where the defini-
tions are replaced by the calls occurring at the nodes of the
control flow graph. As this is well known data flow analy-
sis, no details are given here. Only the data flow equations
are given in the following.

Let C ⊆ N? be the set of nodes that are calls to a method
and let c(n) be the called method of a node n ∈ C. A call
of a method p at a node n (p = c(n)) reaches a (not neces-
sarily different) node m, if a path P = 〈n1, . . . , nk〉 in G
exists, such that

1. k > 1

2. n1 = n ∧ nk = m

3. ∀1 < i < k : ni /∈ C

To obey the epsilon relation, START and EXIT nodes are as-
sumed to be call node with ∀p ∈ P : ns

p ∈ C ∧ ne
p ∈

C ∧ c(ns
p) = ε ∧ c(ne

p) = ε.
Now RC(n) is defined as the set of reaching calls at node

n. They can be computed via a data flow analysis frame-
work: Therefore, the local abstract semantics are described

3



with a transfer function over the set of calls x that reach a
node n:

[[n]](x) =
(
x− kill(n)

)
∪ gen(n)

This equation means that calls reaching the entry of a node
n which are not killed by n, reach the exit of n together with
calls generated by n. In the case of reaching calls, the sets
kill and gen are easily defined:

gen(n) =
{

{p | p = c(n)} if n ∈ C
∅ otherwise

kill(n) =
{

P if n ∈ C
∅ otherwise

A call reaches a node n, if a path from the START node
ns to n exists, on which the call is not killed. At the START
node, only the ε call is available. If there exists more than
one path, the reaching definitions of all paths are merged
(by union in this case):

RC(n) =
⋃

p=〈s,...,n〉

[[p]]({ε})

This is an instance of a meet-over-all-paths (MOP) solution.
In presence of loops there are infinite paths, which make
the computation of the MOP solution impossible. There-
fore, only the minimal-fixed-point (MFP) solution is com-
puted:

RC(n) =
{

{ε} n = ns
p

[[n]](
⋃

m→n RC(m))

Because of the properties of the transfer function the
minimal-fixed-point solution is equal to the meet-over-all-
paths solution.

From the reaching calls sets the four execution relations
can be generated:

• ∀n ∈ C ∧m ∈ RC(n) : m ⇀ n ∧ n ↼ m
Any call that reaches another call causes an outside-
before-execution and an outside-after-execution rela-
tion between the two calls. (The epsilon relations are
automatically generated.)

• ∀n ∈ C ∧ n ∈ Np ∧ ε ∈ RC(n) : n ∈> p
If the ε call reaches another call, then there exists a
path from the START node to the call without another
call and the corresponding inside-first-execution rela-
tion is generated. (The epsilon relations are generated
if the ε call reaches the EXIT node.)

• ∀ne
p ∈ C ∧m ∈ RC(ne

p) : m ∈⊥ p
Any call that reaches the EXIT node generates a cor-
responding inside-last-execution relation. (The epsilon
relation is generated if the ε call reaches the EXIT
node.)

size candidates size candidates
2 127 13 4
3 55 15 2
4 30 16 1
5 12 17 2
6 9 18 1
7 7 19 1
8 7 20 1
9 3 22 1

10 3 24 2
11 3 32 1
12 4 49 1

1236 relations (R∈> ) in 277 candidates

Table 1. Inside-First Execution Relations

3. Experiences

We have implemented the presented static mining on top
of the Soot framework [22], which is used to compute the
control flow graph of the analyzed program. Our tool tra-
verses these control flow graphs and extracts the uniform
and crosscutting inside-first and outside-before execution
relations. As a test case we have analyzed JHotDraw, ver-
sion 5.4b1, which is a well known system and has often
been used in evaluations of aspect mining techniques. It is
a drawing application and demonstrates good use of design
patterns. It contains about 18.000 lines of source code and
2.900 methods. Moreover, it has been extensively analyzed
by Marin et al. [14] and we will use their results, which are
available at a website1, for comparison.

In the following, we will concentrate on inside-first and
outside-before relations. The reasons are that the results
for outside-after relations are very similar to the outside-
before relations and because of the representation of ex-
ception handling in Soot, the results for inside-last rela-
tions are corrupted. Tables 1 and 2 show the results. The
first column shows the size of detected crosscutting candi-
dates measured by the number of crosscutted methods (the
number of different methods v for a unique method u with
relation u ◦ v ∈ R◦). The second column shows the num-
ber of candidates of the size. For inside-first execution rela-
tions, the tool has identified 277 candidates with 1236 uni-
form and crosscutting relations, and for outside-before rela-
tions, 92 candidates with 294 relations.

It is interesting, that there are many more candidates for
inside-first than for outside-before. Furthermore, there are a
lot of candidates with just a small amount of crosscutting,
e.g., 127 candidates that just crosscut two methods.

1 http://swerl.tudelft.nl/amr/

4



size candidates size candidates
2 53 8 1
3 19 9 1
4 4 11 1
5 6 12 1
6 3 13 1
7 2

294 relations (R⇀) in 92 candidates

Table 2. Outside-Before Execution Relations

We will next discuss some of the identified candidates
in detail ([12] presented only preliminary results). How-
ever, due to the large number of identified candidates, we
will only present the six largest candidates of each category
first. This initial discussion is used to argue that many of
the identified crosscutting concerns are the result of dele-
gations and should not be refactored into aspects. Instead,
a filter is needed that removes the delegations from the re-
sults. Such a filter is presented after the first discussion with
a detailed presentation of the then filtered results.

3.1. Inside-First Relations

The largest candidate consists of 49 uniform and cross-
cutting execution relations. The invoked method is “...Col-
lectionsFactory.current”. It is obvious that this is a method
to access the current factory object, needed in many other
methods of the system. This is clearly crosscutting, how-
ever, not a refactorable aspect. This has also been ob-
served by others, for example Marin et al [14] classified this
method as a utility method which is ignored in their fan-in
analysis.

The second largest candidate consists of 32 relations for
the method “...DrawingView.view”. This is again an acces-
sor method that returns the currently active view. Thus, it
is crosscutting but not refactorable. (Again, this can be re-
garded as a ‘utility’ method.)

The same holds for the third and fourth candidate,
which both consist of 24 relations. The relevant meth-
ods are “...DecoratorFigure.getDecoratedFigure” and
“...AbstractHandle.owner” which are once again acces-
sor methods. It is interesting to note that Marin et al. classi-
fied the owner method as part of the Observer crosscutting
concern. However, we have decided to regard this as an ac-
cessor method.

For the fifth candidate, things are not different: It
consists of 22 relations for the method “...Undoad-
ableAdapter.undo” that checks whether the current ob-
ject represents an undo-able action. However, this method
call belongs to a well known crosscutting concern in JHot-

Draw, the Undo crosscutting concern which has been refac-
tored by Marin [13]. This refactoring is complicated and
not only related to the undo method. As our goal is to iden-
tify simple crosscutting concerns, this method is still clas-
sified as not refactorable (with small effort).

Things change for the sixth candidate consisting of
20 candidates for method “...AbstractFigure.willChange”.
That method informs a figure that an operation will
change the displayed content. This is the first candi-
date that is a crosscutting concern which could be refac-
tored into an aspect. This is a well known crosscutting
concern in JHotDraw, it is again the Observer con-
cern.

3.2. Outside-Before Relations

The largest discovered candidate consists of 13 uniform
and crosscutting execution relations for the method “...Iter-
ator.next”. A closer look to the 13 invocations reveals that
this crosscutting is more or less incidental: An operation is
performed on the next element of a container. It is thus clas-
sified as a utility method by Marin et al.

The second largest candidate is somewhat interesting: It
consists of 12 invocations of different methods after a call
to “...AbstractCommand.execute” (i.e. it is always called be-
fore one of the 12 other methods is invoked). 11 of the in-
vocations are calls to the “createUndoActivity” method of
11 different classes. The other is an invocation of “...Zoom-
DrawingView.zoomView”, which could be interpreted as an
anomaly—maybe this deviating behavior is related to a bug
in the program. However, the other 11 invocations are of
classes representing operations that change the figure and
zoomView (probably) does not change it, thus this is not an
anomaly.

The next three largest candidates (consisting of 11, 9, and
8 relations) are again more or less incidental crosscutting
concerns related to methods “...DrawingView.drawing”,
“...List.add”, and “...DrawingView.view”. However, it is in-
teresting to see that DrawingView.view was also part of a
large inside-first candidate. Again, these methods can be re-
garded as utility methods.

Again, only the sixth largest candidate can be seen as
crosscutting concern that can be refactored into an aspect.
It consists of seven relations for method “...AbstractFig-
ure.willChange”. It is immediately called before methods
that will change the displayed figure. However, it is interest-
ing to see that this method has also appeared as an inside-
first candidate, where the candidate is larger (20 relations).
It is part of the Observer concern.

5



size candidates size candidates
2 30 9 0
3 15 10 1
4 11 11 1
5 1 13 1
6 1 17 1
7 2 20 1
8 2

261 relations (R∈> ) in 67 candidates

Table 3. Filtered Inside-First Execution Rela-
tions

3.3. A simple filter

We have seen in the last section that most of the discov-
ered cross cutting concerns are not to be refactored, because
they are perfectly valid in their characteristics: Most of them
are based on heavy use of delegation. While delegation can
be often be regarded as crosscutting, we want to identify
cross cutting concerns that are more in the style of superim-
position, i.e. that add behavior at the place where they are
used but without having a direct dependence with the en-
closing code. A very simple, but very effective filter is to
use the signatures of the invoked methods. It is based on the
assumption that any method that returns a value has been
delegated a part of the calling method’s task and the results
of the delegated tasks are immediately needed by the dele-
gation method.

Only void methods are not directly needed where they
are invoked. Of course, this is over-simplifying because of
reference parameters. The return value of non-void methods
is used by the calling method, thus, non-void methods are
usually delegations from the calling method and not refac-
torable into aspects. Marin [13] has used non-void meth-
ods as parts of crosscutting concerns, for example the Undo
concern. However, this refactoring also extracted the en-
closing statements in a complex refactoring. The goal of our
approach is to identify simple possibilities for refactoring.

The implemented filter extracts only those uniform and
crosscutting execution relations that call a void method. The
results of this filter are shown in Table 3 and 4.

Figure 2 shows the extracted cross cutting inside-first-
execution relations for candidates with at least seven rela-
tions. A closer look at these relations reveal that most of
them have the characteristics of cross cutting concerns, es-
pecially the larger ones. We will now discuss them in de-
tail:

...AbstractFigure.willChange This method has been dis-
cussed in the previous sections and is part of the Observer

size candidates
2 11
3 3
4 2
5 1
7 1

12 1

62 relations (R⇀) in 19 candidates

Table 4. Filtered Outside-Before Execution
Relations

concern.

...AbstractCommand.execute This method has already been
discussed in the previous section. This method is part of two
known concerns in JHotDraw: the Command and the Con-
tract enforcement concern [14].

...UndoableAdapter.setUndoable This is another method
that belongs to the known Undo concern. However, as
this is a setter method that just sets a field of the Un-
doableAdapter class, it is ignored in the fan-in approach of
Marin et al. [14].

...AbstractTool.mouseDown has been already identified by
Marin et al. as part of a consistent behavior concern.

...Rectangle.add This method belongs to the AWT standard
library. It has not been observed by Marin et al. This method
reveals a consistent behavior concern: At the 10 identified
call sites a new rectangle is created from two points that
have been provided as arguments to the current method. It
is clearly a crosscutting concern that can be refactored (and
probably should).

. . . ObjectInputStream.defaultReadObject This method
is called within eight other methods, all specific ver-
sions of readObject. It is used to deserialize an object,
which is read from an input stream. Thus, this can be classi-
fied as a consistent behavior concern and can be refactored
into an aspect. Because this method is part of the stan-
dard library, this concern has not been described by Marin
et al.

. . . Rectangle.translate This method moves a rectangle ob-
ject by a given vector. As can be seen, it is used seven times
in basicMoveBy methods (and there it is most often the only
method called). It is clearly a delegation, but can also be
seen as crosscutting behavior in the form of a consistent be-
havior concern. However, the translate method is used at
least in 20 of more than 30 basicMoveBy methods. In many
methods some other operations must be executed before the
rectangle can be moved. Some others just execute the basic-
MoveBy method of the super class. Thus, the consistent be-

6



7 ...figures.AttributeFigure.read ∈>
...figures.EllipseFigure.read
...figures.RoundRectangleFigure.read
...figures.TextFigure.read
...figures.ImageFigure.read
...contrib.TextAreaFigure.read
...contrib.PolygonFigure.read
...figures.RectangleFigure.read

7 ...figures.AttributeFigure.write ∈>
...figures.ImageFigure.write
...contrib.TextAreaFigure.write
...figures.TextFigure.write
...figures.EllipseFigure.write
...contrib.PolygonFigure.write
...figures.RectangleFigure.write
...figures.RoundRectangleFigure.write

8 java.awt.Rectangle.translate ∈>
...contrib.ComponentFigure.basicMoveBy
...figures.EllipseFigure.basicMoveBy
...contrib.TextAreaFigure.basicMoveBy
...figures.NullFigure.basicMoveBy
...figures.RectangleFigure.basicMoveBy
...samples.pert.PertFigure.basicMoveBy
...figures.ImageFigure.basicMoveBy
...figures.RoundRectangleFigure.basicMoveBy

8 java.io.ObjectInputStream.defaultReadObject ∈>
...figures.ImageFigure.readObject
...standard.StandardDrawingView.readObject
...contrib.TextAreaFigure.readObject
...figures.LineConnection.readObject
...standard.StandardDrawing.readObject
...figures.TextFigure.readObject
...standard.DecoratorFigure.readObject
...standard.CompositeFigure.readObject

10 java.awt.Rectangle.add ∈>
...figures.NullFigure.basicDisplayBox
...contrib.SimpleLayouter.calculateLayout
...samples.pert.PertFigure.basicDisplayBox
...contrib.zoom.AreaTracker.rubberBand
...standard.SelectAreaTracker.rubberBand
...figures.RectangleFigure.basicDisplayBox
...figures.EllipseFigure.basicDisplayBox
...figures.ImageFigure.basicDisplayBox
...figures.RoundRectangleFigure.basicDisplayBox
...contrib.ComponentFigure.basicDisplayBox

11 ...standard.AbstractTool.mouseDown ∈>
...standard.ActionTool.mouseDown
...figures.ScribbleTool.mouseDown
...standard.DragTracker.mouseDown
...standard.HandleTracker.mouseDown
...samples.javadraw.URLTool.mouseDown
...contrib.zoom.ZoomTool.mouseDown
...standard.CreationTool.mouseDown
...standard.ConnectionTool.mouseDown
...contrib.dnd.DragNDropTool.mouseDown
...contrib.PolygonTool.mouseDown
...standard.SelectionTool.mouseDown

13 ...util.UndoableAdapter.setUndoable ∈>
...standard.SendToBackCommand.UndoActivity.(init)
...figures.RadiusHandle.UndoActivity.(init)
...figures.BorderTool.UndoActivity.(init)
...figures.PolyLineHandle.UndoActivity.(init)
...standard.ResizeHandle.UndoActivity.(init)
...standard.ChangeConnectionHandle.UndoActivity.(init)
...figures.GroupCommand.UndoActivity.(init)
...figures.InsertImageCommand.UndoActivity.(init)
...standard.PasteCommand.UndoActivity.(init)
...figures.UngroupCommand.UndoActivity.(init)
...contrib.TriangleRotationHandle.UndoActivity.(init)
...contrib.PolygonScaleHandle.UndoActivity.(init)
...standard.SelectAllCommand.UndoActivity.(init)

17 ...standard.AbstractCommand.execute ∈>
...util.UndoCommand.execute
...standard.BringToFrontCommand.execute
...standard.CutCommand.execute
...figures.InsertImageCommand.execute
...standard.ToggleGridCommand.execute
...standard.AlignCommand.execute
...contrib.zoom.ZoomCommand.execute
...standard.CopyCommand.execute
...standard.DuplicateCommand.execute
...standard.DeleteCommand.execute
...standard.SelectAllCommand.execute
...util.RedoCommand.execute
...standard.ChangeAttributeCommand.execute
...figures.UngroupCommand.execute
...figures.GroupCommand.execute
...standard.PasteCommand.execute
...standard.SendToBackCommand.execute

20 ...standard.AbstractFigure.willChange ∈>
...contrib.TextAreaFigure.setFont
...contrib.GraphicalCompositeFigure.update
...contrib.TriangleFigure.rotate
...figures.TextFigure.moveBy
...contrib.PolygonFigure.scaleRotate
...contrib.PolygonFigure.setPointAt
...figures.LineConnection.startPoint
...contrib.PolygonFigure.removePointAt
...figures.ElbowConnection.updatePoints
...figures.TextFigure.setFont
...standard.AbstractFigure.moveBy
...figures.LineConnection.endPoint
...contrib.PolygonFigure.smoothPoints
...figures.PolyLineFigure.removePointAt
...figures.PolyLineFigure.setPointAt
...standard.AbstractFigure.displayBox
...contrib.html.HTMLTextAreaFigure.figureChanged
...contrib.TextAreaFigure.moveBy
...figures.RoundRectangleFigure.setArc
...contrib.PolygonFigure.insertPointAt

Figure 2. Extracted Inside-First-Execution Relations

7



havior concern is better not refactored into an aspect (oth-
erwise, the basicMoveBy methods would be very hetero-
geneous). In contrast, this specific concern for the move-
ment of figures has also been identified by Ceccato et al. [6],
where it has been classified as an “aspectizable”, i.e. can be
refactored into an aspect.

. . . AttributeFigure.write and . . . AttributeFigure.read
These two methods are responsible to read figures from an
input stream and write them to an output stream resp. Be-
cause figures can be composed, the composite figures del-
egate reading and writing to the embedded figures—it is
an instance of the composite design pattern. It is more
or less another instance of the consistent behavior con-
cern, however, not to be regarded as an aspect to be refac-
tored.

4. Related Work

Aspect mining has been identified as useful technique
to understand crosscutting behavior in non-aspect-oriented
programs and as an aid to help in refactoring non-aspect-
oriented programs to aspect-oriented programs. Most of the
early approaches were not automatic and one has to specify
a pattern that can be searched for in the source code [8, 23].

The most similar approach to ours is the approach of
Marin et al. [14], who use fan-in analysis to identify cross-
cutting concerns. Fan-in analysis basically counts for each
method the number of call sites in the source code that call
the method. This approach is very similar to our inside-first-
and inside-last-execution relations, however, our approach
is more specific as it only identifies candidates that are eas-
ily refactorable by advice.

Gybels and Kellens [9, 10] use heuristics to mine for
crosscutting concerns. The “unique methods” heuristic is
defined as “A unique method is a method without a re-
turn value which implements a message implemented by no
other method” and can be compared to our non-void meth-
ods filter. Gybels and Kellens also search for (unique) meth-
ods that are called from many places.

Tourwe and Mens [21] uses concept analysis to iden-
tify aspectual views in programs. The extraction of elements
and attributes from the names of classes, methods, and vari-
ables, formal concept analysis is used to group those ele-
ments into concepts that can be seen as aspect candidates.
Tonella and Ceccato [20] also use concept analysis for as-
pect mining, but they apply it on traces generated by dy-
namic analysis.

Some other approaches rely on clone detection tech-
niques to detect scattered code in the form of crosscut-
ting concerns: Bruntink [4, 3, 5] evaluated the use of those
clone detection techniques to identify crosscutting con-
cerns. Their evaluation has shown that some of the typi-
cal aspects are discovered very well while some are not.

Ophir by Shepherd et al. [15] uses a program dependence
graph based clone detection technique for aspect mining.
After an initial phase that detects clones, a second step fil-
ters the candidates, and a third phase coalesces the remain-
ing candidates.

Remaining approaches use Natural Language Processing
to analyze the identifiers used in source code [18] and clus-
tering of related methods [17].

Ceccato et al. [6] have done a comparison of three aspect
mining approaches: fan-in analysis [14], identifier analysis
[21], and dynamic analysis [20]. The differences in the ap-
proaches and their results are presented and examined.

Timna by Shepherd et al. [16] is a framework for the
combination of aspect mining techniques with the goal to
increase precision and recall in comparison to approaches
that use a single technique.

Binkley et at. [1] presents a semi-automated approach to
refactor identified crosscutting concerns in object-oriented
programs into aspects. Marin [13] has described how the
Undo concern in JHotDraw has been refactored into an as-
pect manually.

Engler et al. [7] use statistical analysis to infer consis-
tent and deviant behavior based on paired calls that follow
one another. The paired calls are very similar to our outside-
before and -after execution relations and we could use sta-
tistical analysis to find more crosscutting anomalies as pre-
sented in the Section 3.2.

5. Discussion, Conclusions, and Future Work

This evaluation of the static aspect mining tool has
shown that most of the unfiltered and filtered identified
crosscutting candidates are not concerns refactorable into
aspects. This is not much different from results in our previ-
ous dynamic aspect mining approach [2]. However, both ap-
proaches give interesting insights into the crosscutting be-
havior of the analyzed program. Moreover, as seen in the
example for method AbstractCommand.execute, they can
probably be used to discover crosscutting anomalies, an
anomaly in the discovered execution relation pattern.

Because of the small number of analyzed candidates in a
single test program, the results cannot be generalized. How-
ever, based on the previous results from the dynamic ap-
proach and the comparison to other mining approaches for
the analyzed program, our hypothesis is that the results will
not change and are general. This would mean that aspect
mining will have a hard time to identify candidates that are
really refactorable into aspects. This hypothesis is in line
with other results from similar studies, for example, Marin
et al. used a large set of utility methods that are filtered
out [14]. Moreover, the ongoing refactoring of JHotDraw
into a system that makes good use of aspect oriented pro-
graming shows that a refactoring is usually a complex task

8



[13]. However, in contrast to other authors, we believe that
most detected crosscutting concern in any aspect mining ap-
proach will reveal delegations that should not be refactored
into aspects. Delegation can be regarded as a simple form of
crosscutting, however, only superimposing delegations that
are loosely coupled to the surrounding code can be refac-
tored into aspects.

Therefore, future work will continue in two directions:

1. A large-scale analysis of discovered candidates for a
larger set of programs with static and dynamic analy-
sis. This includes the analysis of two other systems
that have been used in other aspect mining approaches
(Tomcat and PetStore).

2. Development of a filter which extracts the refactorable
candidates from the discovered candidates. The pre-
sented simple filter already generates good results,
however, exception handling can disturb the applica-
bility (like in the inside-last-execution relations) and
should be filtered.

References

[1] D. Binkley, M. Ceccato, M. Harman, F. Ricca, and P. Tonella.
Automated refactoring of object oriented code into aspects.
In 21st IEEE International Conference on Software Mainte-
nance (ICSM’05), pages 27–36, 2005.

[2] S. Breu and J. Krinke. Aspect mining using event traces. In
Proc. International Conference on Automated Software En-
gineering, pages 310–315, 2004.

[3] M. Bruntink. Aspect mining using clone class metrics. In
Workshop on Aspect Reverse Engineering, 2004.

[4] M. Bruntink, A. van Deursen, R. van Engelen, and
T. Tourwe. An evaluation of clone detection techniques for
identifying cross-cutting concerns. In Proc. International
Conference on Software Maintenance, 2004.

[5] M. Bruntink, A. van Deursen, R. van Engelen, and
T. Tourwe. On the use of clone detection for identify-
ing crosscutting concern code. IEEE Trans. Softw. Eng.,
31(10):804–818, Oct. 2005.

[6] M. Ceccato, M. Marin, K. Mens, L. Moonen, P. Tonella, and
T. Tourwe. A qualitative comparison of three aspect min-
ing techniques. In 13th International Workshop on Program
Comprehension (IWPC), 2005.

[7] D. Engler, D. Y. Chen, S. Hallem, A. Chou, and B. Chelf.
Bugs as deviant behavior: a general approach to inferring er-
rors in systems code. SIGOPS Oper. Syst. Rev., 35(5):57–72,
2001.

[8] W. G. Griswold, Y. Kato, and J. J. Yuan. Aspect Browser:
Tool Support for Managing Dispersed Aspects. Technical
Report CS99-0640, Department of Computer Science and
Engineering, UC, San Diego, 1999.

[9] K. Gybels and A. Kellens. An experiment in using inductive
logic programming to uncover pointcuts. In First European
Interactive Workshop on Aspects in Software, 2004.

[10] K. Gybels and A. Kellens. Experiences with identifying as-
pects in smalltalk using ’unique methods’. In Workshop on
Linking Aspect Technology and Evolution (LATE), 2005.

[11] G. Kiczales, J. Lamping, A. Mendhekar, C. Maeda, C. Lopes,
J.-M. Loingtier, and J. Irwin. Aspect-Oriented Program-
ming. In European Conf. on Object-Oriented Programming
(ECOOP), 1997.

[12] J. Krinke and S. Breu. Control-flow-graph-based aspect min-
ing. In Workshop on Aspect Reverse Engineering, 2004.

[13] M. Marin. Refactoring jhotdraw’s undo concern to aspectj.
In Workshop on Aspect Reverse Engineering (WARE), 2004.

[14] M. Marin, A. van Deursen, and L. Moonen. Identifying as-
pects using fan-in analysis. In Proceedings of the 11th Work-
ing Conference on Reverse Engineering (WCRE2004), 2004.

[15] D. Shepherd, E. Gibson, and L. Pollock. Design and evalu-
ation of an automated aspect mining tool. In International
Conference on Software Engineering and Practice, 2004.

[16] D. Shepherd, J. Palm, L. Pollock, and M. Chu-Carroll.
Timna: A framework for combining aspect mining analyses.
In International Conference on Automated Software Engi-
neering, 2005.

[17] D. Shepherd and L. Pollock. Interfaces, aspects, and views.
In Workshop on Linking Aspect Technology and Evolution
(LATE), 2005.

[18] D. Shepherd, T. Tourwe, and L. Pollock. Using language
clues to discover crosscutting concerns. In First Interna-
tional Workshop on the Modeling and Analysis of Concerns
in Software (MACS), 2005.

[19] P. Tarr, H. Ossher, W. Harrison, and S. M. Sutton, Jr. N De-
grees of Separation: Multi-Dimensional Separation of Con-
cerns. In 21st Intl. Conf. on Software Engineering (ICSE),
pages 107–119, 1999.

[20] P. Tonella and M. Ceccato. Aspect mining through the formal
concept analysis of execution traces. In 11th IEEE Working
Conference on Reverse Engineering (WCRE 2004), 2004.

[21] T. Tourwe and K. Mens. Mining aspectual views using for-
mal concept analysis. In Proc. IEEE International Workshop
on Source Code Analysis and Manipulation, 2004.

[22] R. Vallee-Rai, P. Co, E. Gagnon, L. Hendren, P. Lam, and
V. Sundaresan. Soot – a java bytecode optimization frame-
work. In Proc. CASCON, 1999.

[23] C. Zhang and H.-A. Jacobsen. Quantifying Aspects in Mid-
dleware Platforms. In 2nd Intl. Conf. on Aspect-Oriented
Software Development (AOSD), pages 130–139, 2003.

9


