
Ray-tracing

Overview

 Recursive Ray Tracing
 Shadow Feelers
 Snell’s Law for Refraction
 When to stop!

Recap: Light Transport

Recap: Local Illumination

 Ambient, diffuse & specular components
 The sum is over the specular and diffuse

components for each light

() () () ∑ = ⋅ + ⋅ + =
M

j

m

j s j d j i a r n h k l n k I k I 1 , I a

Recap: Result of Ray Casting

Correcting for Non-Visible Lights

E
N H

L

surface

 Where Sj is the result of intersecting the
ray L with the scene objects

 Note consider your intersection points
along the ray L carefully
•  Hint – they might be beyond the light!

Result of Shadow Feeler

Recursive Ray-Tracing

 We can simulate specular-specular
transmission elegantly by recursing and
casting secondary rays from the
intersection points

 We must obviously chose a termination
depth to cope with multiple reflections

Introducing Reflection

 Where

E
N H

L

surface

R

Computing Reflectance

 Where Ilocal is computed as before
 Ray r' is formed from intersection point

and the direction R and is cast into the
scene as before

Recursive Ray Tracing

L1

L2

p

p’

p’’

R1 R2

Pseudo Code

Color RayTrace(Point p, Vector direction, int depth) {
 Point pd /* Intersection point */
 Boolean intersection
 if (depth > MAX) return Black
 intersect(p,direction, &pd, &intersection)
 if (!intersection) return Background
 Ilocal = kaIa + Ip.v.(kd(n.l) + ks.(h.n)m)
 return Ilocal + kr*RayTrace(pd, R, depth+1)
}

Normally kr = ks

Result of Recursion

Perfect Specular Transmission
N H

L

E

T

R

α

Snell’s Law

η is index of
refraction

η1

η2
ß

Using Snell’s Law

  Using this law it is possible to show that:

  Note that if the root is negative then total
internal reflection has occurred and you just
reflect the vector as normal

Recursive Ray Tracing Including
Transparent Objects

L1

L2

p

p’

p’’

R1 R2

T2

T1

New Pseudo Code

Color RayTrace(Point p, Vector D, int depth) {
 Point pd /* Intersection point */
 Boolean intersection
 if (depth > MAX) return Black
 intersect(p,direction, &pd, &intersection)
 if (!intersection) return Background
 Ilocal = kaIa + Ip.v.(kd(n.l) + ks.(h.n)m)
 return Ilocal + kr*RayTrace(pd, R, depth+1) +

 kt*RayTrace(pd, T, depth+1)
}

Direct Specular Transmission

  A transparent
surface can
be illuminated
from behind
and this
should be
calculated in
Ilocal

N
H'

L

E

Calculating H'

 Use H‘ instead of H in specular term

Putting Everything Together

Discussion – What Can’t We Simulate?

Remark

  Specular and transmission only
•  What should be added to consider diffuse reflection?

  Why it’s expensive
•  Intersection of rays with polygons (90%)

  How to reduce the cost?
•  Reduce the number of rays
•  Reduce the cost on each ray

–  First check with bounding box of the object
– Methods to sort the scene and make it faster

Summary

 Recursive ray tracing is a good
simulation of specular reflections

 We’ve seen how the ray-casting can be
extended to include shadows,
reflections and transparent surfaces

 However this is a very slow process and
still misses some types of effect!

