Ray-tracing

Overview

m Recursive Ray Tracing

m Shadow Feelers

m Snell’s Law for Refraction
m When to stop!

Recap: Light Transport

L L
() diffuse to specular () diffuse to diffuse

Recap: Local Illumination

1=k g () ek (o))

m Ambient, diffuse & specular components

m The sum is over the specular and diffuse
components for each light

Recap: Result of Ray Casting

Correcting for Non-Visible Lights

N
E H

surface

I, =k, + Eﬁsjli,j@d(”'lj)"'ks (hj '”)1)

m Where Sj is the result of intersecting the
ray L with the scene objects

m Note consider your intersection points
along the ray L carefully
* Hint — they might be beyond the light!

Result of Shadow Feeler

Recursive Ray-Tracing

m We can simulate specular-specular
transmission elegantly by recursing and
casting secondary rays from the
intersection points

m We must obviously chose a termination
depth to cope with multiple reflections

Introducing Reflection

ENRH

[]
surface

m Where R=—E+2(N'E)N

Computing Reflectance

I =1,

ocal + kr[r'

m Where |, is computed as before

m Ray r'is formed from intersection point
and the direction R and is cast into the

scene as before

Recursive Ray Tracing

Pseudo Code

Color RayTrace(Point p, Vector direction, int depth) {
Point pd /* Intersection point */
Boolean intersection
if (depth > MAX) return Black
intersect(p,direction, &pd, &intersection)
if (lintersection) return Background
locar = Kol + V- (ky(n.1) + K. (h.n)™)
return |, + k,*RayTrace(pd, R, depth+1)

Normally k, = ki

Result of Recursion

Perfect Specular Transmission

N
b
E

Snell’s Law
sina 1,

a - =

Ny sinf8
M is index of
"z g T refraction

Using Snell’s Law

m Using this law it is possible to show that:

T= —1712E+N@12 -cosoc—\/1+77122 -(cosza —1);

m Note that if the root is negative then total
internal reflection has occurred and you just
reflect the vector as normal

Recursive Ray Tracing Including
Transparent Objects

New Pseudo Code

Color RayTrace(Point p, Vector D, int depth) {
Point pd /* Intersection point */
Boolean intersection
if (depth > MAX) return Black
intersect(p,direction, &pd, &intersection)
if (lintersection) return Background
Ilocal = kala + Ip' V. (kd(n-l) + ks' (h-n)m)
return |, + k.*RayTrace(pd, R, depth+1) +
k;*RayTrace(pd, T, depth+1)

Direct Specular Transmission

m A transparent g H
surface can »
be illuminated k
from behind
and this
should be

4

N

calculated in

/ local

Calculating H'

E-Tp

H'= 771
Ty

U

m Use H'instead of H in specular term

Putting Everything Together

t

Discussion — What Can’t We Simulate?

(@) specular to specular (b) specular to diffuse

1 L
(©) diffuse to specular () diffuse to diffuse

Remark

m Specular and transmission only

» What should be added to consider diffuse reflection?
m Why it's expensive

« Intersection of rays with polygons (90%)
m How to reduce the cost?

* Reduce the number of rays

* Reduce the cost on each ray
— First check with bounding box of the object
— Methods to sort the scene and make it faster

Summary

m Recursive ray tracing is a good
simulation of specular reflections

m We've seen how the ray-casting can be
extended to include shadows,
reflections and transparent surfaces

m However this is a very slow process and
still misses some types of effect!

