Computer Graphics 3080, GV10

Lecturers

- Jan Kautz, j.kautz@cs.ucl.ac.uk
- David Swapp, <u>d.swapp@cs.ucl.ac.uk</u>

Course information

- http://www.cs.ucl.ac.uk/staff/j.kautz/teaching/3080
- Mailing lists
 - You need to register to one of the mailing lists:
 - <u>3080@cs.ucl.ac.uk</u>
 - gv10@cs.ucl.ac.uk
 - Information on how to register
 - http://www.cs.ucl.ac.uk/teaching/coursemail.htm

Assessment

- Written Examination (2.5 hours, 75%)
- Coursework Section (2 pieces, 25%)

Timetable

• Lecture Times

- Mondays, 10:00-11:00, Roberts 508
- Thursdays, 11.00-13.00, Medawar Watson LT
- Lab Times - Friday 16:00-18:00, Malet Place Eng 1.21

Course Book

- The book supporting the lectures is
 - Computer Graphics And Virtual Environments - From Realism to Real-Time. Mel Slater, Yiorgos Chrysanthou, Anthony Steed, ISBN 0201-62420-6, Addison-Wesley, 2002.

Course content (1)

- Introduction
 - The painter's method
- Creating an image using ray tracing
 Ray casting using a simple camera
 - Local illumination
 - Global illumination with recursive ray tracing
- Specifying a general camera
 - World / image coordinates
 - Creation of an arbitrary cameraRay tracing with an arbitrary camera

Course content (2)

- Constructing a scene
 - Definition of polyhedra
 - Scene hierarchy
 - Transformations of objects / rays
 - Other modelling techniques
- From ray tracing to projecting polygons
 - Transforming the polygons to image space
 - Sutherland-Hodgman clipping
 - Weiler-Atherton clipping

Course content (3)

- Polygon rasterization /Visible surface determination
 - Scan conversion
 - Z-buffer
 - Interpolated shading
 - Texture mapping

Introduction to 3D Graphics

Lecture 1: Illusions and the Fine Art of Approximation

Outline

- Anatomy of an Illusion
 - Environment
 - Light transport and interaction
 - Reception at the eye
- The Painter's Method
 - Ray-casting
 - Approximations

Environment

- A description of a space consisting of *objects*
- Objects have *description* and *state*
- Description consists of *behaviour*, *geometry* and *appearance*
- Geometry must be described relative to a *co-ordinate frame*
- State defines the object at a particular moment in time

Some Simplifying Assumptions

- Wavelength independence - No fluorescence
- Time invariance - No phosphorescence
- Light transport in a vacuum – No participating media
- Objects are isotropic
- Reflectance characteristics are constant over the surface

Physiology of Eye Response

- 6 million cones in the fovea

 cones sense red green or blue light
 colour perception region is very small
- 120 million rods over the whole eye peripheral vision
 - motion sensitive

Assumption for Real-Time Graphics

- Ignore "real" spectral distributions
- Instead calculate at three wavelengths, Red, Green and Blue that monitors provide
- Obviously this is a gross approximation

 Really should find the spectrum for each point calculate the closest RGB value

Major Concepts of Graphics

- Separation of Scene Specification, Viewing and Rendering
 - Scene is modelled independent of any view
 - Views are unconstrained
 - There are many possible rendering methods given a scene and a view

Major Concepts of Graphics

• Aliasing

- Pixels are square and only *sample* the actual light

Combating Aliasing

- Send several rays through each pixel - Stochastic sample
 - Regular sample (full-screen anti-aliasing)
- Stochastic sample is "correct" since it removes regularity
- But only regular sample is easy with the rendering pipeline

Major Concepts of Graphics • Perspective Projection – Image size depends on distance

Major Concepts of Graphics

• Lighting

COP

- Ray-casting is the simple part
- Determining the colour of the pixel is hard for all the reasons described earlier
- Theoretically we have to calculate all incoming light
- In practice we will consider only *local illumination* - light received directly from light sources

Summary

- Taken a brief look at the general problem of doing visual simulation
- Reviewed the limits of human response
- Given an over-view of the simulation process and the concepts of
 - Scene, view, rendering
 - Aliasing
 - ProjectionLighting

Future Work

• To Develop

- Mathematics of scene description
- Geometric descriptions
- Lighting models
- Move from ray-cast to forward projection
 Stages in the graphics pipeline