Bézier Surfaces

AL
_— P \\\\
///// \

hitp:/Awwweibiblio.org/e-notes/Splines fig/surf2.gif

Bezier Surfaces Introduction

« Constructing a surface relies very
much on the ideas behind
constructing curves

« Surfaces can be thought of as
‘Bezier curves in all directions’
across the surface

« Tensor products of Bezier curves

« Teapot most famous example

— produced entirely by Bezier surfaces

Tensor Product

» Of two vectors:
aby ashy azh,

arby ashy azby
[(11 as a3]®[bl by by b4}= G1bs asbs Gabs

arby ashy azby

+ Similarly, we can
define a surface as
the tensor product
of two curves....

Farin, Curves and Surfaces for
Computer Aided Geometric Design

Bilinear Patch

Bi-lerp a (typically non-planar) quadrilateral

(34
s

L

Notation: L(Py, P,) = (1 —)P + aP;

Q(S, t) o L(L(Pl‘be)* L(Ri) P4,t),$)

Bicubic Bezier Patch

Notation: CB(Py, %, P3, Py,) is Bézier curve
with control points P; evaluated at o

Define “Tensor-product” Bézier surface

Q(s,t) = CB(CB(Pu, Po1, P, Pog, 1),
CB(Py, Pi1, Pia, Pis,),
CB(Pao, P, Paa, Pos, t),
CB(Pyo, Py, Py, P, 1),

Editing Bicubic Bezier Patches

Surface Basis Functions

Control Points

« Consider the (m+1)*(n+1) array of 3D
control points
« This array can be used to define a
Bezier of surface of degree m and n.
< If m=n=3 this is called ‘bi-cubic’.
« The same relation between surface and
control points holds as in curves
— If the points are on a plane the surface is a
plane
— If the edges are straight the Bezier surface
edges are straight

— The entire surface lies inside the convex hull
of the control points.

Rendering — de Casteljau

» Use de Casteljau to subdivide each row.

» Then use de Casteljau to subdivide each of the 7
resulting columns.

» This will result in 4 sets of (m+1)*(n+1) array with
one common row and one common column.

If all points are on a plane and the edges are
straight line then we get a polygon with 4 vertices.

» So the recursive algorithm is as follows:

Subdivision 4*4 Cubic Case

ppp

PPPP ppp ppp

pPPPP|____, |ppPP . |ppp

PPpp ppp ppPp
PPPp ppp pppm

split along split down [PPP

rows columns ppP

This gives 4 sets of 4*4 arrays of control points. In each case the
middle values are shared by the two adjacent sets.

Rendering 3D de Casteljau

typedef struct
floatx,y.z;
1Point2D

typedef Point2D ControlPontAmray]4][4]

void BezieraDiControlPointArray
ControlPointérray q.r,
ifiCoplanarip!} RenderPolygon(p[0][0]. p[2](0].p{3][3]. pI2](3]):
else]

Testing Colinearity

« This is where the computational work of the algorithm is located.

« If the equation of the plane is ax+by+cz=d and (x,y,z) is a point then its
distance from the plane is:

s
(ax+by+cz—-dy
—_——

D=

2,2, 2
a+b +¢

« So we have an analogy to the curve case, except also we should
check that the edges are straight, and that adjacent regions have been
split to the same level.

« A simple approach is to just run the recursion to the same level
irrespective of testing whether the final pieces are really flat.

Modeling with Bicubic Bezier Patches

+ Original Teapot specified with Bezier Patches

Bernstein Basis Representation
+ Mathematically the surface can be represented as:

Fituy = ¥ Y B, {fip;B, (u)
i=0i=0 o
rusl 1]
* Note that it is easy to see that this is simple a
‘Bezier curve of Bezier curves’.

B-Spline Surfaces

» These can be constructed in exactly the same
way, except that there will be a knot sequence for
the rows and for the colums.

t): f3. - by o 3 for each column, and
Uy, Uy, ..., Uy .3 for each row.

» The simplest approach is on a row by row and
column by column basis convert the B-Spline
control points to Bezier control points and then
render the Bezier surfaces.

Conclusions

» Surfaces are a simple extension to curves

* Really just a tensor-product between two curves
— One curve gets extruded along the other

