

UCL

Bezier Surfaces Introduction

- Constructing a surface relies very much on the ideas behind constructing curves
- Surfaces can be thought of as 'Bezier curves in all directions' across the surface
- Tensor products of Bezier curves
- Teapot most famous example
 produced entirely by Bezier surfaces

Control Points

- Consider the (m+1)*(n+1) array of 3D control points
- This array can be used to define a Bezier of surface of degree m and n.
- If m=n=3 this is called 'bi-cubic'. The same relation between surface and
- control points holds as in curves – If the points are on a plane the surface is a
 - plane
 - If the edges are straight the Bezier surface edges are straight
 - The entire surface lies inside the convex hull of the control points.
- **≜UCL**

≜UCL

 $p_{00} p_{01} \cdots p_{0n}$

 $p_{10} p_{11} \dots p_{1n}$

 $p_{m\theta} p_{m1} \dots p_{mn}$

Rendering – de Casteljau

- Use de Casteljau to subdivide each row.
- Then use de Casteljau to subdivide each of the 7 resulting columns.
- This will result in 4 sets of (m+1)*(n+1) array with one common row and one common column.
- If all points are on a plane and the edges are straight line then we get a polygon with 4 vertices.
- So the recursive algorithm is as follows:

	[≜] UCL
Rendering 3D de Casteljau	
typedef struck(float x.y.z; }Point3D;	
typedef Point3D ControlPointArray[4][4];	
void Bezier3D(ControlPointArray p) { ControlPointArray q,r,s,t if(Coplanar[p!) RenderPolygon(p[0]]0],p[3][0],p[3][3],p[0] else{ /*split p into q,r,s,t?' Split3D(p,q,r,s,t); Bezier3D(q); Bezier3D(q); Bezier3D(q); Bezier3D(q); }	[3]];
}	

[±]UCL

Testing Colinearity

- This is where the computational work of the algorithm is located.
- If the equation of the plane is ax+by+cz=d and (x,y,z) is a point then its distance from the plane is:

$$D^{2} = \frac{(ax+by+cz-d)^{2}}{a^{2}+b^{2}+c^{2}}$$

- So we have an analogy to the curve case, except also we should check that the edges are straight, and that adjacent regions have been split to the same level.
- A simple approach is to just run the recursion to the same level irrespective of testing whether the final pieces are really flat.

UCL

Bernstein Basis Representation

Mathematically the surface can be represented as:

$$F(t, u) = \sum_{i=0}^{m} \sum_{j=0}^{n} B_{m,i}(t) p_{ij} B_{n,j}(u)$$

t, u \in [0, 1]

• Note that it is easy to see that this is simple a 'Bezier curve of Bezier curves'.

≜UCL

AUCL

B-Spline Surfaces

• These can be constructed in exactly the same way, except that there will be a knot sequence for the rows and for the colums.

 $t_1, t_2, \ldots, t_{m+3}$ for each column, and

 u_1, u_2, \dots, u_{n+3} for each row.

• The simplest approach is on a row by row and column by column basis convert the B-Spline control points to Bezier control points and then render the Bezier surfaces.

• Surfaces are a simple extension to curves

Conclusions

- Really just a tensor-product between two curves
- One curve gets extruded along the other